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Abstract: Badlands are unique soil erosion landforms distributed in numerous geological, geomor-
phological, and climate contexts in several Mediterranean countries. The aim of this study was to
map, classify, and analyze the temporal evolution of the badlands that crop out between the Tesino
and Tronto Rivers in the Marche region, Central Apennines (Italy). In this study, 328 badlands
landforms were mapped through Google Earth, orthophoto analysis (year 2016), and field surveys.
Moreover, badlands were classified from a morphological point of view based on the active processes
detected in the field. Additionally, badlands were studied from a lithological point of view, meaning
they were strictly related to the soft sedimentary formations of the study area. Subsequently, through
the analysis of a 10 × 10 m DEM, the most significant morphometric indices were extrapolated and
badlands were classified. Finally, through the orthophotos from 1988, another badlands dataset
was created and the area of each landform was compared with respect to the orthophotos from
2016. The multi-temporal air photo analysis, combined with the NDVI results, identified a general
reduction trend in badlands areas, with increases in green cover and dense vegetation and changes in
badlands morphotypes.

Keywords: badlands (calanchi); inventory map; land use change; vegetation cover; NDVI; Tronto

1. Introduction

Soil erosion is one of the most significant land degradation processes worldwide,
being able to create spectacular and enduring geomorphological landforms [1,2]. One of
the most complex soil erosion landform categories comprises badlands, which are complex
sums of splash, rill–interrill, tunneling, gully, and shallow landslides forms and features.
‘Calanchi’, the Italian term to define badlands, are landforms driven by slope erosion
processes, which are deeply and densely crosscut by running water and often developed
on unconsolidated or poorly cemented materials [3]. In most cases, they are characterized
by steep and unvegetated slopes, high drainage density, and high soil erosion rates. The
genesis and evolution of the badlands are complex and still under discussion (e.g., [4]).
In Italy, the first studies refer to the work by Azzi [5] and particularly Castiglioni [6,7]
who focused on the hilly areas of the Marche and Abruzzo regions (central Italy). In the
following years, other authors (e.g., [8–26]) have focused on the study of badlands, and
all agree that the main controlling factors on the genesis and evolution of the landforms
are the (i) lithology, (ii) climatic factors, (iii) landscape morphology, and (iv) anthropic
activity. Badlands landscapes are often associated with arid and semi-arid areas; however,
they may also develop in humid areas, such as in central Italy, where high topographic
gradients, erodible substrates, and high-intensity storms coexist [27–29]. In addition, in
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the literature, wide state-of-the-art studies have been performed on badlands regarding
their morphology, triggering factors, geological and structural controls, mineralogical and
weathering conditions, and vegetation growth, as well as sediment dynamics modelling
and measurements in badland areas in several Mediterranean countries (e.g., [28,30–39]).

The first climatic classification of badlands was performed by Gallart et al. [28], while
in the following studies several authors related the precipitation amount and intensity to
the vegetation grown, weathering conditions, and erosion processes.

Recently, Nadal-Romero et al. [31] identified the main climate drivers that affect the
hydro-geomorphological dynamics in Mediterranean badlands by applying a specific
scenario analysis. The abovementioned authors highlight the importance of continuing to
monitor the Mediterranean badlands’ dynamics in order to understand the future changes.

From here, this study aims to map, classify, and analyze the temporal evolution of
the badlands developing between Tesino and Tronto rivers in the Marche region (Central
Apennines, Italy) (Figure 1).
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The badlands that crop out in the Marche region have undergone significant historical
studies [40–50]. These authors assessed the genesis and morphological and morphometrical
evolution of these landforms, evaluating the morphodynamical evolution and relation
between badlands and the structural setting of the outcropping area. Moreover, they
investigated the soil characteristics as well as the chemical and physical properties of the
badland lithotypes.

In this work, we want to evaluate the badlands of the Tronto River, and in partic-
ular understand variations in the badlands over a period of roughly 31 years through
orthophotos and remote sensing techniques. The morphological evolution of the badlands
area was studied by several authors in recent years, who highlighted a general shrinking
trend of Italian badlands landforms (e.g., [9,43,51–53]), with some cases of areas increas-
ing [54]. Moreover, other studies have confirmed that under certain climate conditions
and rainfall amounts, badlands areas will be stabilized [34]. The evolution of the badlands
area is related to the land use and land cover changes, amount and intensity of precipita-
tion, weathering conditions, crust protection growth, morphometric characteristics of the
basin, and human activity (e.g., [37]). In addition, different phases of badlands evolution
may reflect significant environmental changes, such as climate variations and human–
environment interactions [10,55]. In times of global change, it is of considerable interest
to track environmental changes in different terrains, including badlands, and to properly
analyze these processes in order to plan effective strategies for landscape conservation and
enhancement [19,52,56–58].
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2. Study Area

The study area covers approximately 168 km2 (of which about 6% is affected by
badlands) and is located in the southern Marche region, between the Tesino River to
the north and the Tronto River to the south (Figure 1). This area is characterized by a
relief that ranges between 17 m a.s.l. near the Tronto river up to 1110 m a.s.l. on the
top of Mount Ascensione. Moreover, the area has a humid subtropical climate (Cfa)
following the Koppen climate classification [59,60], with an average annual precipitation
rate of about 803 mm/year (Center for Ecology and Climatology Experimental Geophysical
Observatory http://www.geofisico.it/ (accessed on 19 November 2021) [61]). As specified
by Buccolini et al. [43], the study area has been exploited since the 16th century for farming
and agricultural purposes, with deforestation and consequent land-use change. Nowadays,
the study area is deeply characterized by agricultural fields and vineyards.

The bedrock geology of the area is composed of a Middle Pliocene–Middle Pleistocene
succession of different lithotypes in tectonic contact or discordant on the turbidites of
the Laga Formation (Messinian) or pelites of the Lower Pliocene [62]. The sedimentary
cycle starts with alternating sandstones, calcarenites, and thin, discontinuous conglom-
eratic levels (Middle Pliocene), intercalated by rare pelitic layers. Throughout the area,
powerful pelitic and pelitic–arenaceous units outcrop towards the east, within which sandy–
conglomerate clastic levels are present at different stratigraphic heights. The sedimentary
cycle ends in correspondence with the coastal area [43]. The bedrock is mostly covered
by eluvial–colluvial deposits, mainly of clayey-silt origin, and an extensive presence of
alluvial deposits is also visible along the main river valleys.

In the north-western part of the study area, Mount Ascensione stands out as the
highest relief of the Periadriatic area of southern Marche (1110 m a.s.l.) and represents the
area where the Upper Pliocene [63,64] bedrock is at the highest altitude in Europe.

The bedrock consists of a conglomeratic body, in which at least five sedimentation
events can be recognized, alternated with pelites of the Plio–Pleistocene sedimentary cycle,
which are transgressive on the underlying Messinian turbidites of the Laga Formation [65].

The lithostratigraphic succession of each level consists of the superimposition, in
sequence, of conglomeratic lithofacies and arenaceous and arenaceous–pelitic levels.

Rare dip–slip faults (roughly NW–SE and WSW–ENE-oriented), with weak vertical
displacement and similarly oriented joint systems, dislocate the monoclinal structure of the
area [66,67].

The morphological setting of the area is driven by the tectonic activity, which is in-
fluenced the relief formation and its evolution (e.g., [43]). Moreover, as already observed
by numerous authors (e.g., [40,49,65]), microclimatic, lithostratigraphic–structural, and
geomorphological factors play a fundamental role in the genesis and development of the
badlands morphologies (Figures 2a,b and 3a–c). Several forms of erosion present in the
study area can be related to the presence of soft sedimentary bedrock. In particular, bad-
lands represent the dominant landforms that crop out along the monoclinals and cataclinals
of the second order of the Tronto River. Moreover, from field observations, a relation be-
tween the structural setting of the area and the landform morphology clearly appears. The
badlands are developed both on tectonic and erosion triangular facets [68], and often repre-
sent the mutual interactions between tectonic activity and erosion processes (Figure 3c,d).

http://www.geofisico.it/
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Figure 2. (a) Schematic geological map of the southern part of Marche region (Pierantoni et al.,
2013 [69]): 1—main continental deposits (Pliocene–Pleistocene–Holocene); 2—sands and conglomer-
ates (Pliocene–Pleistocene); 3—clays and sands (Pliocene–Pleistocene); 4—arenaceous–marly clayey
turbidites (late Miocene); 5—limestone, marly limestone, and marls (early Jurassic–Oligocene).
(b) Geologic map of the study area. (c) CORINE Land Cover map.

The badlands of the study area were investigated in the last years because they are
an important hotspot for local geological tourism [48]. The badlands of the Tronto Basin
show the morphological features of “badlands type A” (Figure 3a) and “badlands type B”
(Figure 3b), as described by Moretti and Rodolfi [50] and subsequently by Bosino et al. [9].
The badlands type A have very thin (“knife-edge”) ridges separating valleys with a strongly
incised “V” shape and arranged in a herringbone pattern (see also Buccolini et al. [43]),
as well as a dense drainage pattern. Conversely, badlands type B present wider valleys
with softer morphologies, sparse vegetation cover, and the presence of mass movements on
which the erosional processes rapidly decrease. As specified by Moretti and Rodolfi [50],
other intermediate landforms can occur. Indeed, in the study area, type A badlands are
occasionally associated with mud flow processes that smooth the interfluves. In addition,
most of the badlands that can be observed in the area are characterized by a sandstone cap,
which acts as an erosive base level arresting the erosive processes (Figure 3e). In general,
the erosive processes in the area are still active, as demonstrated by several rill–interrill
and active gully systems. Finally, in the western part of the study area, several badlands
surfaces and isolated badlands can be mapped.
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3. Methods

For the classification of the badlands, the approach used in this study is shown in the
flow chart (Figure 4).
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Figure 4. Flow chart illustrating the badlands assessment approach (modified from [9]).

3.1. Badlands Identification

Badlands areas were mapped starting from the orthophotos (year 1988) available from
the Marche Region website (https://www.regione.marche.it/Regione-Utile/Paesaggio-
Territorio-Urbanistica-Genio-Civile/Cartografia-e-informazioni-territoriali/WMS#Servizi-
WMS) (accessed on 19 November 2021) and the orthophotos (year 2016, resolution 20 cm)
courtesy of the “Consorzio di Bonifica delle Marche”. The badlands areas were initially
mapped excluding the vegetation in the surrounding areas and subsequently stored in
Shape format using QGIS 3.18.0-Zurich software (https://qgis.org/en/site/) (accessed
on 19 November 2021). For each landform, a unique Id, type of badlands, and total area
covered by the landforms were associated.

3.2. Badlands Classification

The morphological classification of badlands was carried out following the classifica-
tion developed by Moretti and Rodolfi [50], who divided the landforms into type A and
type B. In addition, in order to find a correlation between the morphology and lithology, the
mapped badlands were classified from a lithological point of view using a litho-structural
map at 1:10,000 [69].

Subsequently, the most import morphometric indices linked to badlands erosion
(e.g., [8,70]), such as the slope, aspect, Topographic Wetness Index, and Stream Power
Index [71] values, were derived from a digital elevation model (DEM) with a 10 × 10 m cell,
which was freely downloaded from the INGV website (http://tinitaly.pi.ingv.it/) (accessed
on 19 November 2021).

Through the SAGA GIS [72], the DEM was initially hydrologically corrected to elimi-
nate sinks through the use of the algorithm proposed by Wang and Liu [73]. Subsequently,
the morphometric indices were derived. The single index values were categorized in order
to better represent the single variable. The slope values, representing the gradient of the
side, were divided into 6 classes (between 0◦ and 90◦); the aspect values, representing the
exposition of the slope, were divided into 8 classes (between 0◦ and 360◦); the Topographic
Wetness Index (TWI) values, representing the topography control on hydrological processes
and the runoff generation potential, were divided into 8 classes; and finally the Stream
Power Index (SPI) values, which describes the potential run-off erosion at a given point of
the topographic surface [71], were divided into 13 classes.

https://www.regione.marche.it/Regione-Utile/Paesaggio-Territorio-Urbanistica-Genio-Civile/Cartografia-e-informazioni-territoriali/WMS#Servizi-WMS
https://www.regione.marche.it/Regione-Utile/Paesaggio-Territorio-Urbanistica-Genio-Civile/Cartografia-e-informazioni-territoriali/WMS#Servizi-WMS
https://www.regione.marche.it/Regione-Utile/Paesaggio-Territorio-Urbanistica-Genio-Civile/Cartografia-e-informazioni-territoriali/WMS#Servizi-WMS
https://qgis.org/en/site/
http://tinitaly.pi.ingv.it/
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3.3. Temporal Evolution

To assess the temporal evolution of the landforms, we compared the badlands area
of the year 1988 (summer—August) with the 2016 data (summer—June) (Figure 5a,b).
Subsequently, a geomorphological survey through field observations was carried out to
investigate the causes of badlands area changes, followed by a detailed analysis of precipi-
tation and land use trends. The badlands area variation was evaluated by observing the
precipitation trend in the area. In fact, the mean annual precipitation data for two rainfall
stations located in Spinetoli and Ascoli Piceno were considered (Figure 2b). The rainfall
dataset of the two selected periods (1988 and 2016) was achieved from the Marche Re-
gion website (https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Console-
Servizi-Protezione-Civile/SIRMIP-online) (accessed on 19 November 2021). Finally, the
rainfall percentile analysis was conducted in order to show the influence of the rainfall
intensity to evaluate extreme precipitation events [74–78].
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The relationship between changes in vegetation cover and badlands erosion rates
has been assessed by numerous authors [9,28,79,80]. In this work, the multitemporal
evaluation of vegetation change was assessed through the “CORINE Land Cover” dataset,
downloadable from the Copernicus website (https://land.copernicus.eu/pan-european/
corine-land-cover, (accessed on 19 November 2021) geometric accuracy, satellite data:
CLC1990 ≤ 50 m; CLC 2018 ≤ 10 m (Sentinel-2)) for the years 1990 and 2018.

Furthermore, through satellite images, we extrapolated the vegetation index, i.e.,
NDVI (Normalized Difference Vegetation Index), which provides information on the effects
of green cover on soil erosion and consequently on the evolution of badlands. In our study,
different medium-resolution multi-spectral images recorded during the years 1988 and
2016 were compared to assess spatiotemporal variations. For the derivation of the NDVI,
we used the red and near-infrared spectral bands, from the longest available multi-sensor
time series. The image selection was based on the following criteria: (i) synchronicity;
(ii) lowest cloud cover as catalogued by USGS (2019); (iii) a visual inspection of the images.

Two series of images were recorded from different earth observation satellite platforms
over 31 years. The acquisitions were from the Landsat L-5 Thematic Mapper © August
1988 (LANDSAT/LT05/C01/T1_SR/LT05_190030_19880816) and Landsat8 of August 2016
(LANDSAT/LC8_L1T/LC81900302016242LGN00), respectively, at 30 m resolution. All
acquired images were pre-georeferenced to UTM zone 33 with datum WGS 84 and ortho-
rectified using a digital elevation model. The images and NDVI data were processed in
this study using Google Earth Engine (GEE). GEE is a cloud-based geospatial processing

https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Console-Servizi-Protezione-Civile/SIRMIP-online
https://www.regione.marche.it/Regione-Utile/Protezione-Civile/Console-Servizi-Protezione-Civile/SIRMIP-online
https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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platform that provides online access to its archived datasets. In this study, the JavaScript
application programming interface (API) was used for calling, pre-processing, mosaicking,
and processing. The images were then corrected and filtered to obtain cloud-free products.

The NDVI data computed from the near-infrared and red calibrated images of each
year provided a representation of the green vegetation cover distribution. We used the
following bands for the NDVI calculation provided by the different platforms: (a) band
3 (red) and band 4 (near-infrared) from the Landsat 5 images; (b) band 4 (red) and band
5 (near-infrared) from the Landsat 8. The NDVI values were classified into three equal
intervals, then used to compare the images and evaluate the evolution of the vegetation in
the study area.

4. Results and Discussion

The main objective of the study was to provide an inventory of the badland’s landforms
present in the area investigated together with an in-depth analysis of their geological,
geomorphological, and temporal characteristics.

Initially, 328 badlands were mapped from the 2016 orthophotos (Figure 6). The
badlands covered an area measuring 7.04 km2. Subsequently, a second badlands inventory
was formed starting from the orthophotos from 1988, observing an eroded area measuring
10.34 km2. From the badlands area comparison, it is possible to observe a decrease of
approximately 31.7% in roughly 31 years.
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Figure 6. Inventory map of badlands cropping out between the Tesino and Tronto River Basins.

As previously mentioned, the badlands were classified into types A and B based on
their morphological characteristics. Relative to the year 2016, type A badlands represent
57% of the area and cover 4.07 km2, while 43% of the area is represented by type B badlands,
covering 3 km2. In addition, from the comparison of the two orthophoto datasets for the
years 1988 and 2016 (Figure 5), one can clearly detect a general reduction in type A badlands
and an increase in type B badlands. As defined by several authors, i.e., Ciccacci et al. [10],
type B badlands represent the natural evolution of type A badlands due to landform
smoothing and vegetation growth. In addition, the number of badlands areas increased
after 31 years from 284 to 328 due to revegetation, which divided the single landforms
(Figure 5). At the same time, a reduction in the eroded area was observed from 10.34 to
7.04 km2 (Figure 7b,d).
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In addition, observing the lithological distribution of the badlands, it was possible
to observe a high concentration of landforms in fine Pliocene clay, marls, and limestone
lithotypes. Grain size analyses were conducted on soil samples from some badlands,
showing a silty clay loam texture (USDA classification). However, more detailed studies
on physical and chemical properties of these soils need to be conducted in order to be
statistically significant and to discriminate between type A badlands with and without
mud flow processes.

The formation of the badlands and their subsequent development is related to the
presence of different geological characteristics, such as well-cemented sandstones alternat-
ing with finer and weaker marls and clays. In addition, mass movements, triggered by
intense rainfall, induce the formation of erosive processes such as rills and gullies and the
subsequent development of badland morphologies.

Moreover, comparing how the lithology has influenced the badlands evolution, it is
evident from Figure 7a–d that the coarse lithotypes, i.e., sandstone, bring about a general
reduction in the badlands over the 31 years. On the contrary, clay and interstratified clays
representing the Pleistocene Fm. bring about an increase in badlands area. This can be
explained by the higher permeability of coarse bedrock lithotypes, which facilitate the
vegetation growth. Concerning the morphometric analysis, as specified in the previous
chapters, four morphometric indices (slope, aspect, TWI, and SPI) were derived from the
DEM. The results show that the badlands are mainly south-west facing (180◦–225◦), have
slope angles ranging between 20◦ and 30◦ (about 85%), TWI values ranging from 6 to
10 (Figure 8a–c), and variable SPI values (Figure 8d) due to the fact that this parameter
measure the erosive power of the streamflow based on the assumption that the discharge is
proportional to the specific catchment area [70], while in the study area several badlands
cropped out in the facets guided by the structural setting. The obtained results are in good
agreement with those observed in the Oltrepo Pavese (Northern Italy) area in [19], in a
pilot area in the Modena Province in [12], and partially in [56].
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According to the classification used by Gallart et al. [28], the investigated area falls
within semi-arid and humid conditions, and consequently the amount of vegetation is
controlled by the climatic conditions. In this type of climate, the vegetation cover may play
an important role in contrasting the erosion rate.

Concerning the badlands area variation trend, a temporal evolution of both the rainfall
amount and intensity as well as the land use change was evaluated. Regarding the rainfall
amount, a slight decrease in the mean annual precipitation trend can be observed (Figure 9).
Conversely, by evaluating the 99th percentile (Figure 10), a precipitation intensity increase
can be observed.
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Regarding the land use changes, the analysis of the data (Table 1) showed that agricul-
tural areas and vineyards increased considerably by 21.77 and 5.51%, respectively. On the
contrary, the forests and natural grassland areas significantly decreased by 2.43 and 37.77%,
respectively (Table 1).

Table 1. Land use changes over two periods in 1990 and 2016.

CLC CODE Legend_3Level AREA 1990 AREA 2018 1990% 2018% ∆ (1990–2018)

111 Continuous urban fabric 0.00 0.62 0.00 0.37 0.37
112 Discontinuous urban fabric 2.04 6.36 1.22 3.80 2.58
121 Industrial or commercial units 1.02 3.02 0.61 1.80 1.20

122 Road and rail networks and
associated land 5.86 0.00 3.50 0.00 −3.50

123 Port areas 0.11 0.00 0.07 0.00 −0.07
131 Mineral extraction sites 1.56 0.31 0.93 0.18 −0.75
132 Dump sites 0.01 0.00 0.01 0.00 −0.01
142 Sport and leisure facilities 0.50 0.00 0.30 0.00 −0.30
211 Non-irrigated arable land 8.25 44.71 4.92 26.70 21.77
221 Vineyards 0.00 9.24 0.00 5.51 5.51
231 Pastures 3.07 0.00 1.83 0.00 −1.83
242 Complex cultivation patterns 3.51 65.88 2.10 39.34 37.24

243
Land principally occupied by
agriculture, with significant
areas of natural vegetation

5.64 9.53 3.37 5.69 2.32

311 Broad-leaved forest 19.67 8.18 11.74 4.89 −6.86
312 Coniferous forest 8.62 0.00 5.15 0.00 −5.15
313 Mixed forest 63.26 0.00 37.77 0.00 −37.77
321 Natural grasslands 4.07 0.00 2.43 0.00 −2.43
324 Transitional woodland-shrub 12.64 13.21 7.55 7.89 0.34
331 Beaches, dunes, sands 5.43 0.00 3.24 0.00 −3.24
332 Bare rocks 0.00 2.74 0.00 1.63 1.63
333 Sparsely vegetated areas 0.00 3.68 0.00 2.20 2.20
411 Inland marshes 4.08 0.00 2.44 0.00 −2.44
511 Water courses 17.90 0.00 10.69 0.00 −10.69
512 Water bodies 0.21 0.00 0.13 0.00 −0.13

The NDVI index, on the other hand, shows a discrete increase in the presence of
vegetation from 1988 to 2016 (about 17.8%). The NDVI images were classified into three
classes as follows [81–84]: (i) no vegetation for values less than 0.2; (ii) medium vegetation
for values between 0.2 and 0.4; (iii) dense vegetation cover for values of more than 0.4. The
analysis showed that in general, the spatial extent of green cover in the study area increased
from 108 km2 in 1988 (Figure 11a,b) to 135 km2 in 2016 (Figure 11c,d). In particular, the
dense vegetation cover (class 3) increased in the study area from 31 km2 (19%) in 1988 to
52 km2 (32%) in 2016 (Figure 11e). The same figure shows that the class of low vegetation
(class 1) areas decreased from 36% of the total investigated area in 1988 to 19% in 2016
(Figure 11e). Moreover, the green vegetation was enhanced within the badlands areas
(Figure 12a,b). The area of dense vegetation increased from 1988 to 2016, from 11% to 18%
of the total badland areas, while the low-vegetation areas in badlands have decreased from
45% to 29% (Figure 12c).
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Even if in the study area a general increase in agricultural fields and vineyards was
detected, the NDVI data confirmed that the study area is becoming greener. This trend
of vegetation is occurring along with land cover changes (Table 1) that are stabilizing the
areas within and around the badlands.

The increase in vegetation cover confirms a tendency towards stabilization of the study
area and consequently the presence of less intense erosion processes. This trend is associated
with significant changes in land use, which is in contrast with the observations made by
Bosino et al. [9]. In fact, in the Oltrepo Pavese area (Northern Apennines), a decrease in
the agricultural area and increases in forests and annual green cover were reported, while
in the study area proposed here an opposite trend was observed (Table 1). However, the
shrinking trend of the badlands areas is due to an increase in dense vegetation, as observed
in both study areas. This fact can be explained by the steeper slope characteristics of the
badlands, making them unusable for agricultural purposes.
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In addition, the minimum decrease in precipitation amount also reduces desertification
and contrasting soil erosion and promotes the development of vegetation. On the other
hand, the precipitation amount is still sufficient to trigger shallow landslides and mud flows.
This was also confirmed by the analysis of the precipitation percentiles. In particular, the
99th percentile, which was the one taken as a reference for heavy precipitation (Figure 10),
shows that rainfall has evolved as “extreme events”, even if it has slightly decreased over
time (Figure 9). Therefore, as already mentioned before, this favors the development of mud
flows and small shallow landslides, which are accumulating in the badlands’ accumulation
zones, helping to reduce the slope and the rooting of vegetation (Figure 13).

These observations were also confirmed by the analysis of the NDVI values, which
showed an increase in vegetated areas to the detriment of the badlands. The results of this
work highlight progressive changes in morphology for the badlands and in the percentages
of herbaceous and shrubby vegetation, which characterize these landforms during different
evolution phases. Finally, the changes in badlands morphology are mainly associated with
land use changes and rainfall erosivity variation that occurred in the last 31 years.
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5. Conclusions

In this article, we surveyed and classified the badlands in the area north of the Tronto
River Basin. In total, 328 badlands were identified for a total area (in 2016) of 7.04 km2. Bad-
lands were classified from morphological, morphometrical, and lithological perspectives.
From the morphological observations, a predominance of type B badlands was observed in
the study area. These badlands represent the natural evolution of type A badlands under
actual climatic and land use influences. In addition, from the field observation, it was
evident that several type A badlands have undergone a revegetation process. This was also
confirmed by the NDVI analysis, which highlighted the stabilization trend. Furthermore,
this study shows that the reduction in badlands area was caused primarily by natural
processes, and to a lesser extent by anthropogenic processes. A small reduction in average
annual precipitation causes a slight decrease in running water processes favoring revegeta-
tion. However, as discussed by Nadal-Romero et al. [31], a decrease in annual precipitation,
correlated with an increase in its intensity, could produce lower runoff volumes but greater
erosion rates. The material eroded during a storm event is accumulated in the foothills and
in the badlands’ interfluves, reducing the slope and favoring the growth of vegetation in
these areas under actual climatic conditions. In addition, active and more or less vegetated
mud flow bodies were associated with several badlands landforms, indicating that different
processes are still active. However, more detailed studies will have to be performed in
the future regarding the physical and chemical properties of the soils of these badlands
in order to understand the relations between badlands morphodynamics and mud flow
associations. In conclusion, this study confirms that the badlands of the Tronto River Basin
are shrinking due to a combination of natural and anthropic actions in the last 31 years,
highlighting a general trend observed in other parts of Italy.
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77. Pińskwar, I. Complex changes of extreme precipitation in the warming climate of Poland. Int. J. Climatol. 2021, 42, 817–833.

[CrossRef]
78. Najafi, M.R.; Moazami, S. Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969–2009. Int.

J. Climatol. 2016, 36, 1863–1872. [CrossRef]
79. Buccolini, M.; Bufalini, M.; Coco, L.; Materazzi, M.; Piacentini, T. Small catchments evolution on clayey hilly landscapes in Central

Apennines and northern Sicily (Italy) since the Late Pleistocene. Geomorphology 2020, 363, 107206. [CrossRef]
80. Capolongo, D.; Diodato, N.; Mannaerts, C.M.; Piccarreta, M.; Strobl, R.O. Analyzing temporal changes in climate erosivity using

a simplified rainfall erosivity model in Basilicata (Southern Italy). J. Hydrol. 2008, 356, 119–130. [CrossRef]
81. Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI). 2000. Available online: https://earthobservatory.nasa.gov/Features/

MeasuringVegetation/measuring_vegetation_1.php (accessed on 19 November 2021).
82. Mohajane, M.; Essahlaoui, A.; Oudija, F.; El Hafyani, M.; El Hmaidi, A.; El Ouali, A.; Randazzo, G.; Teodoro, A. Land use/land

cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco.
Environments 2018, 5, 131. [CrossRef]

83. Hashim, H.; Abd Latif, Z.; Adnan, N. Urban Vegetation Classification with Ndvi Threshold Value Method with very High
Resolution (vhr) Pleiades imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 237–240. [CrossRef]

84. Sahebjalal, E.; Dashtekian, K. Analysis of land use-land covers changes using normalized difference vegetation index (NDVI)
differencing and classification methods. Afr. J. Agric. Res. 2013, 8, 4614–4622. [CrossRef]

http://doi.org/10.1007/s00024-014-0937-1
http://doi.org/10.3301/IJG.2013.08
http://doi.org/10.1007/s11069-015-1976-3
http://doi.org/10.1002/hyp.3360050103
http://doi.org/10.5194/gmd-8-1991-2015
http://doi.org/10.1080/13658810500433453
http://doi.org/10.1029/2005GL023272
http://doi.org/10.1007/s00704-011-0487-8
http://doi.org/10.1002/2013WR015194
http://doi.org/10.1002/joc.7274
http://doi.org/10.1002/joc.4465
http://doi.org/10.1016/j.geomorph.2020.107206
http://doi.org/10.1016/j.jhydrol.2008.04.002
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_1.php
https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_1.php
http://doi.org/10.3390/environments5120131
http://doi.org/10.5194/isprs-archives-XLII-4-W16-237-2019
http://doi.org/10.5897/AJAR11.1825

	Introduction 
	Study Area 
	Methods 
	Badlands Identification 
	Badlands Classification 
	Temporal Evolution 

	Results and Discussion 
	Conclusions 
	References

