Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt
Abstract
:1. Introduction
2. Geological Context
2.1. The Kapuskasing Structural Zone
2.2. The Borden Lake Belt
2.3. The Borden Gold Deposit
2.4. Sequence of Polymetamorphism
3. Materials and Methods
3.1. Polished Thin Section Analysis
3.2. Compositional Analysis Using Scanning Electron Microscopy
3.3. In Situ Trace Element Analysis by LA-ICPMS
3.4. Whole-Rock Analysis of Fused Beads by ICP-OES
3.5. 176Lu-176Hf Geochronology and REE Composition of FD01340 Garnet and Whole-Rock Fractions
4. Results
4.1. Garnet Composition
4.2. Whole-Rock Elemental Analysis
4.3. Lu-Hf Radiometric Dating of Garnet
5. Discussion
5.1. Metamorphism
5.2. Lithology
5.3. Geochronology
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corfu, F.; Davis, D. AU–Pb geochronological framework for the western Superior Province. In The Geology of Ontario; Thurston, P.C., Williams, H.R., Sutcliffe, R.H., Stott, G.M., Eds.; Special Volume 4, Part 2; Ontario Geological Survey: Toronto, ON, Canada, 1992; pp. 1335–1346. [Google Scholar]
- Moser, D.E.; Bowman, J.R.; Wooden, J.; Valley, J.W.; Mazdab, F.; Kita, N. Creation of a continent recorded in zircon zoning. Geology 2008, 36, 239–242. [Google Scholar] [CrossRef]
- Percival, J.; Krogh, T. U–Pb zircon geochronology of the Kapuskasing structural zone and vicinity in the Chapleau–Foleyet area, Ontario. Can. J. Earth Sci. 1983, 20, 830–843. [Google Scholar] [CrossRef]
- Krogh, T.E. High precision U-Pb ages for granulite metamorphism and deformation in the Archean Kapuskasing structural zone, Ontario: Implications for structure and development of the lower crust. Earth Planet. Sci. Lett. 1993, 119, 1–18. [Google Scholar] [CrossRef]
- Ketchum, J.W.F.; Ayer, J.A.; Van Breemen, O.; Pearson, N.J. Pericontinental Crustal Growth of the Southwestern Abitibi Subprovince, Canada—U-Pb, Hf, and Nd Isotope Evidence. Econ. Geol. Bull. Soc. Econ. Geol. 2008, 103, 1151–1184. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Kerrich, R.; Maas, R. Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition Geochim. Cosmochim. Acta 1993, 57, 641–658. [Google Scholar] [CrossRef]
- Vervoort, J.D.; Patchett, P.J.; Blichert-Toft, J.; Albarède, F. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. Earth Planet. Sci. Lett. 1999, 168, 79–99. [Google Scholar]
- LaFontaine, D. Structural and Metamorphic Control on the Borden Gold Deposit, Chapleau, Ontario. Master’s Thesis, Lakehead University, Thunder Bay, ON, Canada, 2016. [Google Scholar]
- Watson, J.V. A Discussion on the evolution of the Precambrian crust-Effects of reworking on high-grade gneiss complexes. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1973, 273, 443–455. [Google Scholar]
- Sutton, J.; Watson, J.V. Tectonic evolution of continents in early Proterozoic times. Nature 1974, 247, 433–435. [Google Scholar] [CrossRef]
- Piper, J. A Discussion on global tectonics in Proterozoic times-Palaeomagnetic evidence for a Proterozoic super-continent. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1976, 280, 469–490. [Google Scholar]
- Bursnall, J.; Leclair, A.; Moser, D.; Percival, J. Structural correlation within the Kapuskasing uplift. Can. J. Earth Sci. 1994, 31, 1081–1095. [Google Scholar] [CrossRef]
- Heather, K.; Percival, J.; Moser, D.; Bleeker, W. Tectonics and metallogeny of Archean crust in the Abitibi-Kapuskasing-Wawa region. In Geological Survey of Canada, Open File 3141; Natural Resources Canada: Ottawa, ON, Canada, 1995. [Google Scholar]
- Moser, D. The geology and structure of the mid-crustal Wawa gneiss domain: A key to understanding tectonic variation with depth and time in the late Archean Abitibi–Wawa orogen. Can. J. Earth Sci. 1994, 31, 1064–1080. [Google Scholar] [CrossRef]
- Percival, J.A. Field Trip 16 Guidebook: The Kapuskasing Uplift: Archean Greenstones and Granulites; Geological Association of Canada: St. John’s, NL, Canada, 1986. [Google Scholar]
- Krogh, T.; Moser, D. U-Pb zircon and monazite ages from the Kapuskasing uplift: Age constraints on deformation within the Ivanhoe Lake fault zone. Can. J. Earth Sci. 1994, 31, 1096–1103. [Google Scholar] [CrossRef]
- Bouvier, A.; Vervoort, J.D.; Patchett, P.J. The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet. Sci. Lett. 2008, 273, 48–57. [Google Scholar] [CrossRef]
- Bouvier, A.; Boyet, M. Primitive Solar System materials and Earth share a common initial 142Nd abundance. Nature 2016, 537, 399–402. [Google Scholar] [CrossRef]
- Cheng, H.; King, R.; Nakamura, E.; Vervoort, J.; Zhou, Z. Coupled Lu–Hf and Sm–Nd geochronology constrains garnet growth in ultra-high-pressure eclogites from the Dabie orogen. J. Metamorph. Geol. 2008, 26, 741–758. [Google Scholar] [CrossRef]
- Münker, C.; Weyer, S.; Scherer, E.E.; Mezger, K. Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef] [Green Version]
- Vervoort, J.D.; Patchett, P.J.; Söderlund, U.; Baker, M. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochim. Geophys. Geosys. 2004, 5. [Google Scholar] [CrossRef]
- Barrat, J.A.; Zanda, B.; Moynier, F.; Bollinger, C.; Liorzou, C.; Bayon, G. Geochemistry of CI chondrites: Major and trace elements, and Cu and Zn Isotopes. Geochim. Cosmochim. Acta 2012, 83, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Corfu, F.; Noble, S.R. Genesis of the southern Abitibi greenstone belt, Superior Province, Canada: Evidence from zircon Hf isotope analyses using a single filament technique. Geochim. Cosmochim. Acta 1992, 56, 2081–2097. [Google Scholar] [CrossRef]
- Weyer, S.; Münker, C.; Rehkämper, M.; Mezger, K. Determination of ultra-low Nb, Ta, Zr and Hf concentrations and the chondritic Zr/Hf and Nb/Ta ratios by isotope dilution analyses with multiple collector ICP-MS. Chem. Geol. 2002, 187, 295–313. [Google Scholar] [CrossRef]
- David, K.; Schiano, P.; Allegre, C. Assessment of the Zr/Hf fractionation in oceanic basalts and continental materials during petrogenetic processes. Earth Planet. Sci. Lett. 2000, 178, 285–301. [Google Scholar] [CrossRef]
- Percival, J.A.; West, G.F. The Kapuskasing uplift: A geological and geophysical synthesis. Can. J. Earth Sci. 1994, 31, 1256–1286. [Google Scholar] [CrossRef]
- Smit, M.A.; Scherer, E.E.; Mezger, K. Lu–Hf and Sm–Nd garnet geochronology: Chronometric closure and implications for dating petrological processes. Earth Planet. Sci. Lett. 2013, 381, 222–233. [Google Scholar] [CrossRef]
- Parmenter, S.; Ivanic, T.J.; Korhonen, F.J.; Bouvier, A.; Kendrick, J.L.; Yakymchuk, C. Metamorphism of the Mougooderra Formation: Implications for Neoarchean tectonics in the western Youanmi Terrane, Yilgarn Craton. Precambrian Res. 2020, 350, 105862. [Google Scholar] [CrossRef]
Grt Core 1 | Grt Core 2 | Grt Core 3 | Grt Rim 1 | Grt Rim 2 | Grt Rim 3 | |
---|---|---|---|---|---|---|
Oxide (wt%) | ||||||
MgO | 2.58 | 3.47 | 3.93 | 3.24 | 2.28 | 2.94 |
Al2O3 | 20.7 | 21.3 | 20.7 | 20.9 | 20.8 | 21.2 |
SiO2 | 35.7 | 37.7 | 36.5 | 37.3 | 36.5 | 37.0 |
CaO | 1.18 | 1.13 | 1.13 | 1.23 | 0.81 | 1.15 |
MnO | 6.74 | 6.18 | 6.33 | 7.47 | 8.42 | 7.41 |
FeO | 33.61 | 30.2 | 30.0 | 29.4 | 31.0 | 29.8 |
Total | 100.5 | 100.0 | 98.6 | 99.5 | 99.9 | 99.6 |
Cations per formula unit | ||||||
Mg | 0.31 | 0.41 | 0.48 | 0.39 | 0.28 | 0.35 |
Al | 1.99 | 2.01 | 1.99 | 1.99 | 2.00 | 2.02 |
Si | 2.91 | 3.02 | 2.98 | 3.01 | 2.98 | 2.98 |
Ca | 0.10 | 0.10 | 0.10 | 0.11 | 0.07 | 0.10 |
Mn | 0.47 | 0.42 | 0.44 | 0.51 | 0.58 | 0.51 |
Fe | 2.30 | 2.02 | 2.05 | 1.99 | 2.12 | 2.01 |
Mg/Fe | 0.14 | 0.20 | 0.23 | 0.20 | 0.13 | 0.18 |
End-member proportions | ||||||
Almandine | 0.67 | 0.68 | 0.65 | 0.66 | 0.68 | 0.67 |
Spessartine | 0.15 | 0.14 | 0.15 | 0.17 | 0.19 | 0.17 |
Pyrope | 0.10 | 0.14 | 0.16 | 0.13 | 0.09 | 0.12 |
Grossular | 0.00 | 0.03 | 0.02 | 0.03 | 0.01 | 0.03 |
Andradite | 0.03 | 0.01 | 0.01 |
% | % | % | % | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | µg/g | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Garnet Spot | Mg | Al | Ca | Fe | Na | Ti | Y | Zr | Mo | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf |
1-1 | 2.2 | 10.9 | 0.63 | 22.5 | 60.4 | 13.6 | 124 | 1.3 | 0.48 | 0.05 | 0.32 | 0.39 | 3.3 | 1.8 | 20.4 | 5.0 | 15.3 | 2.0 | 13 | 1.5 | 0.04 |
1-2 | 2.6 | 10.6 | 0.61 | 21.7 | 77.2 | 15.0 | 72 | 3.3 | 0.38 | 0.05 | 0.42 | 0.53 | 5.5 | 2.4 | 20.3 | 3.1 | 5.6 | 0.49 | 2.3 | 0.22 | 0.06 |
1-3 | 2.6 | 10.4 | 0.61 | 21.3 | 67.1 | 15.7 | 62 | 4.5 | 0.38 | 0.05 | 0.32 | 0.49 | 4.9 | 2.2 | 17.8 | 2.3 | 4.1 | 0.36 | 1.8 | 0.19 | 0.10 |
1-4 | 2.6 | 10.4 | 0.62 | 21.1 | 61.3 | 16.6 | 125 | 3.9 | 0.46 | 0.03 | 0.25 | 0.37 | 4.3 | 2.4 | 26.6 | 5.3 | 11.2 | 0.93 | 4.5 | 0.42 | 0.08 |
1-5 | 2.6 | 10.3 | 0.61 | 20.9 | 62.2 | 13.8 | 132 | 1.6 | 0.38 | 0.04 | 0.23 | 0.34 | 4.0 | 2.1 | 24.7 | 5.2 | 12.5 | 1.4 | 7.5 | 0.82 | 0.03 |
1-6 | 2.5 | 10.3 | 0.61 | 21.0 | 58.6 | 14.3 | 120 | 2.7 | 0.41 | 0.05 | 0.27 | 0.33 | 3.7 | 2.0 | 23.5 | 5.0 | 11.4 | 1.2 | 5.7 | 0.59 | 0.06 |
1-7 | 2.3 | 10.3 | 0.62 | 21.4 | 85.8 | 12.4 | 64 | 4.5 | 0.49 | 0.04 | 0.23 | 0.35 | 3.5 | 1.6 | 14.3 | 2.1 | 4.2 | 0.40 | 1.9 | 0.16 | 0.09 |
2-1 | 2.1 | 9.8 | 0.66 | 20.3 | 60.8 | 12.5 | 103 | 2.1 | 0.38 | 0.04 | 0.27 | 0.31 | 3.2 | 1.6 | 16 | 3.1 | 7.4 | 0.93 | 5.5 | 0.59 | 0.05 |
2-2 | 2.4 | 9.8 | 0.60 | 20.2 | 69.2 | 15.7 | 173 | 5.8 | 0.39 | 0.04 | 0.31 | 0.44 | 5.5 | 2.7 | 30.1 | 5.5 | 11.3 | 1.0 | 4.8 | 0.43 | 0.08 |
2-3 | 2.4 | 9.8 | 0.66 | 20.2 | 54.1 | 13.2 | 124 | 2.8 | 0.28 | 0.04 | 0.24 | 0.36 | 4.1 | 2.1 | 20.8 | 4.0 | 9.9 | 1.1 | 6.5 | 0.83 | 0.05 |
2-4 | 2.5 | 10.0 | 0.67 | 20.6 | 63.6 | 17.2 | 119 | 6.2 | 0.31 | 0.05 | 0.38 | 0.45 | 5.9 | 2.7 | 23.9 | 3.6 | 5.9 | 0.47 | 1.8 | 0.14 | 0.11 |
2-5 | 2.4 | 10.1 | 0.66 | 20.7 | 64.6 | 16.1 | 104 | 3.8 | 0.38 | 0.03 | 0.28 | 0.43 | 4.7 | 2.2 | 21.4 | 3.5 | 6.3 | 0.50 | 2.2 | 0.18 | 0.07 |
2-6 | 2.1 | 10.2 | 0.70 | 21.1 | 68.1 | 11.9 | 88 | 2.9 | 0.35 | 0.03 | 0.28 | 0.36 | 3.8 | 1.8 | 16.3 | 2.9 | 6.6 | 0.68 | 3.4 | 0.35 | 0.06 |
3-1 | 2.1 | 10.1 | 0.64 | 20.9 | 66.3 | 13.7 | 78 | 3.7 | 0.53 | 0.02 | 0.25 | 0.32 | 3.4 | 1.7 | 15.5 | 2.6 | 5.4 | 0.49 | 2.4 | 0.24 | 0.08 |
3-2 | 2.5 | 10.0 | 0.65 | 20.4 | 58.8 | 15.9 | 125 | 2.8 | 0.30 | 0.05 | 0.28 | 0.31 | 3.5 | 1.8 | 19.4 | 4.4 | 11.9 | 1.4 | 8.0 | 0.84 | 0.05 |
3-3 | 2.5 | 10.1 | 0.65 | 20.3 | 66.1 | 16.7 | 176 | 2.1 | 0.41 | 0.05 | 0.31 | 0.35 | 4.6 | 2.5 | 27.2 | 7.1 | 22.5 | 2.8 | 17 | 2.0 | 0.04 |
3-4 | 2.5 | 10.1 | 0.66 | 20.4 | 47.3 | 14.9 | 168 | 1.4 | 0.40 | 0.02 | 0.22 | 0.32 | 5.7 | 3.2 | 31.0 | 5.8 | 14.5 | 1.7 | 9.7 | 1.2 | 0.03 |
3-5 | 2.5 | 10.1 | 0.70 | 20.5 | 65.0 | 21.0 | 119 | 1.7 | 0.44 | 0.04 | 0.4 | 0.45 | 6.1 | 2.6 | 21.9 | 3.9 | 9.1 | 1.0 | 5.8 | 0.66 | 0.04 |
3-6 | 2.5 | 10.0 | 0.67 | 20.1 | 57.6 | 17.1 | 130 | 3.5 | 0.38 | 0.04 | 0.29 | 0.41 | 5.3 | 2.4 | 24.7 | 4.5 | 8.7 | 0.70 | 3.2 | 0.28 | 0.07 |
3-7 | 2.6 | 10.5 | 0.68 | 21.1 | 85.0 | 14.9 | 119 | 2.6 | 0.39 | 0.03 | 0.3 | 0.36 | 4.0 | 2.0 | 21.7 | 4.2 | 8.8 | 0.85 | 4.1 | 0.38 | 0.06 |
% error (2SD) | 1 | 0.9 | 1.7 | 1 | 5 | 4.5 | 1 | 3 | 12 | 29 | 12 | 5 | 3.1 | 1.8 | 1.4 | 1.5 | 1.7 | 2.6 | 2.5 | 2.6 | 30 |
Elements | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ppm | 7.9 | 18 | 2.6 | 12 | 3.1 | 1.0 | 3.9 | 0.6 | 4.0 | 0.8 | 2.5 | 0.4 | 2.6 | 0.4 |
Selected ratios | Hf/Zr | Nb/Ta | Lu/Hf | Th/U | Rb/Sr | |||||||||
29 | 13 | 0.20 | 3.9 | 1.6 |
Dissolution Method | FD 01340 Sub-Samples | Weight (g) | Lu (ppm) | Hf (ppm) | 176Lu/177Hf | ±2SE | 176Hf/177Hf | ±2SE |
---|---|---|---|---|---|---|---|---|
Parr | whole-rock WR-Z-1 | 0.191 | 0.391 | 1.895 | 0.0293 | 0.0001 | 0.282690 | 0.000010 |
TT | whole-rock WR-WZ-2 | 0.151 | 0.351 | 0.747 | 0.0666 | 0.0001 | 0.284556 | 0.000008 |
TT | whole-rock WR-WZ-3 | 0.648 | 0.313 | 0.459 | 0.0968 | 0.0002 | 0.286075 | 0.000005 |
TT | garnet 1 | 0.102 | 2.048 | 0.733 | 0.3979 | 0.0008 | 0.301241 | 0.000007 |
TT | garnet 2 | 0.150 | 2.150 | 0.774 | 0.3952 | 0.0008 | 0.301089 | 0.000006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
LaFontaine, D.; Bouvier, A.; Hill, M.L. Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt. Geosciences 2022, 12, 218. https://doi.org/10.3390/geosciences12050218
LaFontaine D, Bouvier A, Hill ML. Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt. Geosciences. 2022; 12(5):218. https://doi.org/10.3390/geosciences12050218
Chicago/Turabian StyleLaFontaine, Daniel, Audrey Bouvier, and Mary Louise Hill. 2022. "Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt" Geosciences 12, no. 5: 218. https://doi.org/10.3390/geosciences12050218
APA StyleLaFontaine, D., Bouvier, A., & Hill, M. L. (2022). Garnet Geochemistry and Lu-Hf Geochronology of a Gold-Bearing Sillimanite-Garnet-Biotite Gneiss at the Borden Lake Belt. Geosciences, 12(5), 218. https://doi.org/10.3390/geosciences12050218