Petrophysical Characterization of Non-Magnetic Granites; Density and Magnetic Susceptibility Relationships
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
3.1. Density Determinations
3.2. Susceptibility and Rock Magnetism Measurements
4. Results
4.1. Paramagnetic Contribution to Bulk Susceptibility
4.2. Data Distribution
5. Discussion
5.1. Noise in Magnetic Susceptibility and Density Measurements
- −
- Hand samples (type 1) are always desirable. Ideally, two–three samples of some dm3 each will allow obtaining some regular parallelepipeds in the laboratory (edges about 4–8 cm) that will yield a reliable density estimation and its uncertainty. Six susceptibility measurements (one per face) have to be directly taken in the parallelepiped faces of every sample for the same reason.
- −
- Susceptometer coil diameter should be optimized in relation to the sample volume, many portable coil models display diameters about 5–6 cm (ideal for type-1 samples), and smaller coils should be avoided.
- −
- Additionally, outcrop measurements should be taken (more than 40 readings) to allow the comparison of the variability between the decametric and centimetric scales, and to characterize the representativeness of the measurements.
- −
- Small rock blocks (type 2) may provide reliable couplets of data (density and susceptibility) in every sample, but can only be used if a sufficient number of them (ca. 10 samples) are measured in a given outcrop to guarantee the representativeness of the site mean.
- −
- Standard AMS or paleomagnetic samples (type 3) provide a reasonable characterization of both variables if nine or more specimens are measured. Geometric determination of volume is not recommended unless laser or photogrametric techniques are used for the volume estimation; Whiting et al. [120]; (Moret-Fernández et al. [121]).
5.2. Susceptibility and Density Regressions in the Paramagnetic Domain
5.3. Conversion of Magnetic Susceptibility Data into Density Data
5.4. Relationships between Geochemical, Petrological and Petrophysical Properties
5.5. The Pyrenean Petrophysical Database of Granites
6. Conclusions
- −
- A sufficient number of samples are needed to characterize the outcrop variability since magnetic susceptibility may significantly vary (1–2 orders of magnitude) in a given outcrop, in this sense:
- −
- 2–3 Type-1 samples (hand blocks) yielding 6–7 samples (preferably cube sides between 5–7 cm) are necessary to fully characterize the outcrop variability (both in density and in magnetic susceptibility).
- −
- Alternatively, 9 or more mini blocks (type-2), or, preferably, standard paleomagnetic or AMS (type-3) samples, are also able to reliably describe the outcrop variability.
- −
- The plotting density and magnetic susceptibility together (Henkel, 1994) allows for observing similar linear relationships between these variables in the three studied Pyrenean granites.
- −
- This relationship: ρ (kg/m3) = 2566 (kg/m3) + 0.541 κ (10−6 S.I.) (R:0.97) falls within the paramagnetic domain in non-magnetic granites (κ < 500 × 10−6 S.I.), where the iron is mostly fractioned in iron-bearing phyllosilicates and the occurrence of magnetite is negligible (or at least its contribution to the bulk susceptibility), as was proven in our dataset.
- −
- This regression (which may be different in other bodies) allows for transforming magnetic susceptibility data into density data and, thus, can be very helpful to improve the petrophysical knowledge during the modeling of potential field signals (gravity and magnetism).
- −
- The tentative conversion of the entire granitic database of the Pyrenees (>10,000 susceptibility determinations from 22 granitic bodies) yields an average density value of: 2680 kg/m3 (+/−112 kg/m3) that could be used in the regional modeling of gravimetric signals in the Pyrenean range.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Joly, A.; Porwal, A.; McCuaig, T.C. Exploration targeting for orogenic gold deposits in the Granites-Tanami Orogen: Mineral system analysis, targeting model and prospectivity analysis. Ore. Geol. Rev. 2012, 48, 349–383. [Google Scholar] [CrossRef]
- Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Wang, J. High-level radioactive waste disposal in China: Update 2010. J. Rock Mech. Geotech. Eng. 2010, 2, 1–11. [Google Scholar]
- Genter, A.; Evans, K.; Cuenot, N.; Fritsch, D.; Sanjuan, B. Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geosci. 2010, 342, 502–516. [Google Scholar] [CrossRef]
- Huenges, E.; Ledru, P. (Eds.) Geothermal Energy Systems: Exploration, Development, and Utilization; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Moore, J.; McLennan, J.; Allis, R.; Pankow, K.; Simmons, S.; Podgorney, R.; Wannamaker, P.; Bartley, J.; Jones, C.; Rickard, W. The Utah Frontier Observatory for Research in Geothermal Energy (FORGE): An International Laboratory for Enhanced Geothermal System Technology Development. In Proceedings of the 44th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 11–13 February 2019. [Google Scholar]
- Zhang, Y.; Zhao, G.-F. A global review of deep geothermal energy exploration: From a view of rock mechanics and engineering. Géoméch. Geophys. Geo-Energy Geo-Resour. 2019, 6, 4. [Google Scholar] [CrossRef]
- Bott, M.H.P.; Day, A.A.; Masson-Smith, D. The geological interpretation of gravity and magnetic surveys in Devon and Cornwall. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Sci. 1958, 251, 161–191. [Google Scholar]
- Bott, M.H.P.; Smithson, S.B. Gravity Investigations of Subsurface Shape and Mass Distributions of Granite Batholiths. GSA Bull. 1967, 78, 859–878. [Google Scholar] [CrossRef]
- Henkel, H. Studies of density and magnetic properties of rocks from Northern Sweden. Pure Appl. Geophys. 1976, 114, 235–249. [Google Scholar] [CrossRef]
- Vigneresse, J.L. Use and misuse of geophysical data to determine the shape at depth of granitic intrusions. Geol. J. 1990, 25, 249–260. [Google Scholar] [CrossRef]
- Améglio, L.; Vigneresse, J.L.; Bouchez, J.L. Granite Pluton Geometry and Emplacement Mode Inferred from Combined Fabric and Gravity Data. In Granite: From Segregation of Melt to Emplacement Fabrics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 199–214. [Google Scholar] [CrossRef]
- Cruz, C.; Sant’Ovaia, H.; Raposo, M.I.B.; Lourenço, J.M.; Almeida, F.; Noronha, F. Unraveling the emplacement history of a Portuguese post-tectonic Variscan pluton using magnetic fabrics and gravimetry. J. Struct. Geol. 2021, 153, 104470. [Google Scholar] [CrossRef]
- Henkel, H. Petrophysical properties (density and magnetization) of rocks from the northern part of the Baltic Shield. Tectonophysics 1991, 192, 1–19. [Google Scholar] [CrossRef]
- Henkel, H. Standard diagrams of magnetic properties and density—A tool for understanding magnetic petrology. J. Appl. Geophys. 1994, 32, 43–53. [Google Scholar] [CrossRef]
- Enkin, R.J.; Hamilton, T.S.; Morris, W.A. The Henkel Petrophysical Plot: Mineralogy and Lithology From Physical Properties. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008818. [Google Scholar] [CrossRef]
- Dentith, M.; Enkin, R.J.; Morris, W.; Adams, C.; Bourne, B. Petrophysics and mineral exploration: A workflow for data analysis and a new interpretation framework. Geophys. Prospect. 2019, 68, 178–199. [Google Scholar] [CrossRef] [Green Version]
- Pueyo, E.L.; Ayala, C.; Izquierdo-Llavall, E.; Rubio, F.M.; Santolaria, P.; Clariana, P.; Soto, R.; Müller, C.O.; Rey-Moral, C.; Zehner, B.; et al. Optimized 3D Reconstruction Workflow Based on Gravimetric, Structural and Petrophysical Data. Deliverable 6.4. Project 3dgeo-EU, Geoera- 3D Geomodeling for Europe, Project Number GeoE.171.005. Report. 2021. 264p. Available online: https://geoera.eu/wp-content/uploads/2022/01/3DGEO-EU_D8.5_Summary-of-project-work-and-results.pdf (accessed on 14 January 2022).
- Ellwood, B.B.; Wenner, D.B. Correlation of magnetic susceptibility with 18O/16O data in late orogenic granites of the southern Appalachian Piedmont. Earth Planet. Sci. Lett. 1981, 54, 200–202. [Google Scholar] [CrossRef]
- Villaseca, C.; Ruiz-Martínez, V.C.; Pérez-Soba, C. Magnetic susceptibility of Variscan granite-types of the Spanish Central System and the redox state of magma. Geol. Acta 2017, 15, 379–394. [Google Scholar]
- Kanaya, H.; Ishihara, S. Regional variation of magnetic susceptibility of the granitic rocks in japan. J. Jpn. Assoc. Miner. Pet. Econ. Geol. 1973, 68, 211–224. [Google Scholar] [CrossRef]
- Ishihara, S. The magnetite-series and ilmenite-series granitic rocks. Min. Geol. 1977, 27, 293–305. [Google Scholar]
- Ishihara, S. The Granitoid Series and Mineralization. In 75th Anniversary Volume: Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1981. [Google Scholar]
- Chappell, B.W.; White, A.J. Two contrasting granite types: 25 years later. Aust. J. Earth Sci. 2001, 48, 489–499. [Google Scholar] [CrossRef]
- Hernandez, F.M.; Hirt, A. The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals. Tectonophysics 2003, 367, 13–28. [Google Scholar] [CrossRef]
- Elming, S.-A. Density and magnetic properties of rocks in the Caledonides of Jämtland, Sweden. Geol. Föreningen I Stockh. Förhandlingar. 1980, 102, 439–453. [Google Scholar] [CrossRef]
- Terrinha, P.; Pueyo, E.L.; Aranguren, A.; Kullberg, J.C.; Kullberg, M.C.; Casas-Sainz, A.; Azevedo, M.D.R. Gravimetric and magnetic fabric study of the Sintra Igneous complex: Laccolith-plug emplacement in the Western Iberian passive margin. Geol. Rundsch. 2017, 107, 1807–1833. [Google Scholar] [CrossRef]
- Criss, R.E.; Champion, D.E. Magnetic properties of granitic rocks from the southern half of the Idaho Batholith: Influences of hydrothermal alteration and implications for aeromagnetic interpretation. J. Geophys. Res. Earth Surf. 1984, 89, 7061–7076. [Google Scholar] [CrossRef]
- Bourne, J.H. Use of magnetic susceptibility, density, and modal mineral data as a guide to the composition of granitic plutons. Math. Geol. 1993, 25, 357–375. [Google Scholar] [CrossRef]
- Bouchez, J.L. Granite is Never Isotropic: An Introduction to AMS Studies of Granitic Rocks. In Granite: From Segregation of Melt to Emplacement Fabrics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 95–112. [Google Scholar]
- Bouchez, J.L. Anisotropie de susceptibilité magnétique et fabrique des granites. Comptes Rendus De L’académie Des Sci.-Ser. IIA-Earth Planet. Sci. 2000, 330, 1–14. [Google Scholar] [CrossRef]
- Gleizes, G. Structure Des Granites Hercyniens Des Pyrénées de Mont Louis-Andorre à la Maladeta. Ph.D. Thesis, Université de Toulouse III, Toulouse, France, 1990. [Google Scholar]
- Bouchez, J.L.; Gleizes, G.; Djouadi, T.; Rochette, P. Microstructure and magnetic susceptibility applied to emplacement kinematics of granites: The example of the foix pluton (French pyrenees). Tectonophysics 1990, 184, 157–171. [Google Scholar] [CrossRef]
- Gleizes, G.; Nédélec, A.; Bouchez, J.-L.; Autran, A.; Rochette, P. Magnetic susceptibility of the Mont-Louis andorra ilmenite-type granite (Pyrenees): A new tool for the petrographic characterization and regional mapping of zoned granite plutons. J. Geophys. Res. Earth Surf. 1993, 98, 4317–4331. [Google Scholar] [CrossRef]
- Rochette, P. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. J. Struct. Geol. 1987, 9, 1015–1020. [Google Scholar] [CrossRef]
- Rochette, P.; Jackson, M.; Aubourg, C. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys. 1992, 30, 209–226. [Google Scholar] [CrossRef]
- Román-Berdiel, T.; Pueyo, E.L.; Casas-Sainz, A. Granite emplacement during contemporary shortening and normal faulting: Structural and magnetic study of the Veiga Massif (NW Spain). J. Struct. Geol. 1995, 17, 1689–1706. [Google Scholar] [CrossRef]
- Aranguren, A.; Tubia, J.; Bouchez, J.L.; Vigneresse, J.-L. The Guitiriz granite, Variscan belt of northern Spain: Extension-controlled emplacement of magma during tectonic escape. Earth Planet. Sci. Lett. 1996, 139, 165–176. [Google Scholar] [CrossRef]
- Trindade, R.I.; Raposo, M.B.; Ernesto, M.; Siqueira, R. Magnetic susceptibility and partial anhysteretic remanence anisotropies in the magnetite-bearing granite pluton of Tourão, NE Brazil. Tectonophysics 1999, 314, 443–468. [Google Scholar] [CrossRef]
- Sant’Ovaia, H.; Bouchez, J.L.; Noronha, F.; Leblanc, D.; Vigneresse, J.L. Composite-laccolith emplacement of the post-tectonic Vila Pouca de Aguiar granite pluton (northern Portugal): A combined AMS and gravity study. Trans. R. Soc. Edinb. Earth Sci. 2000, 91, 123–137. [Google Scholar]
- Ferre, E.; Gleizes, G.; Caby, R. Obliquely convergent tectonics and granite emplacement in the Trans-Saharan belt of Eastern Nigeria: A synthesis. Precambrian Res. 2002, 114, 199–219. [Google Scholar] [CrossRef]
- Kratinová, Z.; Schulmann, K.; Edel, J.-B.; Jezek, J.; Schaltegger, U. Model of successive granite sheet emplacement in transtensional setting: Integrated microstructural and anisotropy of magnetic susceptibility study. Tectonics 2007, 26, 1–7. [Google Scholar] [CrossRef]
- Joly, A.; Faure, M.; Martelet, G.; Chen, Y. Gravity inversion, AMS and geochronological investigations of syntectonic granitic plutons in the southern part of the Variscan French Massif Central. J. Struct. Geol. 2009, 31, 421–443. [Google Scholar] [CrossRef] [Green Version]
- Porquet, M.; Pueyo, E.L.; Román-Berdiel, T.; Olivier, P.; Longares, L.A.; Cuevas, J.; Ramajo, J.; Antolín, B.; Aranguren, A.; Auréjac, J.B.; et al. Anisotropy of magnetic susceptibility of the Pyrenean granites. J. Maps 2017, 13, 438–448. [Google Scholar] [CrossRef]
- Leblanc, D.; Gleizes, G.; Lespinasse, P.; Olivier, P.; Bouchez, J.-L. The maladeta granite polydiapir, Spanish Pyrenees: A detailed magnetostructural study. J. Struct. Geol. 1994, 16, 223–235. [Google Scholar] [CrossRef]
- Antolín-Tomás, B.; Román-Berdiel, T.; Casas-Sainz, A.; Gil-Peña, I.; Oliva, B.; Soto, R. Structural and magnetic fabric study of the Marimanha granite (Axial Zone of the Pyrenees). Geol. Rundsch. 2007, 98, 427–441. [Google Scholar] [CrossRef]
- Gleizes, G.; Bouchez, J.L. Le granite de Mont-Louis (Zone axiale des Pyrénées): Anisotropie magnétique, structures et microstructures. Comptes Rendus De L’académie Des Sci. Paris 1989, 309, 1075–1082. [Google Scholar]
- Antolín-Tomás, B. Estudio Estructural Del Plutón De Marimanha (Pirineo Central). Posgrado de Iniciación a La Investigación en Geología; Universidad de Zaragoza: Zaragoza, Spain, 2006; p. 128. [Google Scholar]
- Matte, P. Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics 1991, 196, 309–337. [Google Scholar] [CrossRef]
- Martínez-Catalán, J.R. A non-cylindrical model for the northwest Iberian allochthonous terranes and their equivalents in the Hercynian belt os Western Europe. Tectonophysics 1990, 179, 253–272. [Google Scholar] [CrossRef]
- Pastor-Galán, D.; Groenewegen, T.; Brouwer, D.; Krijgsman, W.; Dekkers, M. One or two oroclines in the Variscan orogen of Iberia? Implications for Pangea amalgamation. Geology 2015, 43, 527–530. [Google Scholar] [CrossRef] [Green Version]
- Matte, P. La chaîne varisque parmi les chaînes paléozoïques periatlantiques, modèle d’évolution et position des grands blocs continentaux au Permo-Carbonifère. Bull. Soc. Géol. Fr. 1986, 2, 9–24. [Google Scholar] [CrossRef]
- Muñoz, J.A. Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In Thrust Tectonics; McClay, K.R., Ed.; Chapman and Hall: London, UK, 1992; pp. 235–246. [Google Scholar]
- Martínez-Peña, M.B.; Casas-Sainz, A.M. Cretaceous-tertiary tectonic inversion of the Cotiella Basin (southern Pyrenees, Spain). Int. J. Earth Sci. 2003, 92, 99–113. [Google Scholar] [CrossRef]
- Casas, A.M.; Oliva-Urcia, B.; Román-Berdiel, T.; Pueyo, E. Basement deformation: Tertiary folding and fracturing of the Variscan Bielsa granite (Axial zone, central Pyrenees). Geodin. Acta 2003, 16, 99–117. [Google Scholar] [CrossRef]
- Cochelin, B.; Lemirre, B.; Denèle, Y.; Blanquat, M.D.S.; Lahfid, A.; Duchene, S. Structural inheritance in the Central Pyrenees: The Variscan to Alpine tectonometamorphic evolution of the Axial Zone. J. Geol. Soc. 2017, 175, 336–351. [Google Scholar] [CrossRef]
- Druguet, E. Development of high thermal gradients by coeval transpression and magmatism during the Variscan orogeny: Insights from the Cap de Creus (Eastern Pyrenees). Tectonophysics 2001, 332, 275–293. [Google Scholar] [CrossRef]
- García-Sansegundo, J.; Poblet, J.; Alonso, J.L.; Clariana, P. Hinterland–Foreland Zonation of the Variscan Orogen in the Central Pyrenees: Comparison with the Northern Part of the Iberian Variscan Massif. In Kinematic Evolution and Structural Styles of Fold-and-Thrust Belts; Poblet, J., Lisle, R.J., Eds.; Special Publications; Geological Society: London, UK, 2011; Volume 349, pp. 169–184. [Google Scholar]
- Casas, J.M.; Clariana, P.; García-Sansegundo, J.; Margalef, A. The Pyrenees. In The Geology of Iberia: A Geodynamic Approach. Regional Geology Reviews; Quesada, C., Oliveira, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 335–337. [Google Scholar] [CrossRef]
- Soula, J.; Debat, P.; Deramond, J.; Pouget, P. A dynamic model of the structural evolution of the Hercynian Pyrenees. Tectonophysics 1986, 129, 29–51. [Google Scholar] [CrossRef]
- Carreras, J.; Capella, I. Tectonic levels in the Paleozoic basement of the Pyrenees: A review and a new interpretation. J. Struct. Geol. 1994, 16, 1509–1524. [Google Scholar] [CrossRef]
- Gutierrez-Medina, M. Nuevas aportaciones al conocimiento de la estructura varisca y alpina de la lámina cabalgante de Bono, Zona Axial, Pirineos Centrales. Trab. De Geol. Univ. De Oviedo 2007, 27, 159–177. [Google Scholar]
- Clariana, P.; García-Sansegundo, J. Variscan structure in the Eastern part of the Pallaresa massif Axial Zone of the Pyrenees (NW Andorra). Tectonic implications. Bull. Soc. Géol. Fr. 2009, 180, 501–511. [Google Scholar] [CrossRef]
- Soula, J.-C. Characteristics and mode of emplacement of gneiss domes and plutonic domes in central-eastern Pyrenees. J. Struct. Geol. 1982, 4, 313–342. [Google Scholar] [CrossRef]
- Autran, A. Relations Des Cristallisations Métamorphiques Avec Les Phases De Déformation Successives. Métamorphisme Hercynien Des Métapélites Dans Le Massif Du Canigou-Caranca. Chapitre 10. Métamorphisme Hercynien. In Synthèse Géologique Et Géophysique Des Pyrénées; Barnolas, A., Chiron, J.C., Guérangé, B., Eds.; Introduction, Géophysique, Cycle Hercynien; BRGM: Orleans, France; ITGE: Madrid, Spain, 1996; Volumn 1, pp. 547–548. [Google Scholar]
- Guitard, G. Phases de plissement dans les terrains métamorphiques de la zone axiale pyrénéenne du Canigou durant l’orogénèse hercynienne. CRAS Paris 1965, 265, 1357–1360. [Google Scholar]
- Zwart, H.J. The Geology of the Central Pyrenees. Leidse Geol. Meded 1979, 50, 1–74. [Google Scholar]
- Zwart, H. The variscan geology of the Pyrenees. Tectonophysics 1986, 129, 9–27. [Google Scholar] [CrossRef]
- Liesa, M. Relations of Hercynian metamorphism with magmatism and deformation in the Eastern Pyrenees. Implications for Hercynian evolution. Geol. Mijnb. 1993, 72, 295–304. [Google Scholar]
- Aguilar, C. P–T–t–d Constrains on the Late Variscan Evolution of the Eastern Pyrenees. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2013. [Google Scholar]
- Majesté-Menjoulas, C. L’unité paleozoïque de Bachebirou-Chinipro, temoin d’une tectonique tangentielle varisque dans les Pyrénées Centrales. CRAS 1982, 294, 145–150. [Google Scholar]
- Raymond, D. Tectonique tangentielle varisque dans le Paléozoique supérieur de l’Est des Pyrénées françaises; l’exemple du Pays de Sault (Nord du granite de Quérigut, Aude et Ariège) et des régions voisines. Bull. Soc. Géol. Fr. 1986, 2, 479–485. [Google Scholar] [CrossRef]
- Bodin, J.; Ledru, P. Nappes hercyniennes précoces à matériel dévonien hétéropique dans les Pyrénées ariégeoises. CRAS Paris 1986, 302, 969–974. [Google Scholar]
- Losantos, M.; Palau, J.; Sanz-López, J. Considerations about Hercynian thrusting in the Marimanya massif (central Pyrenees). Tectonophysics 1986, 129, 71–79. [Google Scholar] [CrossRef]
- García-Sansegundo, J. Estratigrafia Y Estructura De La Zona Axial Pirenaica En La Transversal Del Valle De Aran Y Alta Ribagorza. Ph.D. Thesis, Universidad de Oviedo, Oviedo, Spain, 1991. [Google Scholar]
- Clariana, P. Estratigrafía, Estructura y Su Relación Con El Metamorfismo De La Zona Axial Pirenaica En La Transversal Del Noroeste De Andorra y Comarcas Del Pallars Sobirá Y El Alt Urgell (Lleida). Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2015; 190p. [Google Scholar]
- Margalef, A. Estudi Estructural i Estratigràfic Del Sud d’Andorra. Ph.D. Thesis, Universitat de Barcelona, Barcelona, Spain, 2015. [Google Scholar]
- Leblanc, D.; Gleizes, G.; Roux, L.; Bouchez, J. Variscan dextral transpression in the French Pyrenees: New data from the Pic des Trois-Seigneurs granodiorite and its country rocks. Tectonophysics 1996, 261, 331–345. [Google Scholar] [CrossRef]
- Evans, N.G.; Gleizes, G.; Leblanc, D.; Bouchez, J.L. Syntectonic emplacement of the Maladeta granite (Pyrenees) deduced from relationships between Hercynian deformation and contact metamorphism. J. Geol. Soc. 1998, 155, 209–216. [Google Scholar] [CrossRef]
- Gleizes, G.; Leblanc, D.; Bouchez, J.L. The main phase of the Hercynian orogeny in the Pyrenees is a dextral transpression. Geol. Soc. Lond. Spéc. Publ. 1998, 135, 267–273. [Google Scholar] [CrossRef]
- Gleizes, G.; Leblanc, D.; Olivier, P.; Bouchez, J. Strain partitioning in a pluton during emplacement in transpressional regime: The example of the Néouvielle granite (Pyrenees). Geol. Rundsch. 2001, 90, 325–340. [Google Scholar] [CrossRef]
- Gleizes, G.; Crevon, G.; Asrat, A.; Barbey, P. Structure, age and mode of emplacement of the Hercynian Bordères-Louron pluton (Central Pyrenees, France). Int. J. Earth Sci. 2006, 95, 1039–1052. [Google Scholar] [CrossRef]
- Olivier, P.; Améglio, L.; Richen, H.; Vadeboin, F. Emplacement of the Aya Variscan granitic pluton (Basque Pyrenees) in a dextral transcurrent regime inferred from a combined magneto-structural and gravimetric study. J. Geol. Soc. 1999, 156, 991–1002. [Google Scholar] [CrossRef]
- Román-Berdiel, T.; Casas, A.; Oliva-Urcia, B.; Pueyo, E.L.; Rillo, C. The main Variscan deformation event in the Pyrenees: New data from the structural study of the Bielsa granite. J. Struct. Geol. 2004, 26, 659–677. [Google Scholar] [CrossRef]
- Román-Berdiel, T.; Casas, A.M.; Oliva-Urcia, B.; Pueyo, E.L.; Liesa, C.; Soto, R. The Variscan Millares granite (central Pyrenees): Pluton emplacement in a T fracture of a dextral shear zone. Geodin. Acta 2006, 19, 197–211. [Google Scholar] [CrossRef]
- Auréjac, J.B.; Gleizes, G.; Diot, H.; Bouchez, J.L. Le complexe granitique de Quérigut (Pyrénées, France) ré-examiné par la technique de l’ASM: Un pluton syntectonique de la transpression dextre hercynienne. Bull. Soc. Géol. Fr. 2004, 175, 157–174. [Google Scholar]
- Romer, R.; Soler, A. U-Pb age and lead isotopic characterization of Au-bearing skarn related to the Andorra granite (central Pyrenees, Spain). Miner. Depos. 1995, 30, 374–383. [Google Scholar] [CrossRef]
- Paquette, J.L.; Gleizes, G.; Leblanc, D.; Bouchez, J.L. Le granite de Bassiès (Pyrénées): Un pluton syntectonique d’âge Westphalien. Géochronologie U–Pb sur zircons. CRAS Paris 1997, 324, 387–392. [Google Scholar]
- Guerrot, C. Résultats de datation U-Pb par dissolution sur zircons pour le granite de Cauterets, Pyrénées. Rapport inédit, SMN/PEA/ISO 146/98 CG/NB, BRGM. In Notice Explicative, Carte géol. France (1/50 000), Feuille Gavarnie (1082); Majesté-Menjoulas, C., Debon, F., Barrère, P., Eds.; BRGM: Orléans, France, 1998; p. 4. [Google Scholar]
- Guerrot, C. Datation du pluton des Eaux-Chaudes. In Notice Explicative, Carte géol. France (1/50,000), Feuille Laruns-Somport (1069); Ternet, Y., Majesté-Menjoulas, C., Canérot, J., Baudin, T., Cocherie, A., Guerrot, C., Rossi, P., Eds.; BRGM: Orléans, France, 2001; pp. 185–187. [Google Scholar]
- Roberts, M.P.; Pin, C.; Clemens, J.D.; Paquette, J.L. Petrogenesis of Mafic to Felsic Plutonic Rock Associations: The Calc-alkaline Quérigut Complex, French Pyrenees. J. Pet. 2000, 46, 809–844. [Google Scholar] [CrossRef]
- Maurel, O.; Respaut, J.P.; Monié, P.; Arnaud, N.; Brunel, M. U-Pb emplacement and 40Ar/39Ar cooling ages of the Mont-Louis granite massif (eastern Pyrenees, France). C. R. Geosci. 2004, 336, 1091–1098. [Google Scholar] [CrossRef]
- Olivier, P.; Gleizes, G.; Paquette, J. Gneiss domes and granite emplacement in an obliquely convergent regime: New interpretation of the Variscan Agly Massif (Eastern Pyrenees, France). Spec. Pap.-Geol. Soc. Am. 2004, 380, 229–242. [Google Scholar]
- Denèle, Y.; Paquette, J.-L.; Olivier, P.; Barbey, P. Permian granites in the Pyrenees: The Aya pluton (Basque Country). Terra Nova 2011, 24, 105–113. [Google Scholar] [CrossRef]
- Denèle, Y.; Laumonier, B.; Paquette, J.-L.; Olivier, P.; Gleizes, G.; Barbey, P. Timing of Granite Emplacement, Crustal Flow and Gneiss Dome Formation in the Variscan Segment of the Pyrenees. In The Variscan Orogeny: Extent, Timescale and the Formation of the European Crust; Schulmann, K., Martínez Catalán, J.R., Lardeaux, J.M., Janousek, V., Oggiano, G., Eds.; Special Publications; Geological Society: London, UK, 2014; Volume 405, pp. 265–287. [Google Scholar]
- Franke, W. Tectonostratigraphic units in the Variscan belt of central Europe. Geol. Soc. Am. Spec. Pap. 1989, 230, 67–90. [Google Scholar]
- Palau i Ramirez, J. El magmatisme calcoalcalí del massís de Marimanya i les mineralitzations As–Au–W associades. Institut cartogràfic de Catalunya. Monogr. Tèchniques 1998, 4, 1–340. [Google Scholar]
- Evans, N.G. Deformation in the Aureole of the Maladeta Granodiorite, Spanish Pyrenees: A Record of Pluton Emplacement. In Proceedings of the 14e Réunion Sciences Terre, Toulouse, France, 13 April 1992; p. 59. [Google Scholar]
- Vitrac-Michard, A.; Albaède, F.; Dupuis, C.; Tailor, H.P. The genesis of Variscan (Hercynian) plutonic rocks: Inferences from Sr, Pb and O studies on the Maladeta igneous complex, Central Pyrenees (Spain). Contr. Miner. Petrol. 1980, 72, 57–72. [Google Scholar] [CrossRef]
- Charlet, J.M. Etude préliminaire du massif granitique de la Maladeta (Pyrénées centrales espagnoles). Ann. Soc. Géol. Nord. Lille 1968, 88, 65–75. [Google Scholar]
- Charlet, J.M. Le massif granitique de la Maladeta (Pyrénées centrales espagnoles), synthèse des données géologiques. Ann. Soc. Géol. Belg. 1979, 102, 313–323. [Google Scholar]
- Pouget, P.; Lamouroux, C.; Dahmani, A.; Debat, P.; Driouch, Y.; Mercier, A.; Soula, J.C.; Vezat, R. Typologie et mode de mise en place des roches magmatiques dans les Pyrénées hercyniennes. Geol. Rdsch. 1989, 78, 537–554. [Google Scholar] [CrossRef]
- Autran, A.; Fonteilles, M.; Guitard, G. Relations entre les intrusions de granitoides, l’anatexie et le métamorphisme général: Cas de la chaîne hercynienne des Pyrénées orientales. Bull. Soc. Géol. Fr. Sér. 1970, 7, 673–731. [Google Scholar] [CrossRef]
- Debon, F.; Enrique, P.; Autran, A. Magmatisme Hercynien. In Synthèse Géologique et Géophysique des Pyrénées; Barnolas, A., Chiron, J.C., Eds.; BRGM: Orléans, France; ITGE: Madrid, Spain, 1996; pp. 361–499. [Google Scholar]
- Bouchez, J.L.; Gleizes, G. Two-stage deformation of the Mont-Louis-Andorra granite pluton (Variscan Pyrenees) inferred from magnetic susceptibility anisotropy. J. Geol. Soc. 1995, 152, 669–679. [Google Scholar] [CrossRef]
- Laumonier, B.; Autran, A.; Barbey, P.; Cheilletz, A.; Baudin, T.; Cocherie, A.; Guerrot, C. Conséquences de l’absence de socle cadomien sur l’âge et la signification des séries pré-varisques (anté- Ordovicien supérieur) du sud de la France (Pyrénées, Montagne Noire). Bull. De La Société Géologique De Fr. 2004, 175, 105–117. [Google Scholar]
- Guitard, G.; Laumonier, B.; Autran, A.; Bandet, Y.; Berger, G.M. Notice Explicative, Carte Géologique de France (1/50 000), Feuille de Prades (1095); BRGM: Orléans, France, 1998. [Google Scholar]
- Laumonier, B.; Marignac, C.; Kister, P. Polymetamorphism and crustal evolution of the eastern Pyrenees during the Late Carboniferous Variscan orogenesis. BSGF-Earth Sci. Bull. 2010, 181, 411–428. [Google Scholar] [CrossRef]
- Clariana, P.; Soto, R.; Ayala, C.; Casas-Sainz, A.M.; Román-Berdiel, T.; Oliva-Urcia, B.; Pueyo, E.L.; Beamud, E.; Rey-Moral, C.; Rubio, F.; et al. Basement and cover architecture in the Central Pyrenees constrained by gravity data. Geol. Rundsch. 2021, 111, 641–658. [Google Scholar] [CrossRef]
- Rubio Sánchez de Aguililla, F.; Rey Moral, C.; Ayala, C.; Pueyo, E.L. Bases Metodológicas para la Obtención de Cartografía Gravimétrica. Petrofísica y Modelización Gravimétrica 2D y 3D; Instituto Geológico y Minero de España (IGME, CSIC): Madrid, Spain, 2021; 149p. [Google Scholar]
- Loi, F.; Román-Berdiel, M.T.; Casas-Sainz, A.M.; Pueyo, E.L. Correlación Entre Propiedades Petrofísicas Del Granito De Marimanha (Pirineo Axial). In MAGIBER XI-Paleomagnetismo en Espanha e Portugal (Livro de Resumos); Font, E., Beamud, E., Oliva-urcia, B., Pueyo, E.L., Lopez, F.C., Eds.; Universidade de Coimbra: Coimbra, Portugal, 2019; pp. 87–90. ISBN 9789899891470. [Google Scholar]
- Dortman, N.B. Fizicheskiye Svoystva Gornykh Porod Ipoleznykh Iskopayemykh (Petrofizika); spravochnik geofizika; USSR Izdat Nedra: Moscow, Russia, 1976; p. 527. [Google Scholar]
- Schön, J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Olivier, P.; Blanquat, M.D.S.; Gleizes, G.; Leblanc, D. Homogeneity of Granite Fabrics at the Metre and Dekametre Scales. In Granite: From Segregation of Melt to Emplacement Fabrics; Springer: Berlin/Heidelberg, Germany, 1997; pp. 113–127. [Google Scholar]
- Enkin, R.J. The Canadian Rock Physical Property Database: First public release. GSC Open File 2018, 8460, 60. [Google Scholar] [CrossRef]
- Pueyo, E.L.; Román-Berdiel, T.; Bouchez, J.L.; Casas, A.; Larrasoaña, J.C. Statistical significance of magnetic fabric data in studies of paramagnetic granites. Geol. Soc. Lond. Spéc. Publ. 2004, 238, 395–420. [Google Scholar] [CrossRef]
- Pueyo, E.L.; Oliva-Urcia, B.; Sussman, A.J.; Cifelli, F. Palaeomagnetism in Fold and Thrust Belts: Use with caution. In Geological Society of London Special Publication on Palaeomagnetism in Fold and Thrust Belts: New Perspectives; Pueyo, E.L., Cifelli, F., Sussman, A., Oliva-Urcia, B., Eds.; Geological Society: London, UK, 2016; Volume 425, pp. 259–276. [Google Scholar]
- Sagnotti, L.; Rochette, P.; Jackson, M.; Vadeboin, F.; Dinarès-Turell, J.; Winkler, A. Inter-laboratory calibration of low-field magnetic and anhysteretic susceptibility measurements. Phys. Earth Planet. Inter. 2003, 138, 25–38. [Google Scholar] [CrossRef]
- Izquierdo-Llavall, E.; Ayala, C.; Rodríguez Pintó, A.; Pueyo, E.L.; Oliva-Urcia, B.; Casas, A.M.; Rubio, F.M.; García Crespo, J.; Llorente Delgado, J.M.; González Durán, A.; et al. Informe de la investigación del reservorio potencial de CO2 “Zona de Enlace” (Cordilleras Ibérica y Costero Catalanas), Proyecto ALGECO2 (Fase 2). IGME-IRMC (MITT), technical report 229p., Madrid, Spain, 2014.
- Whiting, M.; Salley, S.W.; James, D.K.; Karl, J.W.; Brungard, C.W. Rapid bulk density measurement using mobile device photogrammetry. Soil Sci. Soc. Am. J. 2020, 84, 811–817. [Google Scholar] [CrossRef]
- Moret-Fernández, D.; Latorre, B.; Peña, C.; González-Cebollada, C.; López, M.V. Applicability of the photogrammetry technique to determine the volume and the bulk density of small soil aggregates. Soil Res. 2016, 54, 354. [Google Scholar] [CrossRef] [Green Version]
- Gleizes, G.; Leblanc, D.; Santana, V.; Olivier, P.; Bouchez, J.L. Sigmoidal structures featuring dextral shear during emplacement of the Hercynian granite complex of Cauterets–Panticosa (Pyrenees). J. Struct. Geol. 1998, 20, 1229–1245. [Google Scholar] [CrossRef]
- Olhoeft, G.R.; Johnson, G.R. Densities of Rocks and Minerals. In Practical Handbook of Physical Properties of Rocks and Minerals; Carmichael, R.S., Ed.; Section II; CRC Press: Boca Raton, FL, USA, 1989; pp. 1–38. [Google Scholar]
Sites | O.S. (km2) | S./km2 | min | Max | Mean | Median | RMS | Stan Dev | Stand Error | Skewness | Kurtosis | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maladeta | MAL | 253 | 415 | 0.61 | 7 | 676 | 213.7 | 196.0 | 227.4 | 78.0 | 4.9 | 2.082 | 8.753 |
Marimanha | MAR | 62 | 32 | 1.94 | 30 | 476 | 203.2 | 209.0 | 225.5 | 98.5 | 12.5 | 0.255 | 0.032 |
Mont Louis-Andorra | MLA | 254 | 550 | 0.46 | 14 | 366 | 197.6 | 188.5 | 207.9 | 64.5 | 4.0 | 0.207 | 0.196 |
All | All | 569 | 997 | 0.57 | 7 | 676 | 205.4 | 194.0 | 218.7 | 75.2 | 3.2 | 1.190 | 5.222 |
Granite Body | Groups | Sample Type | Type | Weight | #Sites | # | Method | Mean | StaDev | Labs |
---|---|---|---|---|---|---|---|---|---|---|
Maladeta | ZAZ+MAD | Hand blocks | 1 | 3–5 k | 21 | 29 | Archimedes+UNE | 2685 | 63 | MAD |
Maladeta | BCN+MAD | Mini blocks | 2 | <20 g | 21 | 40 | Archimedes | 2658 | 48 | BCN+ MAD |
Mont Louis-Andorra | ZAZ+MAD | Hand blocks | 1 | 3–5 k | 23 | 66 | Archimedes+UNE | 2670 | 47 | MAD |
Mont Louis-Andorra | BCN+MAD | Mini blocks | 2 | <20 g | 27 | 43 | Archimedes | 2661 | 52 | BCN+ MAD |
Mont Louis-Andorra | ZAZ+TLSE | Pmag cores | 3&4 | ≈25 g | 21 | 21 | Geometric | 2657 | 54 | ZAZ |
Marimanha | ZAZ | Pmag cores | 3 | ≈25 g | 15 | 111 | Archimedes w&w/o paraffine | 2697 | 78 | ZAZ |
Total | 128 | 310 | 2671 | 12 | ||||||
Granite body | # | KLY2/KLY3 | Bartington | SM20 | KT20 | MPMSMVSM | Method | Mean | StaDev | labs |
Maladeta | 1134 | 38 | 1096 | Field and Lab | 171.9 | 131.9 | MAD | |||
Maladeta | 126 | 90 | 36 | Labs | 187.0 | 155.9 | BCN+ MAD | |||
Mont Louis-Andorra | 1059 | 40 | 591 | 428 | Field and Lab | 152.7 | 75.2 | MAD | ||
Mont Louis-Andorra | 156 | 120 | 36 | Labs | 233.1 | 176.0 | BCN+ MAD | |||
Mont Louis-Andorra | 48 | 21 | 27 | Labs | 192.5 | 94.4 | ZAZ+ TLSE | |||
Marimanha | 106 | 106 | Lab | 232.5 | 133.9 | ZAZ |
Variable | Min | Max | Points | Mean | Median | RMS | Std Dev | Std Error | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
Dens-MAL | 2437 | 2821 | 48 | 2658 | 2660 | 2659 | 78 | 11 | −0.445 | 0.594 |
Dens-MLA | 2520 | 2797 | 65 | 2660 | 2659 | 2661 | 52 | 64 | −0.264 | 0.849 |
Dens-MAR | 2601 | 2865 | 15 | 2697 | 2691 | 2698 | 78 | 20 | 0.888 | 0.115 |
Density All | 2437 | 2865 | 128 | 2664 | 2662 | 2664 | 66 | 59 | −0.106 | 0.149 |
Sus-MAL | −13.2 | 762.5 | 45 | 204.5 | 169.1 | 257.6 | 158.3 | 23.6 | 19.781 | 41.531 |
Sus-MLA | −5.4 | 688.5 | 63 | 176.3 | 154 | 207.8 | 110.8 | 14 | 17.052 | 55.973 |
Sus-MAR | 31.9 | 454.3 | 15 | 232.5 | 234.4 | 266.0 | 133.9 | 34.6 | 0.126 | −12.126 |
Sus-All | −13.2 | 762.5 | 123 | 193.5 | 166.8 | 234.6 | 133.1 | 12 | 17.989 | 4.64 |
Granite | Type | n | a | b | R |
---|---|---|---|---|---|
MLA | 1 | 23 | 0.521 | 2590 | 0.83 |
MLA | 2 | 15 | 0.518 | 2565 | 0.90 |
MLA | 3 | 21 | 0.465 | 2568 | 0.81 |
MAL | 1 | 19 | 0.489 | 2616 | 0.54 |
MAL | 2 | 18 | 0.529 | 2548 | 0.80 |
MAR | 3 | 14 | 0.573 | 2553 | 0.91 |
MAL | 1+2 | 37 | 0.370 | 2609 | 0.55 |
MLA | 1+2+3 | 59 | 0.463 | 2582 | 0.79 |
All | 1+3 | 110 | 0.458 | 2586 | 0.74 |
Type 1 | 1 | 42 | 0.504 | 2603 | 0.69 |
Type 2 | 2 | 33 | 0.493 | 2565 | 0.86 |
Type 3 | 3 | 35 | 0.533 | 2558 | 0.87 |
Run Wind | 1+2+3 | 110 | 0.541 | 2566 | 0.97 |
Min | Max | # Sites | Mean ρ (kg/m3) | Median | RMS | Std. Dev. | % Std Dev | Std. Error | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|
MAL | 2570 | 2932 | 253 | 2682 | 2672 | 2682 | 42 | 1.6% | 3 | 2.084 | 8.784 |
MAR | 2582 | 2823 | 62 | 2676 | 2680 | 2677 | 53 | 2.0% | 7 | 0.252 | 0.025 |
MLA | 2574 | 2764 | 254 | 2673 | 2668 | 2673 | 35 | 1.3% | 2 | 0.209 | 0.200 |
Pluton | Min | Max | # Sites | Mean | Median | RMS | Stand Dev | Stand Error | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|---|---|
ANS | 67 | 922 | 22 | 305.7 | 230.5 | 376.1 | 224.3 | 47.8 | 1.425 | 1.095 |
AST | 4 | 2221 | 247 | 183.2 | 136.0 | 291.8 | 227.6 | 14.5 | 5.950 | 45.635 |
AYA | 12 | 633 | 93 | 160.7 | 85.0 | 226.0 | 159.8 | 16.6 | 1.514 | 0.967 |
BAS | 34 | 508 | 88 | 172.0 | 167.5 | 180.4 | 54.5 | 5.8 | 3.131 | 17.679 |
BIE | 17 | 822 | 60 | 180.7 | 147.5 | 226.2 | 137.2 | 17.7 | 2.513 | 7.584 |
BOR | 93 | 648 | 61 | 326.4 | 280.0 | 362.4 | 158.7 | 20.3 | 0.436 | −1.056 |
CAU | 18 | 592 | 199 | 187.7 | 179.0 | 219.7 | 114.4 | 8.1 | 0.964 | 0.672 |
ECH | 19 | 320 | 28 | 157.5 | 151.5 | 171.0 | 67.7 | 12.8 | 0.414 | 0.262 |
ERC | 94 | 355 | 46 | 169.2 | 164.5 | 176.7 | 51.3 | 7.6 | 1.645 | 4.072 |
FOI | 20 | 516 | 69 | 172.0 | 197.0 | 198.0 | 98.8 | 11.9 | 0.461 | 0.747 |
LAC | 159 | 462 | 21 | 274.0 | 264.0 | 281.2 | 64.7 | 14.1 | 1.086 | 1.992 |
LYS | 32 | 575 | 99 | 211.1 | 187.0 | 239.1 | 112.9 | 11.3 | 0.837 | 0.384 |
MAL | 7 | 676 | 253 | 213.7 | 196.0 | 227.4 | 78.0 | 4.9 | 2.082 | 8.753 |
MAR | 30 | 476 | 62 | 203.2 | 209.0 | 225.5 | 98.5 | 12.5 | 0.255 | 0.032 |
MIL | 70 | 689 | 54 | 285.0 | 253.5 | 318.6 | 143.7 | 19.6 | 1.014 | 0.673 |
MLA | 14 | 366 | 254 | 197.7 | 188.5 | 207.9 | 64.5 | 4.0 | 0.207 | 0.196 |
NEV | 0 | 541 | 132 | 212.9 | 182.5 | 226.6 | 78.0 | 6.8 | 0.931 | 2.411 |
PAN | 63 | 609 | 111 | 255.0 | 246.0 | 278.9 | 113.4 | 10.8 | 0.340 | −0.183 |
POS | 179 | 412 | 69 | 270.9 | 270.0 | 274.0 | 41.6 | 5.0 | 0.654 | 1.009 |
QUE | 9 | 799 | 121 | 227.6 | 199.0 | 263.4 | 133.1 | 12.1 | 1.130 | 1.744 |
SAR | 32 | 4656 | 96 | 303.1 | 203.0 | 671.4 | 602.2 | 61.5 | 6.138 | 38.426 |
TSG | 181 | 329 | 34 | 237.7 | 232.5 | 240.4 | 36.5 | 6.3 | 0.794 | 0.139 |
ALL | 0 | 4656 | 2219 | 213.1 | 188.0 | 278.1 | 178.7 | 3.8 | 12.282 | 258.47 |
ANS | 2602 | 3065 | 22 | 2731 | 2691 | 2734 | 121 | 26 | 1.426 | 1.101 |
AST | 2568 | 3767 | 247 | 2665 | 2640 | 2668 | 123 | 8 | 5.951 | 45.650 |
AYA | 2573 | 2908 | 93 | 2653 | 2612 | 2654 | 86 | 9 | 1.515 | 0.969 |
BAS | 2584 | 2841 | 88 | 2659 | 2657 | 2659 | 30 | 3 | 3.125 | 17.710 |
BIE | 2575 | 3011 | 60 | 2664 | 2646 | 2665 | 74 | 10 | 2.516 | 7.614 |
BOR | 2616 | 2916 | 61 | 2743 | 2717 | 2744 | 86 | 11 | 0.436 | −1.058 |
CAU | 2576 | 2886 | 199 | 2668 | 2663 | 2668 | 62 | 4 | 0.963 | 0.671 |
ECH | 2576 | 2739 | 28 | 2651 | 2648 | 2652 | 37 | 7 | 0.403 | 0.244 |
ERC | 2617 | 2758 | 46 | 2658 | 2655 | 2658 | 28 | 4 | 1.651 | 4.088 |
FOI | 2577 | 2845 | 69 | 2659 | 2673 | 2660 | 53 | 6 | 0.462 | 0.742 |
LAC | 2652 | 2816 | 21 | 2714 | 2709 | 2714 | 35 | 8 | 1.094 | 2.004 |
LYS | 2584 | 2877 | 99 | 2680 | 2667 | 2681 | 61 | 6 | 0.837 | 0.383 |
MAL | 2570 | 2932 | 253 | 2682 | 2672 | 2682 | 42 | 3 | 2.085 | 8.784 |
MAR | 2582 | 2823 | 62 | 2676 | 2680 | 2677 | 53 | 7 | 0.252 | 0.025 |
MIL | 2604 | 2939 | 54 | 2720 | 2704 | 2721 | 78 | 11 | 1.017 | 0.685 |
MLA | 2574 | 2764 | 254 | 2673 | 2668 | 2673 | 35 | 2 | 0.209 | 0.200 |
NEV | 2566 | 2859 | 132 | 2681 | 2665 | 2682 | 42 | 4 | 0.935 | 2.436 |
PAN | 2600 | 2895 | 111 | 2704 | 2699 | 2705 | 61 | 6 | 0.341 | −0.183 |
POS | 2663 | 2789 | 69 | 2713 | 2712 | 2713 | 22 | 3 | 0.662 | 1.021 |
QUE | 2571 | 2998 | 121 | 2689 | 2674 | 2690 | 72 | 7 | 1.129 | 1.738 |
SAR | 2583 | 5084 | 96 | 2730 | 2676 | 2749 | 326 | 33 | 6.138 | 38.426 |
TSG | 2664 | 2744 | 34 | 2695 | 2692 | 2695 | 20 | 3 | 0.791 | 0.142 |
ALL | 2566 | 5084 | 2221 | 2680 | 2668 | 2683 | 112 | 2 | 1.729 | 288.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pueyo, E.L.; Román-Berdiel, T.; Calvín, P.; Bouchez, J.L.; Beamud, E.; Ayala, C.; Loi, F.; Soto, R.; Clariana, P.; Margalef, A.; et al. Petrophysical Characterization of Non-Magnetic Granites; Density and Magnetic Susceptibility Relationships. Geosciences 2022, 12, 240. https://doi.org/10.3390/geosciences12060240
Pueyo EL, Román-Berdiel T, Calvín P, Bouchez JL, Beamud E, Ayala C, Loi F, Soto R, Clariana P, Margalef A, et al. Petrophysical Characterization of Non-Magnetic Granites; Density and Magnetic Susceptibility Relationships. Geosciences. 2022; 12(6):240. https://doi.org/10.3390/geosciences12060240
Chicago/Turabian StylePueyo, Emilio L., Teresa Román-Berdiel, Pablo Calvín, Jean Luc Bouchez, Elisabet Beamud, Conxi Ayala, Francesca Loi, Ruth Soto, Pilar Clariana, Aina Margalef, and et al. 2022. "Petrophysical Characterization of Non-Magnetic Granites; Density and Magnetic Susceptibility Relationships" Geosciences 12, no. 6: 240. https://doi.org/10.3390/geosciences12060240
APA StylePueyo, E. L., Román-Berdiel, T., Calvín, P., Bouchez, J. L., Beamud, E., Ayala, C., Loi, F., Soto, R., Clariana, P., Margalef, A., Bach, N., Schamuells, N., Rubio, F. M., Gimeno, A., de Arévalo, E. F., Rey-Moral, C., García, A., Martí, J., Casas, A. M., & García-Lobón, J. L. (2022). Petrophysical Characterization of Non-Magnetic Granites; Density and Magnetic Susceptibility Relationships. Geosciences, 12(6), 240. https://doi.org/10.3390/geosciences12060240