The Influence of Input Motion Scaling Strategies on Nonlinear Ground Response Analyses of Soft Soil Deposits
Abstract
:1. Introduction
2. Materials and Numerical Models
3. Scaling Strategies
4. Results and Discussion
- -
- as Hdeposit increases, the number of vibration modes increases, as expected. In fact, the response spectra show only one peak close to T1 for Hdeposit = 15 m. On the other hand, two peaks in the response spectra can be identified when Hdeposit is equal to 50 m and 30 m;
- -
- the first (T1) and second (T2) natural periods of vibration (i.e., the periods corresponding to the ground surface response spectra peaks) are higher when the column is deeper, as more nonlinear effects causing the elongation of the periods are expected to occur during the wave propagation process;
- -
- PGA scaling provides the lowest intensity ground surface response spectra, regardless of the assumed VS(z) profile, Hdeposit, and intensity level;
- -
- Sa(T1), 0.2T1-2T1, and full spectral matching supply similar ground surface response spectra, whatever VS(z) profile, Hdeposit, and PGA of the input motion are adopted;
- -
- the EC8 response spectra overestimate the LSSR results for T << T2 and T >> T1, while underestimation of the spectral accelerations is observed at the natural periods of vibration. Nevertheless, the EC8 design spectrum becomes a better proxy of the predicted surface response spectra in the case of earthquake events with higher intensity. This is also suggested by Rey et al. [62] and Pitilakis et al. [24], even though the values of PGA (i.e., Sa(T) at 0 s) are always overestimated by EC8.
- -
- the mean values of the AFs obtained for the 0.15 g intensity level are larger than the corresponding ones obtained for the 0.35 g intensity level in all cases;
- -
- as Hdeposit increases, the AF0.1–0.5 values decrease. In contrast, as Hdeposit increases, the AF values for AF0.7–1.1 also increase, as already shown by Falcone and co-workers [27]. The trend of AF0.4–0.8 shows an intermediate behaviour: it is constant with respect to Hdeposit except in the cases where the PGA is equal to 0.15 g and VS2(z), where the highest values are gained for Hdeposit = 30 m (see Figure 8);
- -
- the EC8 AF trend with Hdeposit reproduces the behaviour discussed above. In fact, EC8 only distinguishes between Hdeposit lower than 30 m (i.e., class E deposits) and higher than 30 m (i.e., class C or D deposit);
- -
- within the 336 simulations, PGA scaling generally provides the highest AFs, while the EC8 values are usually the lowest.
- -
- the EC8 AFs are the lowest, except for the cases of VS2(z), Hdeposit = 30 m, and PGA of the input motion equal to 0.35 g (Figure 13), for which the EC8 estimation is equal to about the mean value of the AF distribution provided by the LSSR analyses based on other selection strategies;
- -
- the AF0.1–0.5 distribution is characterised by the lowest variability;
- -
- within the 0.4–0.8 s and 0.7–1.1 s period ranges, the highest variability is observed when the PGA scaling strategy is used;
- -
- full spectral matching provides the lowest AF variability for all the examined case studies and selected period intervals.
5. Conclusions
- -
- If the aim is to predict ground surface response spectra, the Sa(T1), 0.2T1-2T1, and full spectral matching strategies give similar results whatever shear wave profile, depth to the seismic bedrock, and peak ground acceleration of the input motion. PGA scaling should be avoided since it provides the lowest intensity ground surface response spectra;
- -
- If the target of the analysis over large areas is the determination of the mean amplification factors, the highest variability is observed when the PGA scaling strategy is adopted, whereas full spectral matching provides the lowest variability. The EC8 prescriptions appear to be generally nonconservative in the prediction of the AFs.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fayjaloun, R.; Negulescu, C.; Roullé, A.; Auclair, S.; Gehl, P.; Faravelli, M.; Abrahamczyk, L.; Petrovčič, S.; Martinez-Frias, J. Sensitivity of Earthquake Damage Estimation to the Input Data (Soil Characterization Maps and Building Exposure): Case Study in the Luchon Valley, France. Geosciences 2021, 11, 249. [Google Scholar] [CrossRef]
- Kwok, A.O.L.; Stewart, J.P.; Hashash, Y.M.A.; Matasovic, N.; Pyke, R.; Wang, Z.; Yang, Z. Use of Exact Solutions of Wave Propagation Problems to Guide Implementation of Nonlinear Seismic Ground Response Analysis Procedures. J. Geotech. Geoenvironmental Eng. 2007, 133, 1385–1398. [Google Scholar] [CrossRef] [Green Version]
- Amorosi, A.; Boldini, D.; Elia, G. Parametric Study on Seismic Ground Response by Finite Element Modelling. Comput. Geotech. 2010, 37, 515–528. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Mascandola, C.; Lanzano, G.; Pacor, F. Consistency Check of ITACAext, the Flatfile of the Italian Accelerometric Archive. Geosciences 2022, 12, 334. [Google Scholar] [CrossRef]
- Falcone, G.; Romagnoli, G.; Naso, G.; Mori, F.; Peronace, E.; Moscatelli, M. Effect of Bedrock Stiffness and Thickness on Numerical Simulation of Seismic Site Response. Italian Case Studies. Soil Dyn. Earthq. Eng. 2020, 139, 106361. [Google Scholar] [CrossRef]
- Kokusho, T.; Ishizawa, T.; Martinez-Frias, J.; Nappi, R. Site Amplification during Strong Earthquakes Investigated by Vertical Array Records. Geosciences 2021, 11, 510. [Google Scholar] [CrossRef]
- Griffiths, S.C.; Cox, B.R.; Rathje, E.M.; Teague, D.P. Mapping Dispersion Misfit and Uncertainty in Vs Profiles to Variability in Site Response Estimates. J. Geotech. Geoenvironmental Eng. 2016, 142. [Google Scholar] [CrossRef]
- Phoon, K.K.; Kulhawy, F.H. Characterization of Geotechnical Variability. Can. Geotech. J. 2011, 36, 612–624. [Google Scholar] [CrossRef]
- Romagnoli, G.; Tarquini, E.; Porchia, A.; Catalano, S.; Albarello, D.; Moscatelli, M. Constraints for the Vs Profiles from Engineering-Geological Qualitative Characterization of Shallow Subsoil in Seismic Microzonation Studies. Soil Dyn. Earthq. Eng. 2022, 161, 107347. [Google Scholar] [CrossRef]
- Rathje, E.M.; Kottke, A.R.; Trent, W.L. Influence of Input Motion and Site Property Variabilities on Seismic Site Response Analysis. J. Geotech. Geoenvironmental Eng. 2010, 136, 607–619. [Google Scholar] [CrossRef]
- Bazzurro, P.; Cornell, C.A. Ground-Motion Amplification in Nonlinear Soil Sites with Uncertain Properties. Bull. Seismol. Soc. Am. 2004, 94, 2090–2109. [Google Scholar] [CrossRef]
- Stewart, J.P.; Kwok, A.O.L. Nonlinear Seismic Ground Response Analysis: Code Usage Protocols and Verification against Vertical Array Data. Am. Soc. Civ. Eng. 2008, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Guzel, Y.; Rouainia, M.; Elia, G. Effect of Soil Variability on Nonlinear Site Response Predictions: Application to the Lotung Site. Comput. Geotech 2020, 121, 103444. [Google Scholar] [CrossRef]
- Shome, N.; Cornell, C.A.; Bazzurro, P.; Carballo, J.E. Earthquakes, Records, and Nonlinear Responses. Earthq. Spectra 1998, 14, 469–500. [Google Scholar] [CrossRef]
- Eurocode 8: Design of Structures for Earthquake Resistance|Eurocodes: Building the Future. Available online: https://eurocodes.jrc.ec.europa.eu/EN-Eurocodes/eurocode-8-design-structures-earthquake-resistance (accessed on 14 September 2022).
- Hancock, J.; Watson-Lamprey, J.; Abrahamson, N.A.; Bommer, J.J.; Markatis, A.; McCoy, E.M.M.A.; Mendis, R. An Improved Method of Matching Response Spectra of Recorded Earthquake Ground Motion Using Wavelets. J. Earthq. Eng. 2006, 10, 67–89. [Google Scholar] [CrossRef]
- Haselton, C.B. Evaluation of Ground Motion Selection and Modification Methods: Predicting Median Interstory Drift Response of Buildings; Pacific Earthquake Engineering Research Center, University of California: Berkeley, CA, USA, 2009. [Google Scholar]
- Galasso, C. Consolidating Record Selection for Earthquake Resistant Structural Design. Ph.D. Thesis, Università degli Studi di Napoli Federico II, Napoli, Italy, 2010. [Google Scholar]
- Kottke, A.; Rathje, E.M. A Semi-Automated Procedure for Selecting and Scaling Recorded Earthquake Motions for Dynamic Analysis. Earthq. Spectra 2008, 24, 911–932. [Google Scholar] [CrossRef]
- Tönük, G.; Ansal, A.; Kurtuluş, A.; Çetiner, B. Site Specific Response Analysis for Performance Based Design Earthquake Characteristics. Bull. Earthq. Eng. 2014, 12, 1091–1105. [Google Scholar] [CrossRef]
- Amirzehni, E.; Taiebat, M.; Finn, W.D.L.; DeVall, R.H. Ground Motion Scaling/Matching for Nonlinear Dynamic Analysis of Basement Walls. In Proceedings of the 11th Canadian Conference on Earthquake Engineering, Victoria, BC, USA, 21–24 July 2015. [Google Scholar]
- Elia, G.; di Lernia, A.; Rouainia, M. Ground Motion Scaling for the Assessment of the Seismic Response of a Diaphragm Wall. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy, 17–20 June, 2019; CRC Press: Boca Raton, FL, USA, 2019; pp. 2249–2257. [Google Scholar]
- Mazzoni, S.; Hachem, M.; Sinclair, M. An Improved Approach for Ground Motion Suite Selection and Modification for Use in Response History Analysis. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 24–28 September 2012. [Google Scholar]
- Pitilakis, K.; Riga, E.; Anastasiadis, A. Design Spectra and Amplification Factors for Eurocode 8. Bull. Earthq. Eng. 2012, 10, 1377–1400. [Google Scholar] [CrossRef]
- Guzel, Y. Influence of Input Motion Selection and Soil Variability on Nonlinear Ground Response Analyses. Ph.D. Thesis, Newcastle University, Newcastle, UK, 2018. [Google Scholar]
- Moscatelli, M.; Albarello, D.; Mugnozza, G.S.; Dolce, M. The Italian Approach to Seismic Microzonation. Bull. Earthq. Eng. 2020, 18, 5425–5440. [Google Scholar] [CrossRef]
- Falcone, G.; Acunzo, G.; Mendicelli, A.; Mori, F.; Naso, G.; Peronace, E.; Porchia, A.; Romagnoli, G.; Tarquini, E.; Moscatelli, M. Seismic Amplification Maps of Italy Based on Site-Specific Microzonation Dataset and One-Dimensional Numerical Approach. Eng. Geol. 2021, 289, 106170. [Google Scholar] [CrossRef]
- Mendicelli, A.; Falcone, G.; Acunzo, G.; Mori, F.; Naso, G.; Peronace, E.; Porchia, A.; Romagnoli, G.; Moscatelli, M. Italian Seismic Amplification Factors for Peak Ground Acceleration and Peak Ground Velocity. J. Maps 2022, 18, 497–507. [Google Scholar] [CrossRef]
- Chan, A.H.C. User Manual for DIANA-SWANDYNE II; School of Engineering, Univ. of Birmingham: Birmingham, UK, 1995. [Google Scholar]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Chan, A.H.C.; Pastor, M.; Schrefler, B.A.; Shiomi, T. Computational Geomechanics with Special Reference to Earthquake Engineering; John Wiley & Sons: Chichester, UK, 1999; ISBN 978-0-471-98285-2. [Google Scholar]
- Rouainia, M.; Wood, D.M. A Kinematic Hardening Constitutive Model for Natural Clays with Loss of Structure. Géotechnique 2000, 50, 153–164. [Google Scholar] [CrossRef]
- Elia, G.; Rouainia, M. Seismic Performance of Earth Embankment Using Simple and Advanced Numerical Approaches. J. Geotech. Geoenvironmental Eng. 2013, 139, 1115–1129. [Google Scholar] [CrossRef]
- Elia, G.; Rouainia, M. Performance Evaluation of a Shallow Foundation Built on Structured Clays under Seismic Loading. Bull. Earthq. Eng. 2014, 12, 1537–1561. [Google Scholar] [CrossRef] [Green Version]
- Elia, G.; Rouainia, M.; Karofyllakis, D.; Guzel, Y. Modelling the Non-Linear Site Response at the LSST down-Hole Accelerometer Array in Lotung. Soil Dyn. Earthq. Eng. 2017, 102, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Elia, G.; Rouainia, M. Investigating the Cyclic Behaviour of Clays Using a Kinematic Hardening Soil Model. Soil Dyn. Earthq. Eng. 2016, 88, 399–411. [Google Scholar] [CrossRef]
- D’Elia, M. Comportamento Meccanico in Condizioni Cicliche e Dinamiche Di Un’argilla Naturale Cementata. Ph.D. Thesis, University of Rome ‘“La Sapienza”, Roma, Italy, 2001. [Google Scholar]
- Chehat, A.; Hussien, M.N.; Abdellaziz, M.; Chekired, M.; Harichane, Z.; Karray, M. Stiffness– and Damping–Strain Curves of Sensitive Champlain Clays through Experimental and Analytical Approaches. Can. Geotech. J. 2019, 56, 364–377. [Google Scholar] [CrossRef] [Green Version]
- Panayides, S.; Rouainia, M.; Wood, D.M. Influence of Degradation of Structure on the Behaviour of a Full-Scale Embankment. Can. Geotech. J. 2012, 49, 344–356. [Google Scholar] [CrossRef]
- Leroueil, S.; Vaughan, P.R. The General and Congruent Effects of Structure in Natural Soils and Weak Rocks. Geotechnique 1990, 40, 467–488. [Google Scholar] [CrossRef]
- Tavenas, F.A.; Chapeau, C.; la Rochelle, P.; Roy, M. Immediate settlements of three test embankments on Champlain clay. Can. Geotech. J. 1974, 11, 109–141. [Google Scholar] [CrossRef]
- Cabangon, L.T.; Elia, G.; Rouainia, M. Modelling the Transverse Behaviour of Circular Tunnels in Structured Clayey Soils during Earthquakes. Acta Geotech. 2022, 14, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Falcone, G.; Boldini, D.; Amorosi, A. Site Response Analysis of an Urban Area: A Multi-Dimensional and Non-Linear Approach. Soil Dyn. Earthq. Eng. 2018, 109, 33–45. [Google Scholar] [CrossRef]
- Régnier, J.; Bonilla, L.; Bard, P.; Bertrand, E.; Hollender, F.; Kawase, H.; Sicilia, D.; Arduino, P.; Amorosi, A.; Asimaki, D.; et al. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN): Verification Phase Based on Canonical Cases. Bull. Seismol. Soc. Am. 2016, 106, 2112–2135. [Google Scholar] [CrossRef]
- Clough, R.W.; Penzien, J. Dynamics of Structures; Computers & Structures, Inc.: Berkley, CA, USA, 1995. [Google Scholar]
- Vucetic, M.; Dobry, R. Effect of Soil Plasticity on Cyclic Response. J. Geotech. Eng. 1991, 117, 89–107. [Google Scholar] [CrossRef]
- Viggiani, G.; Atkinson, J.H. Stiffness of Fine-Grained Soil at Very Small Strains. Géotechnique 1995, 45, 249–265. [Google Scholar] [CrossRef]
- Darendeli, M.B. Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA, 2001. [Google Scholar]
- Régnier, J.; Bonilla, L.; Bard, P.; Bertrand, E.; Hollender, F.; Kawase, H.; Sicilia, D.; Arduino, P.; Amorosi, A.; Asimaki, D.; et al. PRENOLIN: International Benchmark on 1D Nonlinear Site-Response Analysis—Validation Phase Exercise. Bull. Seismol. Soc. Am. 2018, 108, 876–900. [Google Scholar] [CrossRef] [Green Version]
- Di Lernia, A.; Amorosi, A.; Boldini, D. A Multi-Directional Numerical Approach for the Seismic Ground Response and Dynamic Soil-Structure Interaction Analyses. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, Rome, Italy, 17–20 June 2019; CRC Press: Boca Raton, FL, USA, 2019; pp. 2145–2152. [Google Scholar]
- Callisto, L.; Rampello, S.; Viggiani, G.M.B. Soil–Structure Interaction for the Seismic Design of the Messina Strait Bridge. Soil Dyn. Earthq. Eng. 2013, 52, 103–115. [Google Scholar] [CrossRef] [Green Version]
- Mejia, L.H.; Dawson, E.M. Earthquake Deconvolution for FLAC. In Proceedings of the 4th International FLAC Symposium on Numerical Modeling in Geomechanics, Madrid, Spain, 29–31 May 2006; Itasca Consulting Group: Minneapolis, MN, USA, 2006. [Google Scholar]
- Falcone, G.; Naso, G.; Mori, F.; Mendicelli, A.; Acunzo, G.; Peronace, E.; Moscatelli, M. Effect of Base Conditions in One-Dimensional Numerical Simulation of Seismic Site Response: A Technical Note for Best Practice. GeoHazards 2021, 2, 430–441. [Google Scholar] [CrossRef]
- Kumar, N.; Narayan, J.P. Quantification of Site-City Interaction Effects on the Response of Structure under Double Resonance Condition. Geophys. J. Int. 2018, 212, 422–441. [Google Scholar] [CrossRef]
- Kham, M.; Semblat, J.F.; Bard, P.Y.; Dangla, P. Seismic Site–City Interaction: Main Governing Phenomena through Simplified Numerical Models. Bull. Seismol. Soc. Am. 2006, 96, 1934–1951. [Google Scholar] [CrossRef]
- Kramer, S. Geotechnical Earthquake Engineering; Prentice Hall: Upper Saddle River, NJ, USA, 1996; ISBN 9780133749434. [Google Scholar]
- Abrahamson, N.A. Non-Stationary Spectral Matching. Seismol. Res. Lett. 1992, 63, 30. [Google Scholar]
- Ambraseys, N.; Smit, P.; Sigbjornsson, R.; Suhadolc, P.; Margaris, B. Internet-Site for European Strong-Motion Data. Boll. Di Geofis. Teor. Ed Appl. 2004, 45, 113–129. [Google Scholar]
- Iervolino, I.; Galasso, C.; Cosenza, E. REXEL: Computer Aided Record Selection for Code-Based Seismic Structural Analysis. Bull. Earthq. Eng. 2009, 8, 339–362. [Google Scholar] [CrossRef]
- Bommer, J.J.; Acevedo, A.B. The Use of Real Earthquake Accelerograms as Input to Dynamic Analysis. J. Earthq. Eng. 2004, 8, 43. [Google Scholar] [CrossRef]
- SeismoMatch a Computer Program for Spectrum Matching of Earthquake Records. 2016. Available online: http://www.seismosoft.com (accessed on 25 April 2018).
- Rey, J.; Faccioli, E.; Bommer, J.J. Derivation of Design Soil Coefficients (S) and Response Spectral Shapes for Eurocode 8 Using the European Strong-Motion Database. J Seism. 2002, 6, 547–555. [Google Scholar] [CrossRef]
- Falcone, G.; Boldini, D.; Martelli, L.; Amorosi, A. Quantifying Local Seismic Amplification from Regional Charts and Site Specific Numerical Analyses: A Case Study. Bull. Earthq. Eng. 2020, 18, 77–107. [Google Scholar] [CrossRef]
- Falcone, G.; Mendicelli, A.; Mori, F.; Fabozzi, S.; Moscatelli, M.; Occhipinti, G.; Peronace, E. A Simplified Analysis of the Total Seismic Hazard in Italy. Eng. Geol. 2020, 267, 105511. [Google Scholar] [CrossRef]
Parameter/Symbol | Physical Contribution/Meaning | Avezzano | Champlain |
---|---|---|---|
M | Critical state stress ratio for triaxial compression | 1.42 | 1.07 |
λ * | Slope of normal compression line in ln(v)-ln(p) compression plane | 0.11 | 0.215 |
κ * | Slope of swelling line in ln(v)-ln(p) compression plane | 0.016 | 0.005 |
R | Ratio of size of bubble and reference surface | 0.4 | 0.11 |
B | Stiffness interpolation parameter | 15.0 | 1.0 |
ψ | Stiffness interpolation exponent | 1.45 | 1.6 |
η0 | Anisotropy of initial structure | 0 | 0.3 |
r0 | Initial degree of structure | 5.2 | 2.1 |
A* | Parameter controlling relative proportion of distorsional and volumetric destructuration | 0.2 | 0.75 |
k | Parameter controlling rate of destructuration with damage strain | 1.5 | 5.7 |
ν | Poisson’s ratio | 0.25 | 0.25 |
Natural Period [s] | T1 | T2 | T1 | T2 | T1 | T2 |
---|---|---|---|---|---|---|
Hdeposit | 50 m | 50 m | 30 m | 30 m | 15 m | 15 m |
Champlain clay | 0.83 | 0.28 | 0.68 | 0.23 | 0.43 | 0.14 |
Avezzano clay | 0.56 | 0.19 | 0.44 | 0.15 | 0.24 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzel, Y.; Elia, G.; Rouainia, M.; Falcone, G. The Influence of Input Motion Scaling Strategies on Nonlinear Ground Response Analyses of Soft Soil Deposits. Geosciences 2023, 13, 17. https://doi.org/10.3390/geosciences13010017
Guzel Y, Elia G, Rouainia M, Falcone G. The Influence of Input Motion Scaling Strategies on Nonlinear Ground Response Analyses of Soft Soil Deposits. Geosciences. 2023; 13(1):17. https://doi.org/10.3390/geosciences13010017
Chicago/Turabian StyleGuzel, Yusuf, Gaetano Elia, Mohamed Rouainia, and Gaetano Falcone. 2023. "The Influence of Input Motion Scaling Strategies on Nonlinear Ground Response Analyses of Soft Soil Deposits" Geosciences 13, no. 1: 17. https://doi.org/10.3390/geosciences13010017
APA StyleGuzel, Y., Elia, G., Rouainia, M., & Falcone, G. (2023). The Influence of Input Motion Scaling Strategies on Nonlinear Ground Response Analyses of Soft Soil Deposits. Geosciences, 13(1), 17. https://doi.org/10.3390/geosciences13010017