Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Mechanism of the Destruction of Metastable Gas Hydrates
2.2. Problem Statement
2.3. Mathematical Model Formulation
2.4. Problem Solution
3. Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chuvilin, E.M.; Yakushev, V.S.; Perlova, E.V. Experimental study of gas hydrate formation in porous media. In Advances in Cold-Region Thermal Engineering and Sciences; Lecture Notes in Physics; Springe: Heidelberg, Germany, 1999; Volume 533, pp. 431–440. [Google Scholar]
- Chuvilin, E.M.; Kozlova, E.V.; Makhonina, N.A.; Yakushev, V.S. Experimental investigation of gas hydrate and ice formation in methane-saturated sediments. In ICOP 2003. Permafrost: Proceedings of the Eighth International Conference on Permafrost, Zürich, Switzerland, 21–25 July 2003; Phillips, M., Springman, S.M., Arenson, L.U., Eds.; Swets & Zeitlinger Lisse: Zürich, Switzerland, 2003; Volume 1, pp. 145–150. [Google Scholar]
- Yakushev, V.S. Natural Gas and Gas Hydrates in Cryolithozone; VNIIGAZ: Moscow, Russia, 2009; 192p. (In Russian) [Google Scholar]
- Wallmann, K.; Pinero, E.; Burwicz, E.; Haeckel, M.; Hensen, C.; Dale, A.; Ruepke, L. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach. Energies 2012, 5, 2449–2498. [Google Scholar] [CrossRef]
- Dickens, G.R.; O’Neil, J.R.; Rea, D.K.; Owen, R.M. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 1995, 10, 965–971. [Google Scholar] [CrossRef]
- Maslin, M.; Owen, M.; Day, S.; Long, D. Linking continental-slope failure and climate change: Wardstesting the clathrate gun hypothesis. Geology 2004, 32, 53–56. [Google Scholar] [CrossRef]
- Ruppel, C.D.; Kessler, J.D. The interaction of climate change and methane hydrates. Rev. Geophys. 2017, 55, 126–168. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Joussupov, V.; Kosmach, D.; Gustafsson, O. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef]
- Kennett, J.; Cannariato, K.G.; Henry, I.L.; Behl, P.J. Methane Hydrate in Quaternary Climate Change: The Clathrate Gun Hypothesis; American Geophysical Union: Washington, DC, USA, 2003; Volume 54. [Google Scholar]
- Soloviev, V.A.; Ginzburg, G.D.; Telepnev, E.V.; Mikhaluk, Y.N. Cryothermic and Gas Hydrates in the Arctic Ocean; Sevmorgeologia: Leningrad, Russia, 1987; 150p. (In Russian) [Google Scholar]
- Kvenvolden, K.A. Methane hydrates and global climate. Glob. Biogeochem. Cycles 1988, 2, 221–229. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Methane hydrates—A major reservoir of carbon in the shallow geosphere? Chem. Geol. 1988, 71, 41–51. [Google Scholar] [CrossRef]
- Koven, C.D.; Ingeval, B.; Friedlingstein, P.; Ciais, P.; Cadule, P.; Khvorostyanov, D.; Krinner, G.; Tarnocai, C. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. USA 2011, 108, 14769–14774. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost related methane flux and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Sergienko, V.I.; Lobkovskii, L.I.; Semiletov, I.P.; Dudarev, O.V.; Dmitrievskii, N.N.; Shakhova, N.E.; Romanovskii, N.N.; Kosmach, D.A.; Nikol’Skii, D.N.; Nikiforov, S.L.; et al. The degradation of submarine permafrost and the destruction of hydrates on the shelf of East Arctic seas as a potential cause of the “methane catastrophe”: Some results of integrated studies in 2011. Dokl. Earth Sci. 2012, 446, 1132–1137. [Google Scholar] [CrossRef]
- Lobkovsky, L. Seismogenic-triggering mechanism of gas emission activizations on the Arctic shelf and associated phases of abrupt warming. Geosciences 2020, 10, 428. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Leibman, M.O.; Kizyakov, A.; Plekhanov, A.V.; Streletskaya, I. New permafrost feature—deep crater in Central Yamal (West Siberia, Rusia) as a response to local climate fluctuations. Geogr. Environ. Sustain. 2014, 7, 68–79. [Google Scholar]
- Kizyakov, A.; Leibman, M.; Zimin, M.; Sonyushkin, A.; Dvornikov, Y.; Khomutov, A.; Dhont, D.; Cauquil, E.; Pushkarev, V.; Stanilovskaya, Y. Gas emission craters and mound-predecessors in the north of West Siberia, similarities and differences. Remote Sens. 2020, 12, 2182. [Google Scholar] [CrossRef]
- Chuvilin, E.; Ekimova, V.; Davletshina, D.; Sokolova, N.; Bukhanov, B. Evidence of Gas Emissions from Permafrost in the Russian Arctic. Geosciences 2020, 10, 383. [Google Scholar] [CrossRef]
- Bogoyavlensky, V.; Bogoyavlensky, I.; Nikonov, R.; Kargina, T.; Chuvilin, E.; Bukhanov, B.; Umnikov, A. New Catastrophic Gas Blowout and Giant Crater on the Yamal Peninsula in 2020: Results of the Expedition and Data Processing. Geosciences 2021, 11, 71. [Google Scholar] [CrossRef]
- Baranov, B.V.; Lobkovsky, L.I.; Dozorova, K.A.; Tsukanov, N.V. The fault system controlling methane seeps on the shelf of the Laptev Sea. Dokl. Earth Sci. 2019, 486, 571–574. [Google Scholar] [CrossRef]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Tumskoy, V.E.; Tipenko, G.S.; Grigoriev, M.N.; Siegert, C. Thermokarst and land-ocean interaction, Laptev Sea region, Russia. Permafr. Periglac. Process. 2000, 11, 137–152. [Google Scholar] [CrossRef]
- Tokida, T.; Mizoguchi, M.; Miyazaki, T.; Kagemoto, A.; Nagata, O.; Hatano, R. Episodic release of methane bubbles from peatland during spring thaw. Chemosphere 2007, 70, 165–171. [Google Scholar] [CrossRef]
- Chanton, J.P.; Martens, C.S.; Kelley, C.A. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol. Oceanogr. 1989, 34, 807–819. [Google Scholar] [CrossRef]
- Semiletov, I.P.; Pipko, I.I.; Pivovarov, N.Y.; Popov, V.V.; Zimov, S.A.; Voropaev, Y.V.; Daviodov, S.P. Atmospheric carbon emission from North Asian Lakes: A factor of global significance. Atmos. Environ. 1996, 30, 1657–1671. [Google Scholar] [CrossRef]
- Mattson, M.D.; Likens, G.E. Air pressure and methane fluxes. Nature 1990, 347, 718–719. [Google Scholar] [CrossRef]
- McQuaid, J.; Mercer, A. Air pressure and methane fluxes. Nature 1991, 351, 528. [Google Scholar] [CrossRef]
- Wallmann, K.; Riedel, M.; Hong, W.L.; Patton, H.; Hubbard, A.; Pape, T.; Hsu, C.W.; Schmidt, C.; Johnson, J.E.; Torres, M.E.; et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nat. Comms. 2018, 9, 83. [Google Scholar] [CrossRef] [PubMed]
- Lobkovskii, L.I.; Nikiforov, S.L.; Shakhova, N.E.; Semiletov, I.P.; Libina, N.V.; Anan’ev, R.A.; Dmitrevskii, N.N. Mechanisms responsible for degradation of submarine permafrost on the eastern arctic shelf of Russia. Dokl. Earth Sci. 2013, 449, 280–283. [Google Scholar] [CrossRef]
- Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; et al. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science 2017, 356, 948–953. [Google Scholar] [CrossRef]
- Chuvilin, E.; Buhanov, B.; Guryeva, O.; Istomin, V.; Takeya, S.; Hachikubo, A. Experimental study of self-preservation mechanisms during gas hydrate decomposition in frozen sediments. In Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), Edinburgh, UK, 17–21 July 2011. [Google Scholar]
- Lobkovsky, L.I.; Ramazanov, M.M. Thermomechanical waves in the elastic lithosphere–viscous asthenosphere system. Fluid Dyn. 2021, 56, 765–779. [Google Scholar] [CrossRef]
- Lobkovsky, L.I. Possible seismogenic trigger mechanism of abrupt activation of methane emission and climate warming in the Arctic. Arctic: Ecol. Econ. 2020, 3, 62–72. (In Russian) [Google Scholar] [CrossRef]
- Misyura, S.; Donskoy, I. Improving the efficiency of storage of natural and artificial methane hydrates. J. Nat. Gas Sci. Eng. 2022, 97, 104324. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Lobkovsky, L.I.; Nigmatulin, R.I. A mathematical model of gas outflow from gas-saturated ice and gas hydrates. Dokl. Earth Sci. 2016, 470, 1046–1049. [Google Scholar] [CrossRef]
- Sun, X.; Luo, T.; Wang, L.; Wang, H.; Song, Y.; Li, Y. Numerical simulation of gas recovery from a low-permeability hydrate reservoir by depressurization. Appl. Energy 2019, 250, 7–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, J.; Cai, J.; Feng, S.; Feng, X.; Qiao, J. A mathematical model for determining oil migration characteristics in low-permeability porous media based on fractal theory. Transp. Porous Media 2019, 129, 633–652. [Google Scholar] [CrossRef]
- Kleinberg, R.L.; Flaum, C.; Griffin, D.D.; Brewer, P.G.; Malby, G.E.; Peltzer, E.T.; Yesinowski, J.P. Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability. J. Geophys. Res. Atmos. 2003, 108, 2508. [Google Scholar] [CrossRef]
- Mahabadi, N.; Dai, S.; Seol, Y.; Sup Yun, T.; Jang, J. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: Pore-network model simulation. Geochem. Geophys. Geosystems 2016, 17, 3099–3110. [Google Scholar] [CrossRef]
- Mahabadi, N.; Zheng, X.; Jang, J. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments. Geophys. Res. Lett. 2016, 43, 4279–4287. [Google Scholar] [CrossRef]
- Mahabadi, N.; Dai, S.; Seol, Y.; Jang, J. Impact of hydrate saturation on water permeability in hydrate-bearing sediments. J. Pet. Sci. Eng. 2019, 174, 696–703. [Google Scholar] [CrossRef]
- Li, M.; Zhou, S.; Wu, P.; Zhang, L.; Yang, L.; Li, Y.; Liu, Y.; Zhao, J.; Song, Y. Permeability analysis of hydrate-bearing sediments considering the effect of phase transition during the hydrate dissociation process. J. Nat. Gas Sci. Eng. 2022, 97, 104337. [Google Scholar] [CrossRef]
- Sergeeva, D.; Istomin, V.; Chuvilin, E.; Bukhanov, B.; Sokolova, N. Influence of hydrate-forming gas pressure on equilibrium pore water content in soils. Energies 2021, 14, 1841. [Google Scholar] [CrossRef]
- Misyura, S.Y.; Donskoy, I.G. Dissociation of natural and artificial gas hydrate. Chem. Eng. Sci. 2016, 148, 65–77. [Google Scholar] [CrossRef]
- Shimada, W.; Takeya, S.; Kamata, Y.; Uchida, N.; Nagao, J.; Ebinuma, T.; Narita, H. Texture change of ice on anomalously preserved methane clathrate hydrate. J. Phys. Chem. B. 2005, 109, 5802–5807. [Google Scholar] [CrossRef] [PubMed]
- Currier, J.H.; Schulson, E.M. The tensile strength of ice as a function jf grain size. Acta Metall. 1982, 30, 1511–1514. [Google Scholar] [CrossRef]
- Timoshenko, S.; Goodier, J.N. Theory of Elasticity, 3rd ed.; McGraw—Hill Education: New York, NY, USA, 1970. [Google Scholar]
- Hawkes, I.; Mellor, M. Deformation of fracture of ice under uniaxial stress. J. Glaciol. 1972, 11, 103–131. [Google Scholar] [CrossRef]
- Barenblatt, G.I.; Entov, V.M.; Ryzhik, V.M. Movement of Liquids and Gases in Natural Strata; Nedra: Moscow, Russia, 1984; 211p. (In Russian) [Google Scholar]
- Lobkovskiy, L.I.; Ramazanov, M.M. Theory of filtration in a double porosity medium. Dokl. Earth Sci. 2019, 484, 105–108. [Google Scholar] [CrossRef]
- Monteiro, P.J.M.; Rycroft, C.H.; Barenblatt, G.I. A mathematical model of fluid and gas flow in nanoporous media. Proc. Natl. Acad. Sci. USA 2012, 109, 20309–20313. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | Value |
---|---|
20 m | |
10−23—10−18 m2 | |
10−5 Pa·s | |
266 K | |
519.65 J/kg·K | |
0.85 MPa | |
0.83 MPa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobkovsky, L.I.; Ramazanov, M.M.; Semiletov, I.P.; Alekseev, D.A. Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone. Geosciences 2022, 12, 345. https://doi.org/10.3390/geosciences12090345
Lobkovsky LI, Ramazanov MM, Semiletov IP, Alekseev DA. Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone. Geosciences. 2022; 12(9):345. https://doi.org/10.3390/geosciences12090345
Chicago/Turabian StyleLobkovsky, Leopold I., Mukamay M. Ramazanov, Igor P. Semiletov, and Dmitry A. Alekseev. 2022. "Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone" Geosciences 12, no. 9: 345. https://doi.org/10.3390/geosciences12090345
APA StyleLobkovsky, L. I., Ramazanov, M. M., Semiletov, I. P., & Alekseev, D. A. (2022). Mathematical Model of the Decomposition of Unstable Gas Hydrate Accumulations in the Cryolithozone. Geosciences, 12(9), 345. https://doi.org/10.3390/geosciences12090345