Numerical Modeling of the Effect of Desaturation on Liquefaction Hazard Mitigation
Abstract
:1. Introduction
2. Coupled Fluid-Particle Model
2.1. Multiphase Single-Component Lattice Boltzmann Method
2.2. Discrete Element Method
2.3. Computational Scheme
3. Model Verification
4. Simulations
4.1. Computational Details
4.2. Simulation Results
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lukas, R.G. Dynamic Compaction for Highway Construction; US Department of Transportation, Federal Highway Administration: Washington, DC, USA, 1986. [Google Scholar]
- Dise, K.; Stevens, M.G.; Von Thun, J.L. Dynamic compaction to remediate liquefiable embankment foundation soils. In In-Situ Deep Soil Improvement; ASCE: Reston, VA, USA, 1994; pp. 1–25. [Google Scholar]
- Lukas, R. Geotechnical Engineering Circular No. 1-Dynamic Compaction; Technical Report; United States Federal Highway Administration: Washington, DC, USA, 1995. [Google Scholar]
- Andrus, R.D.; Chung, R.M. Ground Improvement Techniques for Liquefaction Remediation Near Existing Lifelines; US National Institute of Standards and Technology: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Mitchell, J.K.; Christopher, D.P.B.; Munson, T.C. Performance of improved ground during earthquakes. In Soil Improvement for Earthquake Hazard Mitigation; ASCE: Reston, VA, USA, 1995; pp. 1–36. [Google Scholar]
- Boulanger, R.W.; Hayden, R.F. Aspects of compaction grouting of liquefiable soil. J. Geotech. Eng. 1995, 121, 844–855. [Google Scholar] [CrossRef]
- Martin, J.R.; Olgun, C.G.; Mitchell, J.K.; Durgunoglu, H.T. High-modulus columns for liquefaction mitigation. J. Geotech. Geoenviron. Eng. 2004, 130, 561–571. [Google Scholar] [CrossRef]
- Gallagher, P.M.; Conlee, C.T.; Rollins, K.M. Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk. J. Geotech. Geoenviron. Eng. 2007, 133, 186–196. [Google Scholar] [CrossRef] [Green Version]
- El Mohtar, C.S.; Bobet, A.; Santagata, M.C.; Drnevich, V.P.; Johnston, C.T. Liquefaction mitigation using bentonite suspensions. J. Geotech. Geoenviron. Eng. 2012, 139, 1369–1380. [Google Scholar] [CrossRef] [Green Version]
- O’rourke, T.D.; Goh, S.H. Reduction of liquefaction hazards by deep soil mixing. In Post-Earthquake Reconstruction Strategies: NCEER-INCEDE Center-to-Center Project; National Science Foundation: Alexandria, VA, USA, 1997; pp. 87–105. [Google Scholar]
- Holm, G. Keynote lecture: Applications of dry mix methods for deep soil stabilization. In Dry Mix Methods for Deep Soil Stabilization; Routledge: London, UK, 1999; pp. 13–15. [Google Scholar]
- Porbaha, A.; Zen, K.; Kobayashi, M. Deep mixing technology for liquefaction mitigation. J. Infrastruct. Syst. 1999, 5, 21–34. [Google Scholar] [CrossRef]
- Seed, H.B.; Booker, J.R. Stabilization of potentially liquefiable sand deposits using gravel drains. J. Geotech. Geoenviron. Eng. 1977, 103, 13050. [Google Scholar] [CrossRef]
- Ishihara, K.; Yamazaki, F. Cyclic simple shear tests on saturated sand in multi-directional loading. Soils Found. 1980, 20, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Tokimatsu, K.; Yoshimi, Y. Effects of vertical drains on the bearing capacity of saturated sand during earthquakes. In Proceedings of the Engineering for Protection from Natural Disasters, Bangkok, Thailand, 7–9 January 1980. [Google Scholar]
- Boulanger, R.W.; Idriss, I.M.; Stewart, D.P.; Hashash, Y.; Schmidt, B. Drainage capacity of stone columns or gravel drains for mitigating liquefaction. In Drainage Capacity of Stone Columns or Gravel Drains for Mitigating Liquefaction; American Society of Civil Engineers: Reston, VA, USA, 1998; pp. 678–690. [Google Scholar]
- DeJong, J.T.; Fritzges, M.B.; Nüsslein, K. Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 2006, 132, 1381–1392. [Google Scholar] [CrossRef]
- Martin, G.R.; Finn, W.D.L.; Seed, H.B. Fundementals of liquefaction under cyclic loading. J. Geotech. Geoenviron. Eng. 1975, 101, 11231. [Google Scholar]
- Chaney, R.C. Saturation effects on the cyclic strength of sands. In Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference, Pasadena, CA, USA, 19–21 June 1978. [Google Scholar]
- Yoshimi, Y.; Tanaka, K.; Tokimatsu, K. Liquefaction resistance of a partially saturated sand. Soils Found. 1989, 29, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Okamura, M.; Ishihara, M.; Tamura, K. Degree of saturation and liquefaction resistances of sand improved with sand compaction pile. J. Geotech. Geoenviron. Eng. 2006, 132, 258–264. [Google Scholar] [CrossRef]
- Yegian, M.K.; Eseller-Bayat, E.; Alshawabkeh, A.; Ali, S. Induced-partial saturation for liquefaction mitigation: Experimental investigation. J. Geotech. Geoenviron. Eng. 2007, 133, 372–380. [Google Scholar] [CrossRef] [Green Version]
- Okamura, M.; Takebayashi, M.; Nishida, K.; Fujii, N.; Jinguji, M.; Imasato, T.; Yasuhara, H.; Nakagawa, E. In-situ desaturation test by air injection and its evaluation through field monitoring and multiphase flow simulation. J. Geotech. Geoenviron. Eng. 2011, 137, 643–652. [Google Scholar] [CrossRef]
- Eseller-Bayat, E.; Yegian, M.K.; Alshawabkeh, A.; Gokyer, S. Liquefaction response of partially saturated sands. i: Experimental results. J. Geotech. Geoenviron. Eng. 2012, 139, 863–871. [Google Scholar] [CrossRef] [Green Version]
- Dafalias, Y. Bounding surface formulation of soil plasticity. In Soil Mechanics-Transient and Cyclic Loads; Wiley: New York, NJ, USA, 1982; pp. 253–282. [Google Scholar]
- Desai, C.S.; Siriwardane, H.J. Constitutive Laws for Engineering Materials with Emphasis on Geologic Materials; Prentice-Hall: Hoboken, NJ, USA, 1984. [Google Scholar]
- Wood, D.M. Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Madabhushi, S.P.G.; Zeng, X. Seismic response of gravity quay walls. ii: Numerical modeling. J. Geotech. Geoenviron. Eng. 1998, 124, 418–427. [Google Scholar] [CrossRef]
- Borja, R.I.; Chao, H.-Y.; Montáns, F.J.; Lin, C.-H. Ssi effects on ground motion at lotung lsst site. J. Geotech. Geoenviron. Eng. 1999, 125, 760–770. [Google Scholar] [CrossRef] [Green Version]
- Regueiro, R.A.; Borja, R.I. A finite element model of localized deformation in frictional materials taking a strong discontinuity approach. Finite Elem. Anal. Des. 1999, 33, 283–315. [Google Scholar] [CrossRef] [Green Version]
- Seid-Karbasi, M.; Byrne, P.M. Seismic liquefaction, lateral spreading, and flow slides: A numerical investigation into void redistribution. Can. Geotech. J. 2007, 44, 873–890. [Google Scholar] [CrossRef]
- Andrade, J. A predictive framework for liquefaction instability. Géotechnique 2009, 59, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Bian, H.; Shahrour, I. Numerical model for unsaturated sandy soils under cyclic loading: Application to liquefaction. Soil Dyn. Earthq. Eng. 2009, 29, 237–244. [Google Scholar] [CrossRef]
- Buscarnera, G.; Di Prisco, C. Soil stability and flow slides in unsaturated shallow slopes: Can saturation events trigger liquefaction processes. Géotechnique 2013, 63, 801–817. [Google Scholar] [CrossRef]
- Liu, C.; Muraleetharan, K.K. Numerical study on effects of initial state on liquefaction of unsaturated soils. In Proceedings of the GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, Oakland, CA, USA, 25–29 March 2012; pp. 2432–2441. [Google Scholar]
- Zhang, B.; Muraleetharan, K.K. Implementation of a hydromechanical elastoplastic constitutive model for fully coupled dynamic analysis of unsaturated soils and its validation using centrifuge test results. Acta Geotech. 2019, 14, 327–360. [Google Scholar] [CrossRef]
- Vecchia, G.D.; Cremonesi, M.; Pisanò, F. On the rheological characterisation of liquefied sands through the dam-breaking test. Int. J. Numer. Anal. Methods Geomech. 2019, 43, 1410–1425. [Google Scholar] [CrossRef] [Green Version]
- Cundall, P.A. A computer model for simulating progressive large scale movements in blocky rock systems. In Proceedings of the Symposium of the International Society of Rock Mechanics, Nancy, France, 4–6 October 1971; Volume 1, pp. 1671–1676. [Google Scholar]
- Cundall, P.A.; Strack, O. A discrete numerical model for granular assemblies. Ge´otechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Schenkengel, K.-U.; Vrettos, C. Simulation of liquefied sand by the lattice boltzmann method. Geotechnik 2014, 37, 96–104. [Google Scholar] [CrossRef]
- Buckles, J.J.; Hazlett, R.D.; Chen, S.; Eggert, K.G.; Grunau, D.W.; Soll, W.E. Toward improved prediction of reservoir flow performance. Los Alamos Sci. 1994, 22, 112–121. [Google Scholar]
- Shan, H.; Chen, X. Lattice boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Doolen, G. Multicomponent lattice-boltzmann model with interparticle interaction. J. Stat. Phys. 1995, 81, 379–393. [Google Scholar] [CrossRef] [Green Version]
- Martys, N.S.; Chen, H. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice boltzmann method. Phys. Rev. E 1996, 53, 743. [Google Scholar] [CrossRef]
- Sukop, M.C.; Huang, H.; Lin, C.L.; Deo, M.D.; Oh, K.; Miller, J.D. Distribution of multiphase fluids in porous media: Comparison between lattice boltzmann modeling and micro-x-ray tomography. Phys. Rev. E 2008, 77, 026710. [Google Scholar] [CrossRef]
- Galindo-Torres, S.A.; Scheuermann, A.; Li, L.; Pedroso, D.M.; Williams, D.J. A lattice boltzmann model for studying transient effects during imbibition–drainage cycles in unsaturated soils. Comput. Phys. Commun. 2013, 184, 1086–1093. [Google Scholar] [CrossRef]
- Galindo-Torres, S.A.; Scheuermann, A.; Li, L. Boundary effects on the soil water characteristic curves obtained from lattice boltzmann simulations. Comput. Geotech. 2016, 71, 136–146. [Google Scholar] [CrossRef]
- Richefeu, V.; Radjai, F.; Delenne, J.Y. Lattice boltzmann modelling of liquid distribution in unsaturated granular media. Comput. Geotech. 2016, 80, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Grunau, D.; Chen, S.; Eggert, K. A lattice boltzmann model for multiphase fluid flows. Phys. Fluids A Fluid Dyn. 1993, 5, 2557–2562. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Chen, H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice boltzmann equation. Phys. Rev. E 1994, 49, 2941. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Li, Z.; Liu, S.; Lu, X.-Y. Shan-and-chen-type multiphase lattice boltzmann study of viscous coupling effects for two-phase flow in porous media. Int. J. Numer. Methods Fluids 2009, 61, 341–354. [Google Scholar] [CrossRef]
- Eshghinejadfard, A.; Daróczy, L.; Janiga, G.; Thévenin, D. Calculation of the permeability in porous media using the lattice boltzmann method. Int. J. Heat Fluid Flow 2016, 62, 93–103. [Google Scholar] [CrossRef]
- Han, Y.; Cundall, P.A. Lbm–dem modeling of fluid–solid interaction in porous media. Int. J. Numer. Anal. Methods Geomech. 2013, 37, 1391–1407. [Google Scholar] [CrossRef]
- Abdelhamid, Y.; El Shamy, U. Pore-scale modeling of surface erosion in a particle bed. Int. J. Numer. Anal. Methods Geomech. 2014, 38, 142–166. [Google Scholar] [CrossRef]
- El Shamy, U.; Abdelhamid, Y. Modeling granular soils liquefaction using coupled lattice boltzmann method and discrete element method. Soil Dyn. Earthq. Eng. 2014, 67, 119–132. [Google Scholar] [CrossRef]
- Abdelhamid, Y.; El Shamy, U. Pore-scale modeling of fine-particle migration in granular filters. Int. J. Geomech. 2015, 16, 04015086. [Google Scholar] [CrossRef]
- Qiu, L. A coupling model of dem and lbm for fluid flow through porous media. Procedia Eng. 2015, 102, 1520–1525. [Google Scholar] [CrossRef]
- El Shamy, U.; Abdelhamid, Y. Some aspects of the impact of multidirectional shaking on liquefaction of level and sloping granular deposits. J. Eng. Mech. 2016, 143, C4016003. [Google Scholar] [CrossRef]
- Mohammad, A.A. Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes; Springer: Berlin/Heidelberg, Germany, 2011; Volume 1. [Google Scholar]
- Bhatnagar, P.L.; Gross, E.P.; Krook, M. A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems. Phys. Rev. 1954, 94, 511. [Google Scholar] [CrossRef]
- Peng, C.; Tian, S.; Li, G.; Sukop, M.C. Simulation of multiple cavitation bubbles interaction with single-component multiphase lattice boltzmann method. Int. J. Heat Mass Transf. 2019, 137, 301–317. [Google Scholar] [CrossRef]
- Baakeem, S.S.; Bawazeer, S.A.; Mohamad, A.A. Comparison and evaluation of shan–chen model and most commonly used equations of state in multiphase lattice boltzmann method. Int. J. Multiph. Flow 2020, 128, 103290. [Google Scholar] [CrossRef]
- Yuan, P.; Schaefer, L. Equations of state in a lattice boltzmann model. Phys. Fluids 2006, 18, 042101. [Google Scholar] [CrossRef]
- Ladd, A.J.C. Numerical simulations of particulate suspensions via a discretized boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech. 1994, 271, 285–309. [Google Scholar] [CrossRef] [Green Version]
- ITASCA. PFC3D: Particle Flow Code in 3 Dimensions Version 4.0; US Minneapolis-Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2008. [Google Scholar]
- Ghayoomi, M.; McCartney, J.; Ko, H.-Y. Centrifuge test to assess the seismic compression of partially saturated sand layers. Geotech. Test. J. 2011, 34, 321–331. [Google Scholar]
- Ravichandran, N.; Krishnapillai, S.H.; Machmer, B. A novel procedure for physical modeling of unsaturated soil-pile system using geotechnical centrifuge. J. Earth Sci. Geotech. Eng. 2013, 3, 119–134. [Google Scholar]
- Zeybek, A.; Madabhushi, S.P.G. Centrifuge testing to evaluate the liquefaction response of air-injected partially saturated soils beneath shallow foundations. Bull. Earthq. Eng. 2017, 15, 339–356. [Google Scholar] [CrossRef]
- Mirshekari, M.; Ghayoomi, M. Centrifuge tests to assess seismic site response of partially saturated sand layers. Soil Dyn. Earthq. Eng. 2017, 94, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Mei, R.; Yu, D.; Shyy, W.; Luo, L.-S. Force evaluation in the lattice boltzmann method involving curved geometry. Phys. Rev. E 2002, 65, 041203. [Google Scholar] [CrossRef] [Green Version]
- El Shamy, U. A Coupled Continuum-Discrete Fluid-Particle Model for Granular Soil Liquefaction. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2004. [Google Scholar]
- El Shamy, U.; Zeghal, M.; Dobry, R.; Thevanayagam, S.; Elgamal, A.; Abdoun, T.; Medina, C.; Bethapudi, R.; Bennett, V. Micromechanical aspects of liquefaction-induced lateral spreading. Int. J. Geomech. 2010, 10, 190–201. [Google Scholar] [CrossRef]
- El Shamy, U.; Aydin, F. Multiscale modeling of flood-induced piping in river levees. J. Geotech. Geoenviron. Eng. 2008, 134, 1385–1398. [Google Scholar] [CrossRef]
- Carman, P.C. Fluid flow through granular beds. Trans. Inst. Chem. Eng. 1937, 15, 150–166. [Google Scholar] [CrossRef]
- Edwards, S.F. The equations of stress in a granular material. Phys. A Stat. Mech. Its Appl. 1998, 249, 226–231. [Google Scholar] [CrossRef]
Distribution | Velocity in | Velocity in | Velocity in |
---|---|---|---|
Function | X Direction | Y Direction | Z Direction |
f | 0 | 0 | 0 |
f | 1 | 0 | 0 |
f | 0 | 1 | 0 |
f | −1 | 0 | 0 |
f | 0 | −1 | 0 |
f | 0 | 0 | 1 |
f | 0 | 0 | −1 |
f | 1 | 1 | 1 |
f | 1 | 1 | −1 |
f | 1 | −1 | −1 |
f | 1 | −1 | 1 |
f | −1 | 1 | −1 |
f | −1 | 1 | 1 |
f | −1 | −1 | 1 |
f | −1 | −1 | −1 |
Parameter | Model Prototype Ratio |
---|---|
Gravity | N |
Length | 1/N |
Acceleration | N |
Velocity | 1 |
Density | 1 |
Mass | 1/N |
Time | 1/N |
Force | 1/N |
Stress | 1 |
Solid particles | |
Diameter | 4.8 mm–7.2 mm |
Normal stiffness | 5 N/m |
Shear stiffness | 5 N/m |
Normal damping ratio | 0.1 |
Shear damping ratio | 0.1 |
Friction Coefficient | 0.5 |
Density | 1650 kg/m |
Number of particles | 3100 |
Fluid | |
Density | 1000 kg/m |
Viscosity | 5.0 Pa.s |
LBM nodes number | 103 × 480 × 103 |
Computation parameters | |
g-level | 30 |
LBM Time step | 8 s |
DEM Time step | 8 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nateghi, A.; El Shamy, U. Numerical Modeling of the Effect of Desaturation on Liquefaction Hazard Mitigation. Geosciences 2023, 13, 15. https://doi.org/10.3390/geosciences13010015
Nateghi A, El Shamy U. Numerical Modeling of the Effect of Desaturation on Liquefaction Hazard Mitigation. Geosciences. 2023; 13(1):15. https://doi.org/10.3390/geosciences13010015
Chicago/Turabian StyleNateghi, Ataollah, and Usama El Shamy. 2023. "Numerical Modeling of the Effect of Desaturation on Liquefaction Hazard Mitigation" Geosciences 13, no. 1: 15. https://doi.org/10.3390/geosciences13010015
APA StyleNateghi, A., & El Shamy, U. (2023). Numerical Modeling of the Effect of Desaturation on Liquefaction Hazard Mitigation. Geosciences, 13(1), 15. https://doi.org/10.3390/geosciences13010015