Reline Jacket: Efficient Reduction of Frost-Heave Uplift of Piles in Warming Permafrost
Abstract
:1. Introduction
- -
- Experimental determination of the adfreeze strength for main types of soils (sand, silty clay, and mortar) with a pile coated by a Reline jacket at temperatures from −6 to −1 °C;
- -
- Determination of the adfreeze strength for the same soils and uncoated steel piles at the similar temperature conditions;
- -
- Analysis of the obtained results.
2. Materials and Methods
2.1. Model of Pile Foundation
2.2. Reline Jacket
2.3. Natural Soil Samples
2.4. Mortar (Cement-Sand Mixture)
2.5. Samples Preparation
2.6. Shearing Tests
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melnikov, V.P.; Osipov, V.I.; Brushkov, A.V.; Badina, S.V.; Sadurtdinov, M.R.; Drozdov, D.S.; Ananieva, G.V.; Zheleznyak, M.N.; Zhdaneev, O.V.; Ostarkov, N.A.; et al. Past and future of permafrost monitoring: Stability of Russian energetic infrastructure. Energies 2022, 15, 3190. [Google Scholar] [CrossRef]
- Pavlov, A.V.; Malkova, G.V. Modern Climate Change in the North of Russia; Geo: Novosibirsk, Russia, 2005; p. 54. (In Russian) [Google Scholar]
- Malkova, G.V.; Pavlov, A.V.; Skachkov, Y.B. Assessment of the stability of frozen strata under modern climate change. Earth’s Criosphere 2011, 4, 33–36. (In Russian) [Google Scholar]
- Skachkov, Y.B.; Skryabin, S.P.; Varlamov, S.P. Effect of modern climate change on permafrost in Central Yakutia. In Proceedings of the 3rd Conference of Geocryology Cryologists of Russia, Moscow, Russia, 1–3 June 2005; Moscow University Press: Moscow, Russia, 2005; Volume 2, pp. 146–152. (In Russian). [Google Scholar]
- Skachkov, Y.B.; Skriabin, P.N.; Varlamov, S.P. Results of 25 year-long monitoring of permafrost at the Chabyda hospital site (Central Yakutia). In Proceedings of the Conference Cryogenic Resources of Polar Regions, Salekhard City, Russia, 17–22 June 2007; TyumNGU: Salekhard, Russia, 2007; Volume 1, pp. 167–170. (In Russian). [Google Scholar]
- Malkova, G.V. Monitoring of the average annual temperature of rocks at the Bolvansky hospital. Earth’s Criosphere 2010, 3, 3–14. (In Russian) [Google Scholar]
- Smith, S.L.; Romanovsky, V.; Lewkowicz, A.; Burn, C.; Allard, M.; Clow, G.; Yoshikawa, K.; Throop, J. Thermal state of permafrost in North America: A contribution to the International Polar Year. Permafrost Periglac. Proc. 2010, 21, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Vieira, G.; Bockheim, J.; Guglielmin, M.; Balks, M.; Abramov, A.; Boelhouwers, J.; Cannone, N.; Ganzert, L.; Gilichinsky, D.; Goryachkin, S.; et al. Thermal state of permafrost and active layer monitoring in the Antarctic: Advances during the International Polar Year 2007–2009. Permafrost Periglac. Processes 2010, 21, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Grosse, G.; Romanovsky, V.; Jorgenson, T.; Anthony, K.W.; Brown, J.; Overduin, P.P. Vulnerability and feedbacks of permafrost to climate change. Eos Trans. Am. Geophys. Union 2011, 92, 73–74. [Google Scholar] [CrossRef]
- Aalto, J.; Karjalainen, O.; Hjort, J.; Luoto, M. Statistical forecasting of current and future Circum-Arctic ground temperatures and active layer thickness. Geophys. Res. Lett. 2018, 45, 4889–4898. [Google Scholar] [CrossRef] [Green Version]
- Biskaborn, B.; Smith, S.H.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.; Schoeneich, P.H.; Romanovsky, V.; Lewkowicz, A.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [Green Version]
- Alekseev, A.G.; Zorin, D.V. On changes in the temperature state of permafrost in the Taimyr region of the Krasnoyarsk territory. Foundations 2020, 2, 4–7. (In Russian) [Google Scholar]
- Daout, S.; Dini, B.; Haeberli, W.; Doin, M.-P.; Parsons, B. Ice loss in the Northeastern Tibetan Plateau permafrost as seen by 16 yr of ESA SAR missions. Earth Planet. Sci. Lett. 2020, 545, 116404. [Google Scholar] [CrossRef]
- Runge, A.; Nitze, I.; Grosse, G. Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr. Remote Sens. Environ. 2022, 268, 112752. [Google Scholar] [CrossRef]
- Khrustalev, L.N.; Davydova, I.V. Forecast of climate warming and its accounting in assessing the reliability of the foundations of buildings on permafrost soils. Earth’s Criosphere 2007, 2, 68–75. (In Russian) [Google Scholar]
- Yu, W.B.; Guo, M.; Chen, L.; Lai, Y.M.; Yi, X.; Xu, L.L. Influence of urbanization on permafrost: A case study from Mohe County, northernmost China. Cryosphere Discuss. 2014, 8, 4327–4348. [Google Scholar] [CrossRef]
- Yurov, F.D.; Grebenets, V.I. Modern dynamics of engineering and geological conditions at Vankor and Zapolyarny oil and gas fields. In Prospects of Engineering Survey Development for Construction in Russia; Geomarketing: Moscow, Russia, 2017; pp. 239–246. (In Russian) [Google Scholar]
- Harris, S.; Brouchkov, A.; Cheng, G. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms; CRC Press: London, UK, 2018; 765p. [Google Scholar]
- Wu, Q.; Zhang, T. Changes in active layer thickness over the Qinghai Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos. 2010, 115, 1–12. [Google Scholar] [CrossRef]
- Solovyov, S.A.; Sushev, L.A.; Kochkin, A.A.; Solovyova, A.A. The problem of stability analysis for permafrost soils: Criterion of stability. Stroilestvo Rekonstr. 2021, 4, 3–15. (In Russian) [Google Scholar]
- Osipov, V.; Aksyutin, O.; Sergeev, D.; Tipenko, G.; Ishkov, A. Using the Data of geocryological monitoring and geocryological forecast for risk assessment and adaptation to climate change. Energies 2022, 15, 879. [Google Scholar] [CrossRef]
- Orlov, V.O.; Elgin, B.B.; Kim, V.K.H.; Filippov, V.D. Methods for estimation of tangent and normal forces of frost heaving in the field. In Transactions of N.M. Gersevanov NIIOSP; Production Experimental Workshops of VNIIIS Gosstroy of the USSR: Moscow, Russia, 1985; pp. 69–76. (In Russian) [Google Scholar]
- Kronik, Y.A. Analysis of accidents and safety of geotechnical systems in permafrost regions. In Proceedings of the 5th Conference of Geocryologists of Russia, Moscow, Russia, 14–17 June 2016; Plenary Presentations. Part 1. Engineering Geocryology. Part 2. Pipelines in Permafrost. Part 3. Seasonal and Cooling Systems in Permafrost. Part 4. Geophysical Studies of Permafrost during Construction. Universitetskaya Kniga, Lomonosov Moscow State University: Moscow, Russia, 2016; pp. 104–113. (In Russian). [Google Scholar]
- Anisimov, O.A. The main natural and socio-economic consequences of climate change in the areas of distribution of permafrost rocks: A forecast based on the synthesis of observations and modeling. Greenpeace 2010, 1, 14–15. [Google Scholar]
- Melnikov, V.P.; Osipov, V.I.; Brouchkov, A.V.; Falaleeva, A.A.; Badina, S.V.; Zheleznyak, M.N.; Sadurtdinov, M.R.; Ostrakov, N.A.; Drozdov, D.S.; Osokin, A.B.; et al. Climate warming and permafrost thaw in the Russian Arctic: Potential economic impacts on public infrastructure by 2050. Nat. Hazards 2022, 112, 231–251. [Google Scholar] [CrossRef]
- Anisimov, O.A.; Lavrov, S.A. Global warming and melting of permafrost: Risk assessment for production facilities of the fuel and energy complex. Tekhnologii V Topl. Energeticheskom Kompleks. 2004, 3, 78–83. (In Russian) [Google Scholar]
- Zhou, J.; Zhou, G.; Ma, W.; Wang, J.; Zhou, Y.; Ji, S.H. Experimental research on controlling frost heave of artificial frozen soil with intermission freezing method. J. China Univ. Min. Technol. 2006, 35, 708. [Google Scholar]
- Wang, T.; Liu, J.; Tian, Y.; Lv, P. Frost jacking characteristics of screw piles by model testing. Cold Reg. Sci. Technol. 2017, 138, 98–107. [Google Scholar] [CrossRef]
- Huang, X.; Sheng, Y.; Huang, L.; Peng, E.; Cao, W.; Zhang, X.; He, B. Experimental study on the anti-frost jacking ability of belled pile under unidirectional freezing condition. Adv. Eng. Sci. 2021, 53, 122–131. [Google Scholar] [CrossRef]
- Pchelintsev, A.M.; Levkovich, E.A. Recommendations for Reducing Uplift Forces of Frost Heave of Foundations Using Plastic Lubricants and Organic-Silicon Enamels; NIIOSP: Moscow, Russia, 1980; 36p. (In Russian) [Google Scholar]
- Pchelintsev, A.M. Laboratory studies of soil application to various surfaces. In NIIOSP Transactions; NIIOSP: Moscow, Russia, 1974; pp. 136–145. (In Russian) [Google Scholar]
- Andersland, O.B.; Ladanyi, B. Introduction to Frozen Ground Engineering; Springer: New York, NY, USA, 1994; 363p. [Google Scholar]
- Aksenov, V.I. Saline Frozen Soils of Arctic Shore as Foundation for Buildings; Vsyo o mire stroitelstva: Moscow, Russia, 2008; p. 340. (In Russian) [Google Scholar]
- Alekseev, A.G.; Sazonov, P.M.; Zorin, D.V.; Vinogradova, S.A. Application of pile foundations in structurally unstable soils. In Proceedings of the MATEC Web of Conferences, Yuzhno-Sakhalinsk, Russia, 4–7 July 2018; EDP Sciences: Yuzhno-Sakhalinsk, Russia, 2019; p. 05020. (In Russian). [Google Scholar] [CrossRef]
- Dalmatov, B.I. Effect of Frost Heaving on Foundations; Gosstroiizdat: Sankt-Peterburg, Russia; Moscow, Russia, 1957; p. 60. (In Russian) [Google Scholar]
- Chuvilin, E.M.; Bukhanov, B.A.; Mukhametdinova, A.Z.; Grechishcheva, E.S.; Sokolova, N.S.; Alekseev, A.G.; Istomin, V.A. Freezing point and unfrozen water contents of permafrost soils: Estimation by the water potential method. Cold Regions Sci. Technol. 2022, 196, 103448. [Google Scholar] [CrossRef]
Sample No. | Soil Type | Total Moisture (%) | Density of Solid Particles, g/cm3 | Soil Density, g/cm3 | Dry Density, g/cm3 | Porosity, u.f. | Water Saturation, u.f. | Plasiticity Limits (%) | Plasticity Index, u.f. | Liquidity Index, u.f. | |
---|---|---|---|---|---|---|---|---|---|---|---|
Liquid Limit | Plastic Limit | ||||||||||
1 | Silty clay | 27.5 | 2.65 | 1.86 | 1.47 | 0.45 | 0.90 | 28.2 | 20.5 | 7.7 | 0.01 |
2 | Silty sand | 20.1 | 2.65 | 1.92 | 1.60 | 0.40 | 0.81 | - | - | - | - |
Sample No. | Soil Type | Particle Size Distribution, % | ||||||
---|---|---|---|---|---|---|---|---|
>0.5 mm | 0.5–0.25 mm | 0.25–0.10 mm | 0.10–0.05 mm | 0.05–0.01 mm | 0.01–0.002 mm | <0.002 mm | ||
1 | Silty sand | 0.7 | 4.7 | 62.8 | 25.2 | 4.7 | 1.9 | - |
2 | Silty clay | 0.4 | 0.5 | 4.7 | 23.9 | 40.3 | 15.9 | 14.3 |
Test No | Contacted Materials | Temperature T, °C | Moisture Content W, % | Density, g/cm3 | Shear Strength along Adfreeze Surface, Raf, MPa | Average Rafн, MPa |
---|---|---|---|---|---|---|
1 | Silty sand-steel | −1 | 18.1 | 1.99 | 0.129 | 0.128 |
2 | −1 | 18.0 | 1.91 | 0.129 | ||
3 | −1 | 18.7 | 1.92 | 0.122 | ||
4 | −2 | 18.0 | 1.94 | 0.223 | 0.231 | |
5 | −2 | 18.0 | 1.92 | 0.260 | ||
6 | −2 | 17.4 | 1.94 | 0.220 | ||
7 | −6 | 18.0 | 1.96 | 0.600 | 0.643 | |
8 | −6 | 18.1 | 1.92 | 0.728 | ||
9 | −6 | 19.0 | 1.95 | 0.607 | ||
10 | Silty clay-steel | −1 | 27.4 | 1.88 | 0.111 | 0.115 |
11 | −1 | 27.4 | 1.86 | 0.082 | ||
12 | −1 | 27.8 | 1.86 | 0.071 | ||
13 | −2 | 28.2 | 1.87 | 0.273 | 0.206 | |
14 | −2 | 27.4 | 1.97 | 0.214 | ||
15 | −2 | 27.2 | 1.93 | 0.239 | ||
16 | −6 | 26.8 | 1.88 | 0.586 | 0.570 | |
17 | −6 | 28.2 | 1.95 | 0.557 | ||
18 | −6 | 28.9 | 1.89 | 0.557 | ||
19 | Mortar-steel | −1 | 8.0 | 1.96 | 0.171 | 0.117 |
20 | −1 | 12.8 | 1.99 | 0.099 | ||
21 | −1 | 13.0 | 2.03 | 0.129 | ||
22 | −2 | 13.0 | 1.88 | 0.129 | 0.191 | |
23 | −2 | 13.2 | 1.99 | 0.179 | ||
24 | −2 | 12.5 | 1.84 | 0.214 | ||
25 | −6 | 11.5 | 1.94 | 0.657 | 0.487 | |
26 | −6 | 12.7 | 1.98 | 0.440 | ||
27 | −6 | 13.1 | 1.96 | 0.387 | ||
28 | Silty sand-Reline | −1 | 18.7 | 2.02 | 0.016 | 0.018 |
29 | −1 | 18.1 | 1.98 | 0.016 | ||
30 | −1 | 17.9 | 1.98 | 0.016 | ||
31 | −1 | 18.7 | 2.02 | 0.024 | ||
32 | −2 | 18.7 | 1.98 | 0.063 | 0.061 | |
33 | −2 | 19.2 | 1.96 | 0.063 | ||
34 | −2 | 18.3 | 2.01 | 0.063 | ||
35 | −2 | 19.4 | 1.88 | 0.063 | ||
36 | −6 | 18.2 | 2.02 | 0.238 | 0.231 | |
37 | −6 | 18.2 | 1.94 | 0.238 | ||
38 | −6 | 18.6 | 2.02 | 0.238 | ||
39 | −6 | 18.5 | 2.06 | 0.238 | ||
40 | Silty clay-Reline | −1 | 28.3 | 1.87 | 0.040 | 0.053 |
41 | −1 | 27.6 | 1.90 | 0.056 | ||
44 | −2 | 28.3 | 1.93 | 0.095 | 0.092 | |
45 | −2 | 28.5 | 1.91 | 0.095 | ||
46 | −2 | 28.5 | 1.90 | 0.103 | ||
47 | −6 | 27.2 | 1.87 | 0.238 | 0.248 | |
48 | −6 | 27.9 | 1.91 | 0.238 | ||
49 | −6 | 27.5 | 1.94 | 0.238 | ||
50 | −6 | 27.6 | 1.91 | 0.286 | ||
51 | Mortar-Reline | −1 | 13.9 | 1.96 | 0.037 | 0.020 |
52 | −1 | 11.0 | 1.96 | 0.008 | ||
53 | −2 | 12.3 | 2.07 | 0.063 | 0.040 | |
54 | −2 | 12.6 | 2.06 | 0.016 | ||
55 | −2 | 12.7 | 2.03 | 0.041 | ||
56 | −6 | 11.1 | 2.18 | 0.111 | 0.120 | |
57 | −6 | 12.4 | 2.15 | 0.095 | ||
58 | −6 | 12.5 | 2.15 | 0.198 | ||
59 | −6 | 12.0 | 2.16 | 0.095 |
Soil Type | Frost Heave Uplift Forces Reduction, % | ||
---|---|---|---|
At −1 °C | At −2 °C | At −6 °C | |
Silty sand | 85 | 73 | 62 |
Silty clay | 52 | 63 | 55 |
Mortar (1:5) | 85 | 84 | 80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyavdin, D.; Belyakov, V.; Levin, A.; Alekseev, A.; Grechishcheva, E.; Kozlova, O.; Makhota, R. Reline Jacket: Efficient Reduction of Frost-Heave Uplift of Piles in Warming Permafrost. Geosciences 2022, 12, 313. https://doi.org/10.3390/geosciences12090313
Alyavdin D, Belyakov V, Levin A, Alekseev A, Grechishcheva E, Kozlova O, Makhota R. Reline Jacket: Efficient Reduction of Frost-Heave Uplift of Piles in Warming Permafrost. Geosciences. 2022; 12(9):313. https://doi.org/10.3390/geosciences12090313
Chicago/Turabian StyleAlyavdin, Dmitriy, Vladimir Belyakov, Artemiy Levin, Andrey Alekseev, Erika Grechishcheva, Olga Kozlova, and Roman Makhota. 2022. "Reline Jacket: Efficient Reduction of Frost-Heave Uplift of Piles in Warming Permafrost" Geosciences 12, no. 9: 313. https://doi.org/10.3390/geosciences12090313
APA StyleAlyavdin, D., Belyakov, V., Levin, A., Alekseev, A., Grechishcheva, E., Kozlova, O., & Makhota, R. (2022). Reline Jacket: Efficient Reduction of Frost-Heave Uplift of Piles in Warming Permafrost. Geosciences, 12(9), 313. https://doi.org/10.3390/geosciences12090313