Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Clay
2.2. Geopolymer Ingredients
2.3. Soil–Geopolymer Admixtures
2.4. Specimen Preparation and Tests
3. Results and Discussions
3.1. Strength Performance
3.2. Durability Performance
3.3. Thermal Conductivity Performance
3.4. Microstructure Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kitazume, M. The Deep Mixing Method/Masaki Kitazume, Masaaki Terashi; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Nicholson, P.G. Soil Improvement and Ground Modification Methods; Butterworth-Heinemann: Waltham, MA, USA, 2014. [Google Scholar]
- Pourakbar, S.; Huat, B.K. A review of alternatives traditional cementitious binders for engineering improvement of soils. Int. J. Geotech. Eng. 2017, 11, 206–216. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Ernandez-Jimenez, A.F. An overview of the chemistry of alkali-activated cement-based binders. In Handbook of Alkali-Activated Cements, Mortars and Concretes; Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Sargent, P., Eds.; Elsevier Science: Amsterdam, The Netherlands; Instituto Eduardo Torroja (IETcc-CSIC): Madrid, Spain, 2014; pp. 20–42. [Google Scholar]
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental impact and management of phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [Green Version]
- Oates, J.A. Lime and Limestone: Chemistry and Technology, Production and Uses; John Wiley & Sons: Weinheim, Germany; New York, NY, USA; Chichester, UK, 1998. [Google Scholar]
- Sargent, P. The development of alkali-activated mixtures for soil stabilisation. In Handbook of Alkali-Activated Cements, Mortars and Concrete; Pacheco-Torgal, F., Labrincha, J., Leonelli, C., Sargent, P., Eds.; Elsevier Science: Kent, UK, 2014. [Google Scholar]
- Tang, Z.; Li, W.; Tam, V.W.; Luo, Z. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete. Compos. Part B Eng. 2020, 185, 107776. [Google Scholar] [CrossRef]
- Hu, Y.; Tang, Z.; Li, W.; Li, Y.; Tam, V.W. Physical-mechanical properties of fly ash/GGBFS geopolymer composites with recycled aggregates. Constr. Build. Mater. 2019, 226, 139–151. [Google Scholar] [CrossRef]
- Rios, S.; Ramos, C.; da Fonseca, A.V.; Cruz, N.; Rodrigues, C. Mechanical and durability properties of a soil stabilised with an alkali-activated cement. Eur. J. Environ. Civ. Eng. 2017, 23, 245–267. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Pinto, A.T. Deep soft soil improvement by alkaline activation. Proc. Inst. Civ. Eng.-Ground Improv. 2011, 164, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. Effects of alkaline-activated fly ash and Portland cement on soft soil stabilisation. Acta Geotech. 2013, 8, 395–405. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Sukmak, P.; Chinkulkijniwat, A.; Arulrajah, A.; Shen, S.-L. Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Mater. Pavement Des. 2016, 17, 877–891. [Google Scholar] [CrossRef]
- Phetchuay, C.; Horpibulsuk, S.; Arulrajah, A.; Suksiripattanapong, C.; Udomchai, A. Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Appl. Clay Sci. 2016, 127–128, 134–142. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Zhang, G.; Nowak, P.; Coen, A.; Tao, M. Calcium-free geopolymer as a stabilizer for sulfate-rich soils. Appl. Clay Sci. 2015, 108, 199–207. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Fernandes, L.S.G.; Pinto, A.T. Effect of calcium content on soil stabilisation with alkaline activation. Constr. Build. Mater. 2012, 29, 167–174. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, C.S.; Liu, F.; Fan, F. Feasibility Study of Loess Stabilization with Fly Ash–Based Geopolymer. J. Mater. Civ. Eng. 2016, 28, 04016003. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Walske, M.L. Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils Found. 2019, 59, 1906–1920. [Google Scholar] [CrossRef]
- Rios, S.; Cristelo, N.; Da Fonseca, A.V.; Ferreira, C. Structural Performance of Alkali-Activated Soil Ash versus Soil Cement. J. Mater. Civ. Eng. 2016, 28, 04015125. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.H.; Shahin, M.A.; Walske, M.L. Review of Fly-Ash-Based Geopolymers for Soil Stabilisation with Special Reference to Clay. Geosciences 2020, 10, 249. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer Chemistry and Applications, 2nd ed.; Institut Géopolymère: Saint-Quentin, France, 2008; p. 585. [Google Scholar]
- Sindhunata; Van Deventer, J.S.J.; Lukey, G.C.; Xu, H. Effect of curing temperature and silicate concentration on fly-ash-based geopolymerization. Ind. Eng. Chem. Res. 2006, 45, 3559–3568. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Sarker, P. Use of Fly-Ash Geopolymer Incorporating Ground Granulated Slag for Stabilisation of Kaolin Clay Cured at Ambient Temperature. Geotech. Geol. Eng. 2018, 37, 721–740. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Van Deventer, J.S.J. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 2005, 35, 1688–1697. [Google Scholar] [CrossRef]
- Granizo, M.L.; Alonso, S.; Blanco-Varela, M.T.; Palomo, A. Alkaline activation of metakaolin: Effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 2002, 85, 225–231. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Fernández-Jiménez, A.; Palomo, A. Variation in hybrid cements over time. Alkaline activation of fly ash– portland cement blends. Cem. Concr. Res. 2013, 52, 112–122. [Google Scholar] [CrossRef]
- AS 1289.3.2.1; Methods of Testing Soils for Engineering Purposes-Method 3.2.1: Soil Classification Tests-Determination of the Plastic Limit of a Soil-Standard Method. Standards Australia: Sydney, Australia, 2009; pp. 1–5.
- AS 1289.3.1.1; Methods of Testing Soils for Engineering Purposes-Method 3.9.1: Soil Classification Tests-Determination of the Liquid Limit of a Soil. Standards Australia: Sydney, Australia, 2015; pp. 1–9.
- AS 1289.3.6.3; Methods of Testing Soils for Engineering Purposes-Method 3.6.1: Soil Classification Tests-Determination of the Particle Size Distribution of a Soil-Standard Method of Analysis by Sieving. Standards Australia: Sydney, Australia, 2009; pp. 1–12.
- AS 1289.4.3.1; Methods of Testing Soils for Engineering Purposes-Method 4.3.1: Soil Chemical Tests-Determination of the pH Value of a Soil-Electrometric Method. Standards Australia: Sydney, Australia, 1997; pp. 1–5.
- Hardjito, D. Studies on Fly Ash-Based Geopolymer Concrete. Ph.D. Thesis, Curtin University of Technology, Perth, WA, Australia, 2005. [Google Scholar]
- Sargent, P.; Hughes, P.N.; Rouainia, M.; White, M.L. The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng. Geol. 2013, 152, 96–108. [Google Scholar] [CrossRef]
- Verdolotti, L.; Iannace, S.; Lavorgna, M.; Lamanna, R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 2007, 43, 865–873. [Google Scholar] [CrossRef]
- AS 5101.4; Methods for Preparation and Testing of Stabilized Materials-Method 4: Unconfined Compressive Strength of Compacted Materials. Standards Australia: Sydney, Australia, 2008; pp. 1–13.
- ASTM 559; Standard Test Methods for Wetting and Drying Compacted Soil-Cement Mixtures. American Society for Testing and Materials: West Conshohocken, PA, USA, 2003.
- Pedarla, A.; Chittoori, S.; Puppala, A.J. Influence of Mineralogy and Plasticity Index on the Stabilization Effectiveness of Expansive Clays. Transp. Res. Rec. J. Transp. Res. Board 2011, 2212, 91–99. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Suksiripattanapong, C.; Samingthong, W.; Rachan, R.; Arulrajah, A. Durability against Wetting–Drying Cycles of Water Treatment Sludge–Fly Ash Geopolymer and Water Treatment Sludge–Cement and Silty Clay–Cement Systems. J. Mater. Civ. Eng. 2016, 28, 04015078. [Google Scholar] [CrossRef]
- Solanki, P.; Zaman, M. Microstructural and mineralogical characterization of clay stabilized using calcium-based stabilizers. In Scanning Electron Microscopy; IntechOpen: London, UK, 2012. [Google Scholar]
- Puppala, A.J.; Madhyannapu, R.S.; Nazarian, S. Special Specification for Deep Soil Mixing; University of Texas at Arlington: Arlington, TX, USA, 2008. [Google Scholar]
- Dong, Y.; McCartney, J.S.; Lu, N. Critical Review of Thermal Conductivity Models for Unsaturated Soils. Geotech. Geol. Eng. 2015, 33, 207–221. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, H.; El-Korchi, T.; Zhang, G.; Tao, M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Constr. Build. Mater. 2013, 47, 1468–1478. [Google Scholar] [CrossRef]
- Abdullah, M.M.A.B.; Jamaludin, L.; Hussin, K.; Bnhussain, M.; Ghazali, C.M.R.; Ahmad, M.I. Fly Ash Porous Material using Geopolymerization Process for High Temperature Exposure. Int. J. Mol. Sci. 2012, 13, 4388–4395. [Google Scholar] [CrossRef] [Green Version]
- Škvára, F.; Kopecký, L.; Nemecek, J.; Bittnar, Z. Microstructure of geopolymer materials based on fly ash. Ceram. Silik. 2006, 50, 208–215. [Google Scholar]
Property | Value/Designation |
---|---|
Liquid limit, LL (%) | 53 |
Plastic limit, PL (%) | 27 |
Plasticity index, PI (%) | 26 |
Passing sieve 75 µm (%) | 99 |
Clay fraction < 2 µm (%) | 79.4 |
Soil pH | 7.8 |
Activity index, A | 0.33 |
Soil classification (USCS) | CH |
Material | Chemical Composition (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | LOI | |
Fly-ash | 51.11 | 25.56 | 12.48 | 4.30 | 1.45 | 0.70 | 0.77 | 0.24 | 0.57 |
GGBFS | 29.96 | 12.25 | 0.52 | 45.45 | 5.99 | 0.38 | 0.31 | 3.62 | 2.39 |
Binder % | Activator/Binder (A/B) | Water/Binder (W/B) |
---|---|---|
10% Geopolymer | 0.50 | - |
0.75 | - | |
1.00 | - | |
20% Geopolymer | 0.50 | - |
0.75 | - | |
1.00 | - | |
30% Geopolymer | 0.50 | - |
0.75 | - | |
1.00 | - | |
10% OPC | - | 0.4 |
20% OPC | - | 0.4 |
30% OPC | - | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdullah, H.H.; Shahin, M.A. Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing. Geosciences 2022, 12, 207. https://doi.org/10.3390/geosciences12050207
Abdullah HH, Shahin MA. Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing. Geosciences. 2022; 12(5):207. https://doi.org/10.3390/geosciences12050207
Chicago/Turabian StyleAbdullah, Hayder H., and Mohamed A. Shahin. 2022. "Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing" Geosciences 12, no. 5: 207. https://doi.org/10.3390/geosciences12050207
APA StyleAbdullah, H. H., & Shahin, M. A. (2022). Geomechanical Behaviour of Clay Stabilised with Fly-Ash-Based Geopolymer for Deep Mixing. Geosciences, 12(5), 207. https://doi.org/10.3390/geosciences12050207