Trace Element Patterns in Heterogeneous Land–Sea Sediments: A Comprehensive Study of the Ulla–Arousa System (SW Europe)
Abstract
:1. Introduction
2. Survey Area
3. Materials and Methods
4. Results and Discussion
4.1. Sediment Contents
4.2. Exploratory Estimation of Background
4.3. Background Functions and Enrichment Factors
4.4. Environmental Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martin, J.M.; Meybeck, M. Elemental Mass-Balance of Material Carried by Major World Rivers. Mar. Chem. 1979, 7, 173–206. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace Elements in River Waters. Treatise Geochem. 2003, 5, 225–272. [Google Scholar] [CrossRef]
- Meybeck, M.; Vörösmarty, C. Fluvial filtering of land to ocean fluxes: From natural Holocene variations to Anthropocene. Comptes Rendus Geosci. 2005, 337, 107–123. [Google Scholar] [CrossRef]
- Meybeck, M.; Friedrich, G.; Thomas, R.; Chapman, D. Rivers. Water Quality Assessments. In A Guide to Use of Biota, Sediments and Water in Environmental Monitoring, 2nd ed.; Chapman, D., Ed.; UNESCO: Paris, France; WHO: Geneva, Switzerland; UNEP: Nairobi, Kenya, 1996; pp. 239–316. ISBN 0419215905(HB)0419216006(PB). [Google Scholar]
- Clark, R. Organotin in the surface microlayer and subsurface waters of south west England. In Marine Pollution, 5th ed.; Oxford University Press: Oxford, UK, 2001; Volume 18, pp. 238–246. ISBN 0-19-879292-1. [Google Scholar]
- Birch, G.F.; Olmos, M.A. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES J. Mar. Sci. 2008, 65, 1407–1413. [Google Scholar] [CrossRef]
- Callender, E. Heavy metals in the environment-historical trends. Treatise Geochem. 2003, 9, 68–69. [Google Scholar] [CrossRef]
- Navrátil, T.; Minařík, L. Trace elements and contaminants. Earth system: History and natural variability. In Encyclopedia of Life Support Systems; EOLSS: Abu Dhabi, United Arab Emirates, 2005; Volume 4, pp. 250–279. ISBN 978-1-84826-107-5. [Google Scholar]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Walling, D.E.; Fang, D. Recent trends in the suspended sediment loads of the world’s rivers. Glob. Planet. Chang. 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Cearreta, A.; Irabien, M.J.; Leorri, E.; Yusta, I.; Croudace, I.W.; Cundy, A.B. Recent anthropogenic impacts on the Bilbao Estuary, northern Spain: Geochemical and microfaunal evidence. Estuar. Coast. Shelf Sci. 2000, 50, 571–592. [Google Scholar] [CrossRef]
- Olías, M.; Cánovas, C.R.; Nieto, J.M.; Sarmiento, A.M. Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Appl. Geochem. 2006, 21, 1733–1749. [Google Scholar] [CrossRef]
- Álvarez-Vázquez, M.A.; Prego, R.; Ospina-Alvarez, N.; Caetano, M.; Bernárdez, P.; Doval, M.; Filgueiras, A.V.; Vale, C. Anthropogenic changes in the fluxes to estuaries: Wastewater discharges compared with river loads in small rias. Estuar. Coast. Shelf Sci. 2016, 179, 112–123. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Y.P. Changes in material fluxes from the Changjiang River and their implications on the adjoining continental shelf ecosystem. Cont. Shelf Res. 2008, 28, 1490–1500. [Google Scholar] [CrossRef]
- Liquete, C.; Lucchi, R.G.; Garcia-Orellana, J.; Canals, M.; Masque, P.; Pasqual, C.; Lavoie, C. Modern sedimentation patterns and human impacts on the Barcelona continental shelf (NE Spain). Geol. Acta 2010, 8, 169–187. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, S. Heavy metal enrichments in the Changjiang (Yangtze River) catchment and on the inner shelf of the East China Sea over the last 150 years. Sci. Total Environ. 2016, 543, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Prego, R.; Cobelo-García, A. Twentieth century overview of heavy metals in the Galician Rias (NW Iberian Peninsula). Environ. Pollut. 2003, 121, 425–452. [Google Scholar] [CrossRef]
- Prego, R.; Belzunce, M.; Cobelo, A.; Helios-Rybicka, E. Particulate metal in the Ulla River estuary: State and sources of contamination (Arosa Ria, NW Iberian Peninsula). Cienc. Mar. 2008, 34, 381–388. [Google Scholar] [CrossRef]
- Barciela-Alonso, M.C.; Pazos-Capeáns, P.; Regueira-Miguens, M.E.; Bermejo-Barrera, A.; Bermejo-Barrera, P. Study of cadmium, lead and tin distribution in surface marine sediment samples from Ria de Arousa (NW of Spain). Anal. Chim. Acta 2004, 524, 115–120. [Google Scholar] [CrossRef]
- Otero, X.L.; Vidal-Torrado, P.; Calvo De Anta, R.M.; Macías, F. Trace elements in biodeposits and sediments from mussel culture in the Ría de Arousa (Galicia, NW Spain). Environ. Pollut. 2005, 136, 119–134. [Google Scholar] [CrossRef]
- Bryan, G.W.; Langston, W.J. Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: A review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef]
- Millward, G.E.; Glegg, G.A. Fluxes and retention of trace metals in the Humber Estuary. Estuar. Coast. Shelf Sci. 1997, 44, 97–105. [Google Scholar] [CrossRef]
- Schäfer, J.; Coynel, A.; Blanc, G. Impact of metallurgy tailings in a major European fluvial-estuarine system: Trajectories and resilience over seven decades. Sci. Total Environ. 2022, 805, 150–195. [Google Scholar] [CrossRef] [PubMed]
- Río, F.; Rodriguez, F. Os Ríos Galegos, Morfoloxía e Réxime; Consello da Cultura Galega: Coruña, Spain, 1992; ISBN 978-84-87172-76-2. [Google Scholar]
- Instituto de Estudos do Territorio. Litoloxía de Galicia 1:50.000. Consellería de Medio Ambiente, Terriotrio e Infraestruturas—Xunta de Galicia. Available online: http://mapas.xunta.gal/visores/basico/ (accessed on 20 June 2023).
- Fuertes-Blanco, J. Mineralizaciones de Sulfuros Masivos en la Zona de Galicia Media Tras-os-Montes. Master’s Thesis, Universidad de Oviedo, Oviedo, Spain, 2019; p. 57. Available online: http://hdl.handle.net/10651/59416 (accessed on 10 June 2023).
- Hydrographic Demarcation of Galicia-Coast. Preliminary Report of Galician Waters for the Basin of the Ulla Marl Project Based on the Data Provided by the Hydrological Plan. 2011. Available online: https://augasdegalicia.xunta.gal/demarcacion-hidrografica (accessed on 15 January 2023).
- Galician Institute of Statistics. Population. Territory and Environment. Available online: https://www.ige.gal/web/index.jsp?idioma=es (accessed on 22 September 2023).
- Méndez Martínez, G.; Ovejero Campos, A.; Gómez Vilar, E.; Lastra Mier, R.E.; Pérez-Arlucea, M. Changes induced by mussel raft aquaculture in benthic environment of the Rías Baixas (Galicia, Spain). J. Coast. Res. 2011, 64, 786–789. Available online: https://www.jstor.org/stable/26482279 (accessed on 22 September 2023).
- Birch, G.F. Determination of sediment metal background concentrations and enrichment in marine environments—A critical review. Sci. Total Environ. 2017, 580, 813–831. [Google Scholar] [CrossRef]
- Dung, T.T.T.; Cappuyns, V.; Swennen, R.; Phung, N.K. From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Rev. Environ. Sci. Biotechnol. 2013, 12, 335–353. [Google Scholar] [CrossRef]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background-can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Matys-Grygar, T.; Popelka, J. Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. J. Geochem. Explor. 2016, 170, 39–57. [Google Scholar] [CrossRef]
- Álvarez-Vázquez, M.Á.; Farinango, G.; Prego, R. Uranium as reference element to estimate the background of “Anthropocene” sensitive trace elements in sediments of the land-ocean continuum (Ulla-Arousa, NW Iberian Atlantic Margin). Cont. Shelf Res. 2023, 261, 105021. [Google Scholar] [CrossRef]
- Birch, G.F. An assessment of aluminium and iron in normalisation and enrichment procedures for environmental assessment of marine sediment. Sci. Total Environ. 2020, 727, 138123. [Google Scholar] [CrossRef] [PubMed]
- Macías Vázquez, F.; Calvo de Anta, R. Generic Reference Levels of Heavy Metals and Other Trace Elements in Galician Soils; Ministry of Environment and Sustainable Development of the Xunta de Galicia: Santiago de Compostela, Spain, 2009. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. 4.1—Composition of the Continental Crust. In: Earth Systems and Environmental Sciences. In Treatise on Geochemistry, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2014; Volume 4, pp. 1–51. [Google Scholar] [CrossRef]
- Locutura, J.; Bel-Lan, A.; García Cortés, A.; Martínez, S. Atlas Geoquímico de España; Instituto Geológico y Minero de España: Madrid, Spain, 2012; ISBN 978-84-7840-875-7. [Google Scholar]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, H.; Gao, B.; Xu, D. Improved enrichment factor model for correcting and predicting the evaluation of heavy metals in sediments. Sci. Total Environ. 2021, 755, 142437. [Google Scholar] [CrossRef]
- Reimann, C.; Fabian, K.; Birke, M.; Filzmoser, P.; Demetriades, A.; Négrel, P.; Oorts, K.; Matschullat, J.; de Caritat, P.M. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Appl. Geochem. 2018, 88, 302–318. [Google Scholar] [CrossRef]
- Bábek, O.; Grygar, T.M.; Faměra, M.; Hron, K.; Nováková, T.; Sedláček, J. Geochemical background in polluted river sediments: How to separate the effects of sediment provenance and grain size with statistical rigour? Catena 2015, 135, 240–253. [Google Scholar] [CrossRef]
- García-Ordiales, E.; Flor-Blanco, G.; Roqueñí, N.; Covelli, S.; Cienfuegos, P.; Álvarez, R.; Fontolan, G.; Loredo, J. Anthropocene footprint in the Nalón estuarine sediments (northern Spain). Mar. Geol. 2020, 424, 106167. [Google Scholar] [CrossRef]
- Álvarez-Vázquez, M.Á.; González-Prieto, S.J.; Prego, R. Possible impact of environmental policies in the recovery of a Ramsar wetland from trace metal contamination. Sci. Total Environ. 2018, 637, 803–812. [Google Scholar] [CrossRef]
- Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O. Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water 2020, 12, 2746. [Google Scholar] [CrossRef]
- Lakherwal, D. Adsorption of Heavy Metals: A Review. Int. J. Environ. Res. Dev. 2014, 4, 41–48. [Google Scholar]
- Prego, R.; Ferro, P.; Trujillo, C. Lead and Zinc contamination of surface sediments in the main harbours of the Galician Rias. J. Iber. Geol. 2008, 34, 243–252. [Google Scholar]
- García, A.; Bernárdez, P.; Prego, R. Copper in Galician ria sediments: Natural levels and contamination. Sci. Mar. 2013, 77S1, 91–99. [Google Scholar] [CrossRef]
Al | As | Cr | Cu | Fe | |
---|---|---|---|---|---|
PACS-2 | |||||
Measured | 64.0 ± 1.7 | 33.0 ± 2.3 | 86.5 ± 3.4 | 307 ± 6 | 41.9 ± 1.1 |
Certified | 66.2 ± 3.2 | 26.2 ± 1.5 | 90.7 ± 4.6 | 310 ± 12 | 40.9 ± 0.6 |
MESS-4 | |||||
Measured | 78.1 ± 6.0 | 24.2 ± 1.0 | 97.3 ± 5.0 | 32.9 ± 2.3 | 39.1 ± 2.4 |
Certified | 79.2 ± 2.0 | 21.7 ± 2.8 | 94.3 ± 1.8 | 32.9 ± 1.8 | 37.9 ± 1.6 |
Ni | Pb | Sb | U | Zn | |
PACS-2 | |||||
Measured | 44.8 ± 7.4 | 191 ± 3 | 13.2 ± 1.1 | 2.55 ± 0.04 | 356 ± 6 |
Certified | 39.5 ± 2.3 | 183 ± 8 | 11.3 ± 2.6 | ≈3 | 364 ± 23 |
MESS-4 | |||||
Measured | 43.1 ± 2.7 | 23.5 ± 0.8 | 1.08 ± 0.02 | 3.7 ± 0.2 | 146 ± 20 |
Certified | 42.8 ± 1.6 | 21.5 ± 1.2 | 1.07 ± 0.16 | 3.4 ± 0.4 | 147 ± 6 |
Average | As | Cr | Cu | Fe | Ni | Pb | Sb | Zn |
---|---|---|---|---|---|---|---|---|
UCC 1 | 4.8 | 92 | 28 | 39 | 47 | 17 | 0.4 | 67 |
FPS 2 | 19 | 50 | 27 | 24 | 27 | 37 | 1.8 | 91 |
GSS 3 | 15 | 23 | 15 | --- | 29 | 21 | 3.3 | 48 |
Mean (this study) | 15 | 88 | 39 | 30 | 41 | 33 | 0.7 | 101 |
SD | 6 | 43 | 20 | 12 | 20 | 14 | 0.4 | 37 |
Data no. | 69 | 77 | 68 | 77 | 77 | 77 | 76 | 74 |
Stnd. Skewness | 1.05 | 2.16 | 2.10 | 1.9 | 2.57 | −0.56 | 0.82 | 1.01 |
Stnd. kurtosis | −0.71 | −0.96 | −0.36 | 0.0 | 0.62 | −1.39 | −0.20 | −0.64 |
Outliers | D1, D2, D3, L6, E12 | R42 | B2, B3, B4, B7, U4, U5, E12, E13 | L4 | N2 | R22 | D2, D3 | B3, E13, R38 |
Al | Fe | U | |
---|---|---|---|
As | [As]BG = 0.30·[Al] − 4.44 (n = 53; R = 0.869) | [As]BG = 0.39·[Fe] + 6.01 (n = 39; R = 0.920) | [As]BG = 2.61·[U] + 3.44 (n = 43; R = 0.953) |
Cr | [Cr]BG = 2.22·[Al] − 60.71 (n = 70; R = 0.813) | [Cr]BG = 3.81·[Fe] − 15.31 (n = 47; R = 0.965) | [Cr]BG = 16.52·[U] + 14.97 (n = 72; R = 0.777) |
Cu | [Cu]BG = 1.03·[Al] − 31.06 (n = 50; R = 0.923) | [Cu]BG = 1.54·[Fe] − 2.38 (n = 61; R = 0.789) | [Cu]BG = 5.58·[U] + 9.15 (n = 58; R = 0.662) |
Ni | [Ni]BG = 0.57·[Al] − 3.22 (n = 32; R = 0.986) | [Ni]BG = 1.46·[Fe] − 5.84 (n = 44; R = 0.974) | [Ni]BG = 6.34·[U] + 2.17 (n = 55; R = 0.827) |
Pb | [Pb]BG = 0.57·[Al] − 4.04 (n = 60; R = 0.836) | [Pb]BG = −012·[Fe] + 36.68 (n = 73; R = −0.268) | [Pb]BG = 6.03·[U] + 5.17 (n = 56; R = 0.937) |
Sb | [Sb]BG = 0.06·[Al] + 0.26 (n = 71; R = 0.349) | [Sb]BG = 0.03·[Fe] − 0.09 (n = 55; R = 0.882) | [Sb]BG = 0.11·[U] + 0.18 (n = 67; R = 0.672) |
Zn | [Zn]BG = 1.61·[Al] − 13.86 (n = 56; R = 0.909) | [Zn]BG = 3.21·[Fe] + 15.62 (n = 51; R = 0.967) | [Zn]BG = 13.71·[U] + 32.03 (n = 64; R = 0.826) |
Fe | [Fe]BG = 0.44·[Al] − 3.96 (n = 61; R = 0.826) | [Fe]BG = 4.13·[U] + 5.23 (n = 61; R = 0.827) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farinango, G.; Álvarez-Vázquez, M.Á.; Prego, R. Trace Element Patterns in Heterogeneous Land–Sea Sediments: A Comprehensive Study of the Ulla–Arousa System (SW Europe). Geosciences 2023, 13, 292. https://doi.org/10.3390/geosciences13100292
Farinango G, Álvarez-Vázquez MÁ, Prego R. Trace Element Patterns in Heterogeneous Land–Sea Sediments: A Comprehensive Study of the Ulla–Arousa System (SW Europe). Geosciences. 2023; 13(10):292. https://doi.org/10.3390/geosciences13100292
Chicago/Turabian StyleFarinango, Gonzalo, Miguel Ángel Álvarez-Vázquez, and Ricardo Prego. 2023. "Trace Element Patterns in Heterogeneous Land–Sea Sediments: A Comprehensive Study of the Ulla–Arousa System (SW Europe)" Geosciences 13, no. 10: 292. https://doi.org/10.3390/geosciences13100292
APA StyleFarinango, G., Álvarez-Vázquez, M. Á., & Prego, R. (2023). Trace Element Patterns in Heterogeneous Land–Sea Sediments: A Comprehensive Study of the Ulla–Arousa System (SW Europe). Geosciences, 13(10), 292. https://doi.org/10.3390/geosciences13100292