Gas Permeability Behavior in Frozen Sand Controlled by Formation and Dissociation of Pore Gas Hydrates
Abstract
:1. Introduction
2. Methods
3. Experimental Results & Discussion
3.1. Gas Permeability Behavior in Frozen Sand during Hydrate Formation
3.2. Gas Permeability of Frozen Hydrate-Bearing Sand under Conditions of Hydrate Dissociation
3.3. Discussion of the Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Makogon, Y.F. Hydrates of Natural Gases; Nedra: Moscow, Russia, 1974; p. 208. (In Russian) [Google Scholar]
- Istomin, V.A.; Yakushev, V.S. Gas Hydrates in Nature; Nedra: Moscow, Russia, 1992; p. 235. (In Russian) [Google Scholar]
- Sloan, E.D. Clathrates Hydrates of Natural Gas, 2nd ed.; Marcel Dekker Inc.: New York, NY, USA, 1998; p. 757. [Google Scholar]
- Max, M.D. Natural Gas Hydrate in Oceanic and Permafrost Environments; Kluwer Academic Publishers: Dordrecht, The Netherlands; London, UK, 2000; p. 414. ISBN 1384–6434. [Google Scholar]
- Duchkov, A.D.; Sokolova, L.S.; Ayunov, D.E.; Permyakov, M.E. Assesment of potential of West Siberian permafrost for the carbon dioxide storage. Earth’s Cryosphere 2009, 23, 62–68. [Google Scholar]
- Chuvilin, E.; Guryeva, O. The role of hydrate formation processes in industrial CO2 sequestration in permafrost area. In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, UK, 17–21 July 2011. [Google Scholar]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B. Geological CO2 capture and storage with flue gas hydrate formation in frozen and unfrozen sediments: Method development, real time-scale kinetic characteristics, efficiency, and clathrate structural transition. ACS Sustain. Chem. Eng. 2019, 7, 5338–5345. [Google Scholar] [CrossRef]
- Zheng, J.; Chong, Z.R.; Qureshi, F.; Linga, P. Carbon dioxide sequestration via gas hydrates: A potential pathway toward decarbonization. Energy Fuels 2020, 34, 10529–10546. [Google Scholar] [CrossRef]
- Wright, J.F.; Cote, M.M.; Dallimore, S.R. Overview of regional opportunities for geological sequestration of CO2 as gas hydrate in Canada. In Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, BC, Canada, 6–10 July 2008. [Google Scholar]
- Istomin, V.A.; Fedulov, D.M.; Minakov, I.I.; Kvon, V.G.; Burakova, S.V. Hydrates prevention in the bottom hole formation zone at high reservoir water salinity. In Vesti Gazovoy Nauki: Problems of Operation of Gas, Gas Condensate and Oil and Gas Fields; Gazprom VNIIGAZ: Moscow, Russia, 2013; Volume 4, pp. 15–21. [Google Scholar]
- Chuvilin, E.; Bukhanov, B. Effect of hydrate accumulation conditions on thermal conductivity of gas-saturated soils. Energy Fuels 2017, 31, 5246–5254. [Google Scholar] [CrossRef]
- Ren, X.; Guo, Z.; Ning, F.; Ma, S. Permeability of hydrate-bearing sediments. Earth Sci. Rev. 2020, 202, 103100. [Google Scholar] [CrossRef]
- Waite, W.F.; Santamarina, J.C.; Cortes, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical properties of hydrate-bearing sediments. Rev. Geophys. 2009, 47, RG4003. [Google Scholar] [CrossRef]
- Yoneda, J.; Jin, Y.; Muraoka, M.; Oshima, M.; Suzuki, K.; Walker, M.; Otsuki, S.; Kumagai, K.; Collett, T.S.; Boswell, R.; et al. Multiple physical properties of gas hydrate-bearing sediments recovered from Alaska North Slope 2018 Hydrate-01 Stratigraphic Test Well. Mar. Pet. Geol. 2021, 123, 104748. [Google Scholar] [CrossRef]
- Ananyan, A.A.; Arutyunyan, N.A.; Mazurov, V.A.; Silvestrov, L.K. Permeability of permafrost. In Permafrost Studies; MSU Press: Moscow, Russia, 1972; Volume 12, pp. 205–209. (In Russian) [Google Scholar]
- Skhalakho, A.S. Conditions of Natural Gas Hydrate Formation in Porous Media and Their Effect on Production Potential of Petroleum Wells. Ph.D. Thesis, The National University of Oil and Gas “Gubkin University”, Moscow, Russia, 1974; p. 24. (In Russian). [Google Scholar]
- Beznosikov, A.F. Gas Hydrate Deposits and Features of Their Development (Case Study of the Messoyakha Field). Ph.D. Thesis, Industrial University of Tyumen, Tyumen, Russia, 1978; p. 155. (In Russian). [Google Scholar]
- Nenakhov, V.A. Infiltration of water through hydrate-saturated porous media. In EI VNIIEGazprom, Ser. Geol. Buren. Razrab. Gaz. Mestorozhdeniy; Gazprom VNIIGAZ: Moscow, Russia, 1982; pp. 9–10. (In Russian) [Google Scholar]
- Minagawa, H.; Ohmura, R.; Kamata, Y. Water permeability measurements of gas hydrate-bearing sediments. In Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, 13–16 June 2005; Tapir Acad. Press: Trondheim, Norway, 2005; pp. 398–401. [Google Scholar]
- Johnson, A.; Patil, S.; Dandekar, A. Experimental investigation of gas-water relative permeability for gas-hydrate-bearing sediments from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 419–426. [Google Scholar] [CrossRef]
- Winters, W.; Walker, W.; Hunter, R.; Collet, T.; Boswell, R.; Rose, K.; Waite, W.; Torres, M.; Patil, S.; Dandekar, A. Physical properties of sediment from the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope. Mar. Pet. Geol. 2011, 28, 361–380. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Z.; Li, Y.; Song, Y.; Ling, Z.; Zhao, J.; Lv, Q. Experimental study on the gas phase permeability of methane hydrate-bearing clayey sediments. J. Nat. Gas Sci. Eng. 2016, 36, 378–384. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Sun, X.; Li, M.; Jia, R. Experimental study on the gas phase permeability of montmorillonite sediments in the presence of hydrates. Mar. Pet. Geol. 2018, 91, 373–380. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, S.; Liu, W.; Li, Y. Permeability analysis of gas hydrate-bearing sand/clay mixed sediments using effective stress laws. J. Nat. Gas Sci. Eng. 2022, 97, 104376. [Google Scholar] [CrossRef]
- Wu, Z.; Yang, S.; Zhang, L.; Liu, W.; Li, Y. Stress dependence of the gas permeability of montmorillonite sediments in the presence of methane hydrate. J. Pet. Sci. Eng. 2022, 208, 109697. [Google Scholar] [CrossRef]
- Masuda, Y.; Kurihara, M.; Ohuchi, H. A field-scale simulation study on gas productivity of formations containing gas hydrates. In Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 19–23 May 2002; pp. 40–46. [Google Scholar]
- Minagawa, H.; Sakamoto, Y.; Komai, T.; Miyazaki, K.; Narita, H. Gas Hydrate: Methane-hydrate-bearing models based on the apparent permeability and apparent pore-size distribution of artificial and natural methane-hydrate-bearing sediment. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 3–6 May 2010. [Google Scholar] [CrossRef]
- Kleinberg, R.L.; Flaum, C.; Griffin, D.D. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J. Geophys. Res. 2003, 108, 2508. [Google Scholar] [CrossRef]
- Rezaee, R.; Saeedi, A.; Clennell, B. Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J. Petrol. Sci. Eng. 2012, 88–89, 92–99. [Google Scholar] [CrossRef]
- Hauge, L.P.; Gauteplass, J.; Høyland, M.D. Pore-level hydrate formation mechanisms using realistic rock structures in highpressure silicon micromodels. Intern. J. Greenh. Gas Control. 2016, 53, 178–186. [Google Scholar] [CrossRef]
- Daigle, H. Relative permeability to water or gas in the presence of hydrates in porous media from critical path analysis. J. Petrol. Sci. Eng. 2016, 146, 526–535. [Google Scholar] [CrossRef]
- Shen, P.; Li, X.; Li, Z.; Li, G. Permeability determination of hydrate sediments and a new reduction model considering hydrate growth habit. Fuel 2020, 279, 118297. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Grebenkin, S.I.; Tkacheva, E.V. Change of gas permeability of gas-saturated sediments during hydrate formation and freezing. In Proceedings of the 8th International Conference on Gas Hydrates, Beijing, China, 28 July–1 August 2014; pp. 1–6. [Google Scholar]
- Chuvilin, E.M.; Grebenkin, S.I.; Davletshina, D.A.; Jmaev, M.V. Influence of hydrate formation on gas permeability variations in frozen sands. Earth’s Cryosphere 2020, 24, 40–47. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Grebenkin, S.I.; Zhmaev, M.V. Gas permeability of sandy sediments: Effects of phase changes in pore ice and gas hydrates. Energy Fuels 2021, 35, 7874–7882. [Google Scholar] [CrossRef]
- Chuvilin, E.M.; Grebenkin, S.I. Dissociation of gas hydrates in frozen sands: Effect on gas permeability. Earth’s Cryosphere 2018, 22, 41–45. [Google Scholar]
- Chuvilin, E.M.; Grebenkin, S.I.; Pimenov, V.S. Experimental methods for estimation of gas permeability variations in core samples on hydrate saturation and freezing. In Proceedings of the III International Workshop World Gas Resources and Development Perspectives (WGRR 2013), Moscow, Russia, 27–28 November 2013; p. 86. [Google Scholar]
- Yershov, E.D. Methods of Geocryology; Moscow University Press: Moscow, Russia, 2004; pp. 19–66. (In Russian) [Google Scholar]
- Chuvilin, E.; Bukhanov, B.; Davletshina, D.; Grebenkin, S.; Istomin, V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost. Geosciences 2018, 8, 431. [Google Scholar] [CrossRef]
- Istomin, V.A.; Yakushev, V.S.; Makhonina, N.A.; Kwon, V.G.; Chuvilin, E.M. Self-preservation phenomenon of gas hydrate. Gas Ind. Russ. 2006, 4, 16–27. (In Russian) [Google Scholar]
- Chuvilin, E.; Davletshina, D. Formation and Accumulation of Pore Methane Hydrates in Permafrost: Experimental Modeling. Geosciences 2018, 8, 467. [Google Scholar] [CrossRef] [Green Version]
- Chuvilin, E.M.; Guryeva, O.M. Experimental investigation of CO2 gas hydrate formation in porous media of frozen and freezing sediments. Earth’s Cryosphere 2009, 23, 41–45. (In Russian) [Google Scholar]
Soil Type (ASTM D2487-17) | Particle Size (mm) Distribution, % | Mineralogy | |||||
---|---|---|---|---|---|---|---|
1–0.5 | 0.5–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.001 | <0.001 | ||
Fine sand with silt | 0.2 | 29.1 | 62.3 | 2.4 | 5.8 | 1.2 | >93% quartz |
Run | Moisture Content, % | Density, g/cm3 | Porosity, u.f. | Initial Ice Degree of Saturation (Si,%) | Initial Gas Permeability, mD |
---|---|---|---|---|---|
S1 | 10 | 1.88 | 0.36 | 49.3 | 16.24 |
S2 | 10 | 1.95 | 0.35 | 53.7 | 17.95 |
S3 | 11 | 1.87 | 0.37 | 54.6 | 18.11 |
S4 | 10 | 1.52 | 0.48 | 30.6 | 18.76 |
S5 | 10 | 1.59 | 0.46 | 34.3 | 21.08 |
Run | Time, h | Kh, u.f. | Si, % | Sh, % | Si + Sh, % | Keff av, mD |
---|---|---|---|---|---|---|
S1 | 0 | 0 | 49.3 | 0 | 49.3 | 16.24 |
24 | 0.27 | 31.65 | 21.69 | 53.34 | 11.27 | |
48 | 0.32 | 35.43 | 25.88 | 61.31 | 10.66 | |
72 | 0.46 | 29.19 | 36.92 | 66.11 | 6.42 | |
S2 | 0 | 0 | 53.7 | 0 | 53.7 | 17.95 |
24 | 0.26 | 40.36 | 24.37 | 64.73 | 12.47 | |
48 | 0.37 | 35.87 | 32.35 | 68.22 | 10.44 | |
S3 | 0 | 0 | 54.6 | 0 | 54.6 | 18.11 |
24 | 0.34 | 38.51 | 29.71 | 68.22 | 7.88 | |
48 | 0.43 | 34.21 | 37.41 | 71.62 | 6.44 | |
144 | 0.59 | 26.32 | 51.57 | 77.89 | 5.99 | |
168 | 0.64 | 23.52 | 56.59 | 80.11 | 5.47 | |
S4 | 0 | 0 | 30.6 | 0 | 30.6 | 18.76 |
72 | 0.29 | 22.63 | 12.01 | 34.64 | 12.7 | |
168 | 0.42 | 18.99 | 17.40 | 36.39 | 9.23 | |
S5 | 0 | 0 | 34.3 | 0 | 34.3 | 21.08 |
96 | 0.38 | 22.92 | 17.53 | 40.45 | 12.59 | |
120 | 0.49 | 19.51 | 22.61 | 42.12 | 11.12 | |
192 | 0.54 | 17.73 | 25.25 | 42.98 | 10.77 | |
240 | 0.59 | 16.21 | 27.51 | 43.72 | 10.25 |
Run | Kh, u.f. | Si (Sw), % | Sh, % | Si + Sh, % | Keff av, mD | |
---|---|---|---|---|---|---|
S2 | −5 | 0.37 | 35.87 | 32.35 | 68.22 | 10.44 |
+1 | 0.48 | 30.72 | 41.52 | 72.24 | 10.17 | |
−5 | 0.61 | 24.26 | 52.97 | 77.23 | 8.92 | |
S4 | −5 | 0.42 | 18.99 | 17.40 | 36.39 | 9.23 |
+1 | 0.51 | 16.68 | 26.8 | 43.48 | 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuvilin, E.; Zhmaev, M.; Grebenkin, S. Gas Permeability Behavior in Frozen Sand Controlled by Formation and Dissociation of Pore Gas Hydrates. Geosciences 2022, 12, 321. https://doi.org/10.3390/geosciences12090321
Chuvilin E, Zhmaev M, Grebenkin S. Gas Permeability Behavior in Frozen Sand Controlled by Formation and Dissociation of Pore Gas Hydrates. Geosciences. 2022; 12(9):321. https://doi.org/10.3390/geosciences12090321
Chicago/Turabian StyleChuvilin, Evgeny, Maksim Zhmaev, and Sergey Grebenkin. 2022. "Gas Permeability Behavior in Frozen Sand Controlled by Formation and Dissociation of Pore Gas Hydrates" Geosciences 12, no. 9: 321. https://doi.org/10.3390/geosciences12090321
APA StyleChuvilin, E., Zhmaev, M., & Grebenkin, S. (2022). Gas Permeability Behavior in Frozen Sand Controlled by Formation and Dissociation of Pore Gas Hydrates. Geosciences, 12(9), 321. https://doi.org/10.3390/geosciences12090321