LGM Glaciations in the Northeastern Anatolian Mountains: New Insights
Abstract
:1. Introduction
2. Field Area and Field Work
2.1. Study Area
2.2. Sampling
2.3. Methodology and Lab Analytical Work
3. Results and Interpretation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Benn, D.; Evans, D.J. Glaciers and Glaciation, 2nd ed.; Taylor & Francis: London, UK, 2010; ISBN 978-0-340-90579-1. [Google Scholar]
- Oerlemans, J. Extracting a Climate Signal from 169 Glacier Records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmura, A.; Kasser, P.; Funk, M. Climate at the Equilibrium Line of Glaciers. J. Glaciol. 1992, 38, 397–411. [Google Scholar] [CrossRef] [Green Version]
- Lukas, S.; Graf, A.; Coray, S.; Schlüchter, C. Genesis, Stability and Preservation Potential of Large Lateral Moraines of Alpine Valley Glaciers—Towards a Unifying Theory Based on Findelengletscher, Switzerland. Quat. Sci. Rev. 2012, 38, 27–48. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Schaller, M. Examining Processes and Rates of Landscape Change with Cosmogenic Radionuclides. Radioact. Environ. 2009, 16, 231–294. [Google Scholar]
- Akçar, N.; Schlüchter, C. Paleoglaciations in Anatolia: A Schematic Review and First Results. Eiszeitalt. Ggw. EG 2005, 55, 102–121. [Google Scholar]
- Türkeş, M.; Erlat, E. Winter Mean Temperature Variability in Turkey Associated with the North Atlantic Oscillation. Meteorol. Atmos. Phys. 2009, 105, 211–225. [Google Scholar] [CrossRef]
- Climate-Data.Org. Available online: https://en.climate-data.org/asia/turkey-67/ (accessed on 15 May 2022).
- Akçar, N. The Anatolian Peninsula. In European Glacial Landscapes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 149–157. [Google Scholar]
- Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Kubik, P.W.; Vardar, M.; Schlüchter, C. Paleoglacial Records from Kavron Valley, NE Turkey: Field and Cosmogenic Exposure Dating Evidence. Quat. Int. 2007, 164, 170–183. [Google Scholar] [CrossRef]
- Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Kubik, P.W.; Vardar, M.; Schlüchter, C. A Case for a Downwasting Mountain Glacier during Termination I, Verçenik Valley, Northeastern Turkey. J. Quat. Sci. Publ. Quat. Res. Assoc. 2008, 23, 273–285. [Google Scholar] [CrossRef]
- Reber, R.; Akçar, N.; Yesilyurt, S.; Yavuz, V.; Tikhomirov, D.; Kubik, P.W.; Schlüchter, C. Glacier Advances in Northeastern Turkey before and during the Global Last Glacial Maximum. Quat. Sci. Rev. 2014, 101, 177–192. [Google Scholar] [CrossRef]
- Yilmaz-Şahin, S. Transition from Arc-to Post-collision Extensional Setting Revealed by K–Ar Dating and Petrology: An Example from the Granitoids of the Eastern Pontide Igneous Terrane, Araklı-Trabzon, NE Turkey. Geol. J. 2005, 40, 425–440. [Google Scholar] [CrossRef]
- Ketin, İ. Tectonic Units of Anatolia (Asia Minor). Bull. Miner. Res. Explor. 1966, 66, 20–37. [Google Scholar]
- Akçar, N.; Ivy-Ochs, S.; Kubik, P.W.; Schlüchter, C. Post-Depositional Impacts on ‘Findlinge’(Erratic Boulders) and Their Implications for Surface-Exposure Dating. Swiss J. Geosci. 2011, 104, 445–453. [Google Scholar] [CrossRef] [Green Version]
- Dunne, J.; Elmore, D.; Muzikar, P. Scaling Factors for the Rates of Production of Cosmogenic Nuclides for Geometric Shielding and Attenuation at Depth on Sloped Surfaces. Geomorphology 1999, 27, 3–11. [Google Scholar] [CrossRef]
- Reedy, R.C. Nuclide Production by Primary Cosmic-ray Protons. J. Geophys. Res. Solid Earth 1987, 92, E697–E702. [Google Scholar] [CrossRef] [Green Version]
- Lal, D. In Situ-Produced Cosmogenic Isotopes in Terrestrial Rocks. Annu. Rev. Earth Planet. Sci. 1988, 16, 355–388. [Google Scholar] [CrossRef]
- Liu, B.; Phillips, F.M.; Fabryka-Martin, J.T.; Fowler, M.M.; Stone, W.D. Cosmogenic 36Cl Accumulation in Unstable Landforms: 1. Effects of the Thermal Neutron Distribution. Water Resour. Res. 1994, 30, 3115–3125. [Google Scholar] [CrossRef]
- Phillips, F.M.; Zreda, M.G.; Flinsch, M.R.; Elmore, D.; Sharma, P. A Reevaluation of Cosmogenic 36Cl Production Rates in Terrestrial Rocks. Geophys. Res. Lett. 1996, 23, 949–952. [Google Scholar] [CrossRef]
- Phillips, F.M.; Stone, W.D.; Fabryka-Martin, J.T. An Improved Approach to Calculating Low-Energy Cosmic-Ray Neutron Fluxes near the Land/Atmosphere Interface. Chem. Geol. 2001, 175, 689–701. [Google Scholar] [CrossRef]
- Stone, J.O.; Allan, G.L.; Fifield, L.K.; Cresswell, R.G. Cosmogenic Chlorine-36 from Calcium Spallation. Geochim. Cosmochim. Acta 1996, 60, 679–692. [Google Scholar] [CrossRef]
- Stone, J.O.H.; Evans, J.M.; Fifield, L.K.; Allan, G.L.; Cresswell, R.G. Cosmogenic Chlorine-36 Production in Calcite by Muons. Geochim. Cosmochim. Acta 1998, 62, 433–454. [Google Scholar] [CrossRef]
- Alfimov, V.; Ivy-Ochs, S. How Well Do We Understand Production of 36Cl in Limestone and Dolomite? Quat. Geochronol. 2009, 4, 462–474. [Google Scholar] [CrossRef]
- Schimmelpfennig, I.; Benedetti, L.; Finkel, R.; Pik, R.; Blard, P.-H.; Bourles, D.; Burnard, P.; Williams, A. Sources of In-Situ 36Cl in Basaltic Rocks. Implications for Calibration of Production Rates. Quat. Geochronol. 2009, 4, 441–461. [Google Scholar] [CrossRef]
- Akçar, N.; Tikhomirov, D.; Özkaymak, Ç.; Ivy-Ochs, S.; Alfimov, V.; Sözbilir, H.; Uzel, B.; Schlüchter, C. 36Cl Exposure Dating of Paleoearthquakes in the Eastern Mediterranean: First Results from the Western Anatolian Extensional Province, Manisa Fault Zone, Turkey. Bulletin 2012, 124, 1724–1735. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Synal, H.-A.; Roth, C.; Schaller, M. Initial Results from Isotope Dilution for Cl and 36Cl Measurements at the PSI/ETH Zurich AMS Facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 223, 623–627. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Almasi, P.F.; Elmore, D. Determination of Cosmogenic 36Cl in Rocks by Isotope Dilution: Innovations, Validation and Error Propagation. Chem. Geol. 2006, 233, 185–195. [Google Scholar] [CrossRef]
- Synal, H.-A.; Bonani, G.; Döbeli, M.; Ender, R.M.; Gartenmann, P.; Kubik, P.W.; Schnabel, C.; Suter, M. Status Report of the PSI/ETH AMS Facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 123, 62–68. [Google Scholar] [CrossRef]
- Vockenhuber, C.; Miltenberger, K.-U.; Synal, H.-A. 36Cl Measurements with a Gas-Filled Magnet at 6 MV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2019, 455, 190–194. [Google Scholar] [CrossRef]
- Stone, J.O. Air Pressure and Cosmogenic Isotope Production. J. Geophys. Res. Solid Earth 2000, 105, 23753–23759. [Google Scholar] [CrossRef]
- Evans, J.M.; Stone, J.O.H.; Fifield, L.K.; Cresswell, R.G. Cosmogenic Chlorine-36 Production in K-Feldspar. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1997, 123, 334–340. [Google Scholar] [CrossRef]
- Fink, D.; Vogt, S.; Hotchkis, M. Cross-Sections for 36Cl from Ti at Ep=35–150 MeV: Applications to in-Situ Exposure Dating. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2000, 172, 861–866. [Google Scholar] [CrossRef]
- Stone, J. Cosmogenic Chlorine-36 Ages for the 1975 and 1984 Eruptions of Mauna Loa, Hawaii. In Proceedings of the 2005 Salt Lake City Annual Meeting, Salt Lake City, UT, USA, 16–19 October 2005. [Google Scholar]
- Heisinger, B.; Lal, D.; Jull, A.J.T.; Kubik, P.; Ivy-Ochs, S.; Neumaier, S.; Knie, K.; Lazarev, V.; Nolte, E. Production of Selected Cosmogenic Radionuclides by Muons: 1. Fast Muons. Earth Planet. Sci. Lett. 2002, 200, 345–355. [Google Scholar] [CrossRef]
- Heisinger, B.; Lal, D.; Jull, A.J.T.; Kubik, P.; Ivy-Ochs, S.; Knie, K.; Nolte, E. Production of Selected Cosmogenic Radionuclides by Muons: 2. Capture of Negative Muons. Earth Planet. Sci. Lett. 2002, 200, 357–369. [Google Scholar] [CrossRef]
- Shakun, J.D.; Carlson, A.E. A Global Perspective on Last Glacial Maximum to Holocene Climate Change. Quat. Sci. Rev. 2010, 29, 1801–1816. [Google Scholar] [CrossRef]
- Schneebeli, W. Untersuchungen von Gletscherschwankungen Im Val de Bagnes. In Die Alpen; Schweizer Alpen-Club: Bern, Switzerland, 1976; pp. 5–57. [Google Scholar]
- Mair, D.; Lechmann, A.; Delunel, R.; Yeşilyurt, S.; Tikhomirov, D.; Vockenhuber, C.; Christl, M.; Akçar, N.; Schlunegger, F. The Role of Frost Cracking in Local Denudation of Steep Alpine Rockwalls over Millennia (Eiger, Switzerland). Earth Surf. Dyn. 2020, 8, 637–659. [Google Scholar] [CrossRef]
- Hughes, P.D.; Woodward, J.C. Timing of Glaciation in the Mediterranean Mountains during the Last Cold Stage. J. Quat. Sci. Publ. Quat. Res. Assoc. 2008, 23, 575–588. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Zreda, M.; Çiner, A. Glaciations and Paleoclimate of Mount Erciyes, Central Turkey, since the Last Glacial Maximum, Inferred from 36Cl Cosmogenic Dating and Glacier Modeling. Quat. Sci. Rev. 2009, 28, 2326–2341. [Google Scholar] [CrossRef]
- Zahno, C.; Akçar, N.; Yavuz, V.; Kubik, P.W.; Schlüchter, C. Chronology of Late Pleistocene Glacier Variations at the Uludağ Mountain, NW Turkey. Quat. Sci. Rev. 2010, 29, 1173–1187. [Google Scholar] [CrossRef]
- Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Reber, R.; Kubik, P.W.; Zahno, C.; Schlüchter, C. Glacier Response to the Change in Atmospheric Circulation in the Eastern Mediterranean during the Last Glacial Maximum. Quat. Geochronol. 2014, 19, 27–41. [Google Scholar] [CrossRef]
- Akçar, N.; Yavuz, V.; Yeşilyurt, S.; Ivy-Ochs, S.; Reber, R.; Bayrakdar, C.; Kubik, P.W.; Zahno, C.; Schlunegger, F.; Schlüchter, C. Synchronous Last Glacial Maximum across the Anatolian Peninsula. Geol. Soc. Lond. Spec. Publ. 2017, 433, 251–269. [Google Scholar] [CrossRef]
- Kuhlemann, J.; Milivojević, M.; Krumrei, I.; Kubik, P.W. Last Glaciation of the Šara Range (Balkan Peninsula): Increasing Dryness from the LGM to the Holocene. Austrian J. Earth Sci. 2009, 102, 146–158. [Google Scholar]
- Hughes, P.D.; Woodward, J.C.; Van Calsteren, P.C.; Thomas, L.E.; Adamson, K.R. Pleistocene Ice Caps on the Coastal Mountains of the Adriatic Sea. Quat. Sci. Rev. 2010, 29, 3690–3708. [Google Scholar] [CrossRef]
- Kamleitner, S.; Ivy-Ochs, S.; Monegato, G.; Gianotti, F.; Akçar, N.; Vockenhuber, C.; Christl, M.; Synal, H.-A. The Ticino-Toce Glacier System (Swiss-Italian Alps) in the Framework of the Alpine Last Glacial Maximum. Quat. Sci. Rev. 2022, 279, 107400. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Çiner, A.; Haybat, H.; Zreda, M. An Early Advance of Glaciers on Mount Akdağ, SW Turkey, before the Global Last Glacial Maximum; Insights from Cosmogenic Nuclides and Glacier Modeling. Quat. Sci. Rev. 2014, 88, 96–109. [Google Scholar] [CrossRef]
- Starnberger, R.; Rodnight, H.; Spötl, C. Chronology of the Last Glacial Maximum in the Salzach Palaeoglacier Area (Eastern Alps). J. Quat. Sci. 2011, 26, 502–510. [Google Scholar] [CrossRef]
- Akçar, N.; Yavuz, V.; Ivy-Ochs, S.; Kubik, P.W.; Vardar, M.; Schlüchter, C. Cosmogenic Exposure Dating of Snow-Avalanche Ridges Eastern Black Sea Mountains, NE Turkey. Quat. Int. 2007, 167, 4–11. [Google Scholar] [CrossRef]
- Messerli, B. Die Eiszeitliche Und Die Gegenwärtige Vergletscherung Im Mittelmeerraum. Geogr. Helv. 1967, 22, 105–228. [Google Scholar] [CrossRef]
- Akçar, N. The Anatolian Mountains: Glacial Landforms from the Last Glacial Maximum. In European Glacial Landscapes; Elsevier: Amsterdam, The Netherlands, 2022; pp. 497–504. [Google Scholar]
- Dede, V.; Çiçek, İ.; Sarıkaya, M.A.; Çiner, A.; Uncu, L. First Cosmogenic Geochronology from the Lesser Caucasus: Late Pleistocene Glaciation and Rock Glacier Development in the Karçal Valley, NE Turkey. Quat. Sci. Rev. 2017, 164, 54–67. [Google Scholar] [CrossRef]
- Zahno, C.; Akçar, N.; Yavuz, V.; Kubik, P.W.; Schlüchter, C. Surface Exposure Dating of Late Pleistocene Glaciations at the Dedegöl Mountains (Lake Beyşehir, SW Turkey). J. Quat. Sci. Publ. Quat. Res. Assoc. 2009, 24, 1016–1028. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Zreda, M.; Çiner, A.; Zweck, C. Cold and Wet Last Glacial Maximum on Mount Sandıras, SW Turkey, Inferred from Cosmogenic Dating and Glacier Modeling. Quat. Sci. Rev. 2008, 27, 769–780. [Google Scholar] [CrossRef]
- Çiner, A.; Sarıkaya, M.A.; Yıldırım, C. Late Pleistocene Piedmont Glaciations in the Eastern Mediterranean; Insights from Cosmogenic 36Cl Dating of Hummocky Moraines in Southern Turkey. Quat. Sci. Rev. 2015, 116, 44–56. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Çiner, A.; Yıldırım, C. Cosmogenic 36Cl Glacial Chronologies of the Late Quaternary Glaciers on Mount Geyikdağ in the Eastern Mediterranean. Quat. Geochronol. 2017, 39, 189–204. [Google Scholar] [CrossRef]
- Çiner, A.; Sarıkaya, M.A. Cosmogenic 36Cl Geochronology of Late Quaternary Glaciers in the Bolkar Mountains, South Central Turkey. Geol. Soc. Lond. Spec. Publ. 2017, 433, 271–287. [Google Scholar] [CrossRef]
- Thiede, J. Quaternary Environments of the Eurasian North. Quat. Sci. Rev. 2004, 23, 1225–1511. [Google Scholar] [CrossRef]
- Mangerud, J.; Astakhov, V.; Jakobsson, M.; Svendsen, J.I. Huge Ice-age Lakes in Russia. J. Quat. Sci. Publ. Quat. Res. Assoc. 2001, 16, 773–777. [Google Scholar] [CrossRef]
- Mangerud, J.; Jakobsson, M.; Alexanderson, H.; Astakhov, V.; Clarke, G.K.; Henriksen, M.; Hjort, C.; Krinner, G.; Lunkka, J.-P.; Möller, P. Ice-Dammed Lakes and Rerouting of the Drainage of Northern Eurasia during the Last Glaciation. Quat. Sci. Rev. 2004, 23, 1313–1332. [Google Scholar] [CrossRef]
Sample Name | Altitude (m) | Latitude, °N (DD.DD WGS84) | Longitude, °E (DD.DD WGS84) | Boulder Height (cm) | Sample Thickness (cm) | Shielding Correction Factor a |
---|---|---|---|---|---|---|
TRYAY-1 | 2310 | 40.85623 | 41.24587 | 100 | 3 | 0.9745 |
TRYAY-2 | 2330 | 40.85495 | 41.24291 | 120 | 3 | 0.9815 |
TRYAY-3 | 2990 | 40.81733 | 41.1812 | 140 | 4 | 0.9836 |
TRYAY-4 | 2990 | 40.81791 | 41.18103 | 80 | 3 | 0.9887 |
TRYAY-5 | 2980 | 40.81851 | 41.18088 | 80 *dh 60 | 3 | 0.9872 |
TRYAY-6 | 2990 | 40.81759 | 41.17999 | 100 | 5 | 0.9879 |
TRYAY-7 | 2880 | 40.85152 | 41.18879 | 115 | 3 | 0.9727 |
TRYAY-8 | 2905 | 40.85141 | 41.1876 | 100 | 2.5 | 0.9624 |
TRYAY-9 | 2960 | 40.85221 | 41.18504 | 160 | 4 | 0.9724 |
TRYAY-10 | 2805 | 40.85643 | 41.19236 | 120 | 3.5 | 0.9834 |
TRYAY-11 | 2380 | 40.86354 | 41.23956 | 180 *dh 50 | 3 | 0.9927 |
TRYAY-12 | 1945 | 40.87334 | 41.2763 | 250 *dh 40 | 2.5 | 0.9595 |
TRYAY-13 | 1940 | 40.8733 | 41.27599 | 400 *dh 50 | 3 | 0.9804 |
TRYAY-14 | 1910 | 40.87257 | 41.27751 | 200 | 5 | 0.9552 |
TRYAY-15 | 2150 | 40.87624 | 41.27764 | Tor | 5 | 0.9943 |
TRYAY-16 | 2295 | 40.85649 | 41.24531 | 340 *dh 160 | 5 | 0.9816 |
TRYAY-17 | 2285 | 40.85663 | 41.24546 | 340 *dh 80 | 2 | 0.9816 |
TRYAY-18 | 2205 | 40.8587 | 41.24792 | 320 *dh 100 | 3 | 0.9450 |
TRYAY-19 | 2190 | 40.86144 | 41.25145 | 240 | 4 | 0.9768 |
TRYAY-20 | 2155 | 40.86191 | 41.25106 | 280 | 3 | 0.9727 |
TRYAY-21 | 2195 | 40.8615 | 41.25346 | 380 | 2 | 0.9685 |
TRYAY-22 | 2180 | 40.86205 | 41.25377 | 260 | 3 | 0.9723 |
TRYAY-23 | 2115 | 40.86266 | 41.25207 | 300 *dh 200 | 3 | 0.9747 |
TRYAY-24 | 2090 | 40.86411 | 41.25843 | 480 | 3 | 0.9768 |
TRYAY-25 | 2090 | 40.86429 | 41.25865 | 270 *dh 130 | 3 | 0.9768 |
TRYAY-26 | 2115 | 40.86452 | 41.26329 | 290 *dh 100 | 5 | 0.9729 |
TRYAY-27 | 2005 | 40.86704 | 41.26197 | 640 | 4 | 0.9730 |
TRYAY-28 | 1950 | 40.87103 | 41.27026 | 200 | 3 | 0.9591 |
TRYAY-29 | 1935 | 40.87314 | 41.27612 | 200 | 3 | 0.9646 |
TRYAY-30 | 1930 | 40.87307 | 41.27623 | 120 *dh 40 | 2 | 0.9646 |
TRYAY-31 | 1960 | 40.87354 | 41.27586 | 180 | 2 | 0.9630 |
TRYAY-32 | 1990 | 40.87418 | 41.27545 | 340 | 3 | 0.9745 |
Sample Name | Weight of Sample | Cl Conc. in Rock (ppm) | 36Cl Conc. (106 36Cl g(rock)−1) | Erosion Corrected (ε = 1.0 mm/ka) Exposure Age (ka) |
---|---|---|---|---|
TRYAY-1 | 34.2269 | 11.45 ± 0.10 | 0.25 ± 0.03 | 16.9 ± 1.9 |
TRYAY-2 | 29.4083 | 26.30 ± 0.39 | 0.37 ± 0.02 | 16.8 ± 1.4 |
TRYAY-3 | 29.136 | 18.81 ± 0.25 | 0.21 ± 0.02 | 9.5 ± 1.0 |
TRYAY-4 | 29.0564 | 19.92 ± 0.13 | 0.44 ± 0.02 | 11.3 ± 0.7 |
TRYAY-5 | 27.7074 | 21.41 ± 0.14 | 0.34 ± 0.02 | 11.4 ± 0.9 |
TRYAY-6 | 28.6207 | 29.71 ± 0.15 | 0.92 ± 0.04 | 16.1 ± 0.9 |
TRYAY-7 | 28.7826 | 66.22 ± 0.68 | 0.79 ± 0.04 | 15.3 ± 1.3 |
TRYAY-8 | 28.6532 | 95.01 ± 6.46 | 0.92 ± 0.08 | 15.6 ± 1.8 |
TRYAY-9 | 30.0012 | 135.30 ± 0.84 | 1.01 ± 0.05 | 12.2 ± 1.2 |
TRYAY-10 | 29.1489 | 55.16 ± 2.59 | 0.78 ± 0.05 | 14.2 ± 1.3 |
TRYAY-11 | 29.1831 | 237.70 ± 9.32 | 1.64 ± 0.10 | 16.4 ± 1.8 |
TRYAY-12 | 28.4173 | 17.61 ± 0.26 | 0.41 ± 0.02 | 34.0 ± 2.6 |
TRYAY-13 | 34.0625 | 15.51 ± 0.12 | 0.28 ± 0.02 | 20.6 ± 1.7 |
TRYAY-14 | 35.4375 | 14.94 ± 0.09 | 0.15 ± 0.01 | 19.3 ± 1.9 |
TRYAY-15 | 28.9831 | 76.64 ± 1.11 | 0.68 ± 0.03 | 25.7 ± 4.0 |
TRYAY-16 | 30.1203 | 15.46 ± 0.17 | 0.16 ± 0.01 | 14.5 ± 1.3 |
TRYAY-17 | 30.8286 | 19.84 ± 0.70 | 0.38 ± 0.03 | 22.7 ± 2.0 |
TRYAY-18 | 30.3030 | 18.20 ± 0.29 | 0.48 ± 0.02 | 22.8 ± 1.5 |
TRYAY-19 | 30.1839 | 14.63 ± 0.30 | 0.39 ± 0.03 | 25.2 ± 2.2 |
TRYAY-20 | 30.1838 | 15.55 ± 0.10 | 0.40 ± 0.02 | 18.7 ± 1.1 |
TRYAY-21 | 30.0951 | 8.37 ± 0.20 | 0.19 ± 0.01 | 19.4 ± 1.7 |
TRYAY-22 | 28.0466 | 10.52 ± 0.32 | 0.19 ± 0.01 | 13.4 ± 1.1 |
TRYAY-23 | 27.9336 | 16.45 ± 0.15 | 0.36 ± 0.03 | 17.9 ± 1.5 |
TRYAY-24 | 30.3931 | 16.08 ± 0.11 | 0.37 ± 0.02 | 21.1 ± 1.4 |
TRYAY-25 | 30.2444 | 15.42 ± 0.11 | 0.15 ± 0.01 | 19.0 ± 1.9 |
TRYAY-26 | 30.2529 | 18.68 ± 0.24 | 1.31 ± 0.05 | 105.6 ± 8.1 |
TRYAY-27 | 30.3185 | 17.44 ± 0.26 | 0.27 ± 0.02 | 17.3 ± 1.6 |
TRYAY-28 | 30.4064 | 12.55 ± 0.16 | 0.10 ± 0.01 | 9.5 ± 0.9 |
TRYAY-29 | 30.3650 | 16.47 ± 0.24 | 0.19 ± 0.02 | 18.8 ± 2.1 |
TRYAY-30 | 30.1825 | 92.66 ± 0.58 | 0.45 ± 0.02 | 14.6 ± 1.3 |
TRYAY-31 | 30.2605 | 15.34 ± 0.22 | 0.45 ± 0.02 | 25.6 ± 1.6 |
TRYAY-32 | 30.7316 | 15.86 ± 0.11 | 0.36 ± 0.02 | 33.9 ± 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reber, R.; Akçar, N.; Tikhomirov, D.; Yesilyurt, S.; Vockenhuber, C.; Yavuz, V.; Ivy-Ochs, S.; Schlüchter, C. LGM Glaciations in the Northeastern Anatolian Mountains: New Insights. Geosciences 2022, 12, 257. https://doi.org/10.3390/geosciences12070257
Reber R, Akçar N, Tikhomirov D, Yesilyurt S, Vockenhuber C, Yavuz V, Ivy-Ochs S, Schlüchter C. LGM Glaciations in the Northeastern Anatolian Mountains: New Insights. Geosciences. 2022; 12(7):257. https://doi.org/10.3390/geosciences12070257
Chicago/Turabian StyleReber, Regina, Naki Akçar, Dmitry Tikhomirov, Serdar Yesilyurt, Christof Vockenhuber, Vural Yavuz, Susan Ivy-Ochs, and Christian Schlüchter. 2022. "LGM Glaciations in the Northeastern Anatolian Mountains: New Insights" Geosciences 12, no. 7: 257. https://doi.org/10.3390/geosciences12070257
APA StyleReber, R., Akçar, N., Tikhomirov, D., Yesilyurt, S., Vockenhuber, C., Yavuz, V., Ivy-Ochs, S., & Schlüchter, C. (2022). LGM Glaciations in the Northeastern Anatolian Mountains: New Insights. Geosciences, 12(7), 257. https://doi.org/10.3390/geosciences12070257