The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps)
Abstract
:1. Introduction
2. Geological Setting
2.1. Central Alps
2.2. Simplon Fault Zone (SFZ)
3. Methods
4. Results
4.1. Fieldwork and Outcrop-Scale Structures
4.2. Microstructural Analysis
5. Discussion
5.1. Macrostructure of the Gouge
5.2. Exhumation History
5.3. Fault Lubrication
6. Conclusions
- The dominant deformation mechanism is pressure-solution creep.
- Pressure-solution creep overprinted earlier ductile fabrics. This, together with the involvement of fluids and phyllosilicates, suggest the rock passed through the brittle-ductile transition at this time.
- We recognise cleavage cracks that can be linked to the seismicity of the fault.
- The formation of the pressure-solution foliation, formed by muscovite, chlorite, and graphite, significantly reduced friction. If a similar activity occurred on the SFZ, it would explain why the normal fault of the SFZ has such a low, otherwise unfavourable angle.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Higgins, M.W. Cataclastic Rocks; Professional Paper; U.S. Geological Survey: Washington, DC, USA, 1974; Volume 687.
- Sibson, R.H. Fault rocks and fault mechanisms. J. Geol. Soc. 1977, 133, 191–213. [Google Scholar] [CrossRef]
- Engelder, J.T. Cataclasis and the generation of fault gouge. Geol. Soc. Am. Bull. 1974, 85, 1515–1522. [Google Scholar] [CrossRef]
- Rutter, E.H.; Mainprice, D.H. On the possibility of slow fault slip controlled by a diffusive mass transfer process. Gerlands Beitr. Geophys. 1979, 88, 154–162. [Google Scholar]
- Chester, F.M.; Higgs, N.G. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions. J. Geophys. Res. 1992, 92, 1859–1870. [Google Scholar] [CrossRef]
- Chester, F.M. A rheologic model for wet crust applied to strike-slip faults. J. Geophys. Res. 1995, 100, 13033–13044. [Google Scholar] [CrossRef]
- Hickman, S.; Sibson, R.; Bruhn, R. Introduction to special section: Mechanical involvement of fluids in faulting. J. Geophys. Res. 1995, 100, 12831–12840. [Google Scholar] [CrossRef] [Green Version]
- Kohlstedt, D.L.; Evans, B.; Mackwell, S.J. Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res. 1995, 100, 17587–17602. [Google Scholar] [CrossRef]
- Wu, F.T.; Blatter, L.; Roberson, H. Clay gouges in the San Andreas fault system and their possible implications. In Earthquake Prediction and Rock Mechanics; Birkhäuser: Basel, Switzerland, 1975; pp. 87–95. [Google Scholar] [CrossRef]
- Rutter, E.H.; Maddock, R.H.; Hall, S.H.; White, S.H. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure Appl. Geophys. 1986, 124, 3–30. [Google Scholar] [CrossRef]
- Scholz, C.H.; Cowie, P.A. Determination of total strain from faulting using slip measurements. Nature 1990, 346, 837–839. [Google Scholar] [CrossRef]
- Chester, F.M.; Evans, J.P.; Biegel, R.L. Internal structure and weakening mechanisms of the San Andreas fault. J. Geophys. Res. 1993, 98, 771–786. [Google Scholar] [CrossRef]
- Wintsch, R.P.; Christoffersen, R.; Kronenberg, A.K. Fluid-rock reaction weakening of fault zones. J. Geophys. Res. 1995, 100, 13021–13032. [Google Scholar] [CrossRef]
- Collettini, C. The mechanical paradox of low-angle normal faults: Current understanding and open questions. Tectonophysics 2011, 510, 253–268. [Google Scholar] [CrossRef]
- Bos, B.; Peach, C.J.; Spiers, C.J. Frictional-viscous flow of simulated fault gouge caused by the combined effects of phyllosilicates and pressure solution. Tectonophysics 2000, 327, 173–194. [Google Scholar] [CrossRef]
- Summers, R.; Byerlee, J. A note on the effect of fault gouge composition on the stability of frictional sliding. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. Pergamon 1977, 3, 155–160. [Google Scholar] [CrossRef]
- Knott, S.D.; Beach, A.; Brockbank, P.J.; Brown, J.L.; McCallum, J.E.; Welbon, A.I. Spatial and mechanical controls on normal fault populations. J. Struct. Geol. 1996, 18, 359–372. [Google Scholar] [CrossRef]
- Avouac, J.P. From geodetic imaging of seismic and aseismic fault slip to dynamic modeling of the seismic cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 233–271. [Google Scholar] [CrossRef] [Green Version]
- Niemeijer, A.R.; Spiers, C.J. Velocity dependence of strength and healing behaviour in simulated phyllosilicate-bearing fault gouge. Tectonophysics 2006, 427, 231–253. [Google Scholar] [CrossRef]
- Faulkner, D.R.; Mitchell, T.M.; Healy, D.; Heap, M.J. Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone. Nature 2006, 444, 922–925. [Google Scholar] [CrossRef]
- Bearth, P. Geologische Beobachtungen im Grenzgebiet der lepontinischen und penninischen Alpen. Eclogae Geol. Helv. 1956, 49, 267–278. [Google Scholar]
- Steck, A. Tertiary deformation structures in the central Alps. Mineral. Petrogr. Mitt. 1984, 67, 27–45. [Google Scholar]
- Steck, A. A map of ductile shear zones of the central Alps. Eclogae Geol. Helv. 1990, 83, 603–627. [Google Scholar]
- Steck, A. Tectonics of the Simplon massif and Lepontine gneiss dome: Deformation structures due to collision between the under-thrusting European plate and the Adriatic indenter, Swiss. J. Geosci. Prague 2008, 101, 515–546. [Google Scholar] [CrossRef] [Green Version]
- Steck, A.; Hunziker, J. The Tertiary structural and thermal evolution of the central Alps—Compressional and extensional structures in an orogenic bel. Tectonophysics 1994, 238, 229–254. [Google Scholar] [CrossRef]
- Mancktelow, N.S. The Simplon Line: A major displacement zone in the western Lepontine Alps. Eclogae Geol. Helv. 1985, 78, 73–96. [Google Scholar]
- Mancktelow, N.S. The Simplon Fault Zone. Beitr. Geol. Kt. Schweiz 1990, 163, 5–74. [Google Scholar]
- Mancktelow, N.S. Neogene lateral extension during convergence in the Central Alps: Evidence from interrelated faulting and backfolding around the Simplonpass (Switzerland). Tectonophysics 1992, 215, 295–317. [Google Scholar] [CrossRef]
- Merle, O.; Legal, P.; Mancel, P. Déformation et métamorphisme dans la région du Simplon (Alpes centrales). Eclogae Geol. Helv. 1986, 79, 705–718. [Google Scholar]
- Mancel, P.; Merle, O. Kinematics of the northern part of the Simplon line (central alps). Tectonophysics 1987, 135, 265–275. [Google Scholar] [CrossRef]
- Behrmann, J.H. Crustal-scale extension in a convergent orogen: The Sterzing-Steinach mylonite zone in the Eastern Alps. Geodin. Acta 1988, 2, 63–73. [Google Scholar] [CrossRef]
- Selverstone, J. Evidence for east-west crustalextension in the Eastern Alps: Implications for theunroofing history of the Tauern window. Tectonics 1988, 7, 87–105. [Google Scholar] [CrossRef]
- Grasemann, B.; Mancktelow, N.S. Two-dimensional thermal modelling of normal faulting: The Simplon Fault zone, central alps, Switzerland. Tectonophysics 1993, 225, 155–165. [Google Scholar] [CrossRef]
- Fügenschuh, B.; Seward, D.; Mancktelow, N. Exhumation in a convergent orogen: Thewestern Tauern window. Terra Nova 1997, 9, 213–217. [Google Scholar] [CrossRef]
- Campani, M.; Mancktelow, N.S.; Seward, D.; Rolland, Y.; Müller, W.; Guerra, I. Geochronological evidence for continuous exhumation through the ductile brittle transition along a crustal-scale low-angle normal fault: Simplon Fault Zone, central Alps. Tectonics 2010, 29, 3. [Google Scholar] [CrossRef]
- Campani, M.; Herman, F.; Mancktelow, N.S. Two- and three-dimensional thermal modeling of a low-angle detachment: Exhumation history of the Simplon Fault Zone, central Alps. J. Geophys. Res. 2010, 327, B10. [Google Scholar] [CrossRef] [Green Version]
- Mancktelow, N.S. Atypical textures in quartz veins from the Simplon fault zone. J. Struct. Geol. 1987, 9, 995–1005. [Google Scholar] [CrossRef]
- Mancktelow, N.S. Quartz textures from the Simplon fault zone, southwest Switzerland and north Italy. Tectonophysics 1987, 135, 133–153. [Google Scholar] [CrossRef]
- Ring, U.; Merle, O. Forethrusting, backfolding, and lateral gravitational escape in the northern part of the Western Alps (Monte Rosa region). Geol. Soc. Am. Bull. 1992, 104, 901–914. [Google Scholar] [CrossRef]
- Todd, C.S.; Engi, M. Metamorphic field gradients in the Central Alps. J. Metamorph. Geol. 1997, 15, 513–530. [Google Scholar] [CrossRef]
- Montemagni, C.; Zanchetta, S. Constraining kinematic and temporal evolution of a normal-sense shear zone: Insights into the Simplon Shear Zone (Western Alps). J. Struct. Geol. 2022, 156, 104557. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Dewey, J.F.; Helman, M.L.; Knott, S.D.; Turco, E.; Hutton, D.H.W. Kinematics of the western Mediterranean. Geol. Soc. 1989, 45, 265–283. [Google Scholar] [CrossRef]
- Rosenbaum, G.; Lister, G.S.; Duboz, C. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 2002, 359, 117–129. [Google Scholar] [CrossRef]
- Dal Piaz, G.; Cortiana, G.; Del Moro, A.; Martin, S.; Pennacchioni, G.; Tartarotti, P. Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt–Saas ophiolite, western Alps. Int. J. Earth Sci. 2001, 90, 668–684. [Google Scholar] [CrossRef]
- Stampfli, G.M. Tethyan oceans. Geol. Soc. 2000, 173, 1–23. [Google Scholar] [CrossRef]
- Caso, F.; Nerone, S.; Petroccia, A.; Bonasera, M. Geology of the southern Gran Paradiso Massif and Lower Piedmont Zone contact area (middle Ala Valley, Western Alps, Italy). J. Maps 2021, 17, 237–246. [Google Scholar] [CrossRef]
- Trümpy, R. La zone de Sion–Courmayeur dans le haut Val Ferret valaisan. Eclogae Geol. Helv. 1954, 47, 315–359. [Google Scholar]
- Wolff, R.; Hetzel, R.; Dunkl, I.; Anczkiewicz, A.A. New constraints on the exhumation history of the western Tauern Window (European Alps) from thermochro-nology, thermokinematic modeling, and topographic analysis. Int. J. Earth Sci. 2021, 110, 2955–2977. [Google Scholar] [CrossRef]
- Handy, M.R.; Schmid, S.M.; Bousquet, R.; Kissling, E.; Bernoulli, D. Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological–geophysical record of spreading and subduction in the Alps. Earth Sci. Rev. 2010, 102, 121–158. [Google Scholar] [CrossRef]
- Bolognesi, F.; Bistacchi, A. Weakness and mechanical anisotropy of phyllosilicate-rich cataclasites developed after mylonites of a low-angle normal fault (Simplon Line, Western Alps). J. Struct. Geol. 2016, 83, 1–12. [Google Scholar] [CrossRef]
- Keller, L.M.; Fügenschuh, B.; Hess, M.; Schneider, B.; Schmid, S.M. Simplon fault zone in the western and central Alps: Mechanism of Neogene faulting and folding revisited. Geology 2006, 34, 317–320. [Google Scholar] [CrossRef] [Green Version]
- Shipton, Z.K.; Soden, A.M.; Kirkpatrick, J.D.; Bright, A.M.; Lunn, R.J. How thick is a fault? Fault displacement-thickness scaling revisited. In Earthquakes: Radiated Energy and the Physics of Faulting; Abercrombie, R., Ed.; American Geophysical Union: Washington, DC, USA, 2006; pp. 193–198. [Google Scholar]
- Brandes, C.; Tanner, D.C. Fault mechanics and earthquakes. In Understanding Faults; Elsevier: Amsterdam, The Netherlands, 2020; pp. 11–80. [Google Scholar] [CrossRef]
- Ikari, M.J.; Marone, C.; Saffer, D.M. On the relation between fault strength and frictional stability. Geology 2011, 39, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Meisser, N.; Thalmann, M. 1288 Raron; Federal Office of Topography Swisstopo: Bern, Switzerland, 2017.
- Woodcock, N.H.; Mort, K. Classification of fault breccias and related fault rocks. Geol. Mag. 2008, 145, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Poelchau, M.H.; Kenkmann, T. Feather features: A low-shock-pressure indicator in quartz. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Hirth, G.; Tullis, J.A.N. Dislocation creep regimes in quartz aggregates. J. Struct. Geol. 1992, 14, 145–159. [Google Scholar] [CrossRef]
- Stipp, M.; Stünitz, H.; Heilbronner, R.; Schmid, S.M. Dynamic recrystallization of quartz: Correlation between natural and experimental conditions. Geol. Soc. 2002, 200, 171–190. [Google Scholar] [CrossRef]
- Chester, F.M.; Logan, J.M. Composite planar fabric of gouge from the Punchbowl Fault, California. J. Struc. Geol. 1987, 9, 621-IN6. [Google Scholar] [CrossRef]
- Shimamoto, T.; Logan, J.M. Effects of simulated clay gouges on the sliding behavior of Tennessee sandston. Tectonophysics 1981, 75, 243–255. [Google Scholar] [CrossRef]
- Morley, C.K.; Von Hagke, C.; Hansberry, R.; Collins, A.; Kanitpanyacharoen, W.; King, R. Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part II, rock mechanics and microscopic scale. Earth Sci. Rev. 2018, 176, 19–50. [Google Scholar] [CrossRef]
- Faulkner, D.R.; Mitchell, T.M.; Behnsen, J.; Hirose, T.; Shimamoto, T. Stuck in the mud? Earthquake nucleation and propagation through accretionary forearcs. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Kurzawski, R.M.; Stipp, M.; Niemeijer, A.R.; Spiers, C.J.; Behrmann, J.H. Earthquake nucleation in weak subducted carbonates. Nat. Geosci. 2016, 9, 717–722. [Google Scholar] [CrossRef]
- Kano, K.I.; Sato, H. Foliated fault gouges: Examples from the shear zones of the Sakai-toge and Narai Faults, central Japan. J. Geol. Soc. Jpn. 1988, 94, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Cladouhos, T.T. Shape preferred orientations of survivor grains in fault gouge. J. Struc. Geol. 1999, 21, 419–436. [Google Scholar] [CrossRef]
- Niemeijer, A.; Fagereng, Å.; Ikari, M.; Nielsen, S.; Willingshofer, E. Faulting in the laboratory. In Understanding Faults; Elsevier: Amsterdam, The Netherlands, 2020; pp. 167–220. [Google Scholar] [CrossRef]
- Marone, C.; Raleigh, C.B.; Scholz, C.H. Frictional behavior and constitutive modeling of simulated fault gouge. J. Geophys. Res. 1990, 95, 7007–7025. [Google Scholar] [CrossRef]
- Scuderi, M.M.; Collettini, C.; Viti, C.; Tinti, E.; Marone, C. Evolution of shear fabric in granular fault gouge from stable sliding to stick slip and implications for fault slip mode. Geology 2017, 45, 731–734. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.E.; Summers, R.; Byerlee, J.D. Sliding behavior and deformation textures of heated illite gouge. J. Struct. Geol. 1989, 11, 329–342. [Google Scholar] [CrossRef]
- Tullis, J.; Yund, R.A. Experimental deformation of dry Westerly granite. J. Geophys. Res. 1977, 82, 5705–5718. [Google Scholar] [CrossRef]
- Kimberley, J.; Ramesh, K.T.; Barnouin, O.S. Visualization of the failure of quartz under quasi-static and dynamic compression. J. Geophys. Res. Solid Earth 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Bousquet, R.; Goffé, B.; Vidal, O.; Oberhänsli, R.; Patriat, M. The tectono-metamorphic history of the Valaisan domain from the Western to the Central Alps: New constraints on the evolution of the Alps. Geol. Soc. Am. Bull. 2002, 114, 207–225. [Google Scholar] [CrossRef]
- Cawood, T.K.; Platt, J.P. What controls the width of ductile shear zones? Tectonophysics 2021, 816, 229033. [Google Scholar] [CrossRef]
- Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C. Fault zone fabric and fault weakness. Nature 2009, 462, 907–910. [Google Scholar] [CrossRef]
- Zulauf, G.; Kleinschmidt, G.; Oncken, O. Brittle deformation and graphitic cataclasites in the pilot research well KTB-VB (Oberpfalz, FRG). Geol. Soc. 1990, 54, 97–103. [Google Scholar] [CrossRef]
- Craw, D.; Upton, P. Graphite reaction weakening of fault rocks, and uplift of the Annapurna Himal, central Nepal. Geosphere 2014, 10, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Petrie, E.S.; Burton, B.R.; Link, P.K. Influence of Graphite on Strain in a Gently Dipping Fault Zone; Search and Discovery Article #51687; AAPG: Tulsa, OK, USA, 2020. [Google Scholar]
- Oohashi, K.; Hirose, T.; Kobayashi, K.; Shimamoto, T. The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. J. Struct. Geol. 2012, 388, 39–50. [Google Scholar] [CrossRef]
- Oohashi, K.; Hirose, T.; Shimamoto, T. Shear-induced graphitization of carbonaceous materials during seismic fault motion: Experiments and possible implications for fault mechanics. J. Struct. Geol. 2011, 33, 1122–1134. [Google Scholar] [CrossRef] [Green Version]
- Oohashi, K.; Hirose, T.; Shimamoto, T. Graphite as a lubricating agent in fault zones: An insight from low-to high-velocity friction experiments on a mixed graphite-quartz gouge. J. Geophys. Res. 2013, 118, 2067–2084. [Google Scholar] [CrossRef]
- Kuo, L.W.; Li, H.; Smith, S.A.; Di Toro, G.; Suppe, J.; Song, S.R.; Si, J. Gouge graphitization and dynamic fault weakening during the 2008 Mw 7.9 Wenchuan earthquake. Geology 2014, 42, 47–50. [Google Scholar] [CrossRef]
- Kuo, L.W.; Di Felice, F.; Spagnuolo, E.; Di Toro, G.; Song, S.R.; Aretusini, S.; Wen, C.Y. Fault gouge graphitization as evidence of past seismic slip. Geology 2017, 45, 979–982. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argante, V.; Tanner, D.C.; Brandes, C.; von Hagke, C.; Tsukamoto, S. The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps). Geosciences 2022, 12, 268. https://doi.org/10.3390/geosciences12070268
Argante V, Tanner DC, Brandes C, von Hagke C, Tsukamoto S. The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps). Geosciences. 2022; 12(7):268. https://doi.org/10.3390/geosciences12070268
Chicago/Turabian StyleArgante, Valentina, David Colin Tanner, Christian Brandes, Christoph von Hagke, and Sumiko Tsukamoto. 2022. "The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps)" Geosciences 12, no. 7: 268. https://doi.org/10.3390/geosciences12070268
APA StyleArgante, V., Tanner, D. C., Brandes, C., von Hagke, C., & Tsukamoto, S. (2022). The Memory of a Fault Gouge: An Example from the Simplon Fault Zone (Central Alps). Geosciences, 12(7), 268. https://doi.org/10.3390/geosciences12070268