Mass-Transfer and Fluid Flow along Extensional Detachment Faults in Hyperextended Rift Systems: The Examples of Tasna in the Alps, Mauléon in the Pyrenees, and Hobby High Offshore Iberia
Abstract
:1. Introduction
2. Examples of Detachment Faults and Related Fluid Flow in Hyperextended Rift Systems
2.1. The Tasna OCT in the Alps
2.2. The Hobby High Offshore Western Iberia
2.3. The Mauléon Basin in the Western Pyrenees
3. Field, Petrological and Structural Observations
3.1. Crustal Basement Rocks in the Hyperextended Domains
3.2. Fault Rocks in the Continental Basement
3.3. The Serpentinized Mantle Rocks
3.4. Fault Rocks in the Mantle
3.5. Sedimentary Rocks from the Hyperextended Domain
4. Geochemical Data and Mass Balance Calculation
4.1. Geochemical Data
4.2. Gain and Losses of Element Calculations
5. Analysis of Geochemical Data: Results
5.1. Mantle Rocks
5.2. Continental Crustal Fault Rocks
5.3. Sedimentary Rocks from Supra-Detachment Basins
6. Discussion
6.1. Evidence for Fluid Flow during Hyperextension and Mantle Exhumation
6.2. Composition of Mantle-Reacted Fluids
6.3. Fluid Pathways Recorded by Fault Rocks from Rift-Related Detachment Systems
6.4. Signature of Mantle-Reacted Fluids Recorded in Syn-Hyperextension Sedimentary Rocks
6.5. Results of Mass Balance, Source of Elements and Related Processes
6.6. Model for Fluid Flow in Hyperextended Domains Linked to Mantle Exhumation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reynolds, S.J.; Lister, G.S. Structural aspects of fluid-rock interactions in detachment zones. Geology 1987, 15, 362–366. [Google Scholar] [CrossRef]
- Hayman, N.W. Shallow crustal fault rocks from the Black Mountain detachments, Death Valley, CA. J. Struct. Geol. 2006, 28, 1767–1784. [Google Scholar] [CrossRef]
- McCaig, A.M.; Cliff, R.A.; Escartin, J.; Fallick, A.E.; MacLeod, C.J. Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 2007, 35, 935. [Google Scholar] [CrossRef]
- Pinto, V.H.G.; Manatschal, G.; Karpoff, A.M.; Viana, A. Tracing mantle-reacted fluids in magma-poor rifted margins: The example of Alpine Tethyan rifted margins. Geochem. Geophys. Geosyst. 2015, 16, 3271–3308. [Google Scholar] [CrossRef]
- Corre, B.; Boulvais, P.; Boiron, M.C.; Lagabrielle, Y.; Marasi, L.; Clerc, C. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France. Mineral. Petrol. 2018, 112, 647–670. [Google Scholar] [CrossRef]
- Cruset, D.; Vergés, J.; Muñoz-López, D.; Moragas, M.; Cantarero, I.; Travé, A. Fluid evolution from extension to compression in the Pyrenean Fold Belt and Basque-Cantabrian Basin: A review. Earth-Sci. Rev. 2023, 243, 104494. [Google Scholar] [CrossRef]
- Bach, W.; Jöns, N.; Klein, F. Metasomatism within the ocean crust. In Metasomatism and the Chemical Transformation of Rock: The Role of Fluids in Terrestrial and Extraterrestrial Processes; Springer: Berlin/Heidelberg, Germany, 2013; pp. 253–288. [Google Scholar] [CrossRef]
- Boschi, C.; Früh-Green, G.L.; Delacour, A.; Karson, J.A.; Kelley, D.S. Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30 °N). Geochem. Geophys. Geosyst. 2006, 7, 1–39. [Google Scholar] [CrossRef]
- Schwarzenbach, E.M.; Früh-Green, G.L.; Bernasconi, S.M.; Alt, J.C.; Plas, A. Serpentinization and carbon sequestration: A study of two ancient peridotite-hosted hydrothermal systems. Chem. Geol. 2013, 351, 115–133. [Google Scholar] [CrossRef]
- Castelain, T.; McCaig, A.M.; Cliff, R.A. Fluid evolution in an Oceanic Core Complex: A fluid inclusion study from IODP hole U1309 D-Atlantis Massif, 30 °N, Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 2014, 15, 1193–1214. [Google Scholar] [CrossRef]
- Seyfried, W.E.; Pester, N.J.; Tutolo, B.M.; Ding, K. The Lost City hydrothermal system: Constraints imposed by vent fluid chemistry and reaction path models on subseafloor heat and mass transfer processes. Geochim. Cosmochim. Acta 2015, 163, 59–79. [Google Scholar] [CrossRef]
- Humphris, S.E.; Klein, F. Progress in Deciphering the Controls on the Geochemistry of Fluids in Seafloor Hydrothermal Systems. Annu. Rev. Mar. Sci. 2018, 10, 315–343. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Shanks, W.C. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev. Mineral. Geochem. 2001, 43, 469–525. [Google Scholar] [CrossRef]
- Fouquet, Y.; Cambon, P.; Etoubleau, J.; Charlou, J.L.; OndréAs, H.; Barriga, F.J.; Cherkashov, G.; Semkova, T.; Poroshina, I.; Bohn, M.; et al. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. In Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges; AGU: Washington, DC, USA, 2010; Volume 188, pp. 321–367. [Google Scholar]
- Coltat, R.; Boulvais, P.; Branquet, Y.; Collot, J.; Epin, M.E.; Manatschal, G. Syntectonic carbonation during synmagmatic mantle exhumation at an ocean-continent transition. Geology 2019, 47, 183–186. [Google Scholar] [CrossRef]
- Dias, Á.S.; Barriga, F.J.A.S. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′ N; 33°26′ W) at MAR. Mar. Geol. 2006, 225, 157–175. [Google Scholar] [CrossRef]
- Dias, Á.S.; Früh-Green, G.L.; Bernasconi, S.M.; Barriga, F.J.A.S. Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Mar. Geol. 2011, 279, 128–140. [Google Scholar] [CrossRef]
- Incerpi, N.; Martire, L.; Manatschal, G.; Bernasconi, S.M.; Gerdes, A.; Czuppon, G.; Palcsu, L.; Karner, G.D.; Johnson, C.A.; Figueredo, P.H. Hydrothermal fluid flow associated to the extensional evolution of the Adriatic rifted margin: Insights from the pre- to post-rift sedimentary sequence (SE Switzerland, N ITALY). Basin Res. 2020, 32, 91–115. [Google Scholar] [CrossRef]
- Manatschal, G. Fluid-and reaction-assisted low-angle normal faulting: Evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). J. Struct. Geol. 1999, 21, 777–793. [Google Scholar] [CrossRef]
- Nteme Mukonzo, J.; Boiron, M.-C.; Lagabrielle, Y.; Cathelineau, M.; Quesnel, B. Fluid–rock interactions along detachment faults during continental rifting and mantle exhumation: The case of the Urdach lherzolite body (North Pyrenees). J. Geol. Soc. 2021, 178, jgs2020-116. [Google Scholar] [CrossRef]
- Boillot, G.; Girardeau, J.; Kornprobst, J. 41. Rifting of the Galicia Margin: Crustal thinning and emplacement of mantle rocks on the seafloor. In Proceedings of the Ocean Drilling Program, Scientific Results; Boillot, G., Winterer, E.L., Meyer, A.W., Applegate, M.B., Baltuck, M., Bergen, J.A., Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., et al., Eds.; Ocean Drilling Program: College Station, TX, USA, 1988; Volume 103, pp. 741–756. [Google Scholar] [CrossRef]
- Minshull, T.A.; Dean, S.M.; Whitmarsh, R.B. The peridotite ridge province in the Southern Iberia Abyssal Plain: Seismic constraints revisited. J. Geophys. Res. Solid Earth 2014, 119, 1580–1598. [Google Scholar] [CrossRef]
- Dean, S.M.; Minshull, T.A.; Whitmarsh, R.B.; Louden, K.E. Deep structure of the ocean-continent transition in the southern Iberia Abyssal Plain from seismic refraction profiles: The IAM-9 transect at 40°20′N. J. Geophys. Res. Solid Earth 2000, 105, 5859–5885. [Google Scholar] [CrossRef]
- Pinto, V.H.G.; Manatschal, G.; Karpoff, A.M.; Ulrich, M.; Viana, A.R. Seawater storage and element transfer associated with mantle serpentinization in magma-poor rifted margins: A quantitative approach. Earth Planet. Sci. Lett. 2017, 459, 227–237. [Google Scholar] [CrossRef]
- Incerpi, N.; Manatschal, G.; Martire, L.; Bernasconi, S.M.; Gerdes, A.; Bertok, C. Characteristics and timing of hydrothermal fluid circulation in the fossil Pyrenean hyperextended rift system: New constraints from the Chaînons Béarnais (W Pyrenees). Int. J. Earth Sci. 2020, 109, 1071–1093. [Google Scholar] [CrossRef]
- Tucholke, B.; Sibuet, J.C. Problematic plate reconstruction. Nature Geosci. 2012, 5, 676–677. [Google Scholar] [CrossRef]
- Manatschal, G.; Müntener, O. A type sequence across an ancient magma-poor ocean–continent transition: The example of the western Alpine Tethys ophiolites. Tectonophysics 2009, 473, 4–19. [Google Scholar] [CrossRef]
- Sutra, E.; Manatschal, G.; Mohn, G.; Unternehr, P. Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins. Geochem. Geophys. Geosyst. 2013, 14, 2575–2597. [Google Scholar] [CrossRef]
- Nirrengarten, M.; Manatschal, G.; Yuan, X.P.; Kusznir, N.J.; Maillot, B. Application of the critical Coulomb wedge theory to hyper-extended, magma-poor rifted margins. Earth Planet. Sci. Lett. 2016, 442, 121–132. [Google Scholar] [CrossRef]
- Bronner, A.; Sauter, D.; Manatschal, G.; Péron-Pinvidic, G.; Munschy, M. Magmatic breakup as an explanation for magnetic anomalies at magma-poor rifted margins. Nat. Geosci. 2011, 4, 549–553. [Google Scholar] [CrossRef]
- Manatschal, G.; Sauter, D.; Karpoff, A.M.; Masini, E.; Mohn, G.; Lagabrielle, Y. The Chenaillet Ophiolite in the French/Italian Alps: An ancient analogue for an Oceanic Core Complex? Lithos 2011, 124, 169–184. [Google Scholar] [CrossRef]
- Beltrando, M.; Manatschal, G.; Mohn, G.; Dal Piaz, G.V.; Vitale Brovarone, A.; Masini, E. Recognizing remnants of magma-poor rifted margins in high-pressure orogenic belts: The Alpine case study. Earth-Sci. Rev. 2014, 131, 88–115. [Google Scholar] [CrossRef]
- Ribes, C.; Petri, B.; Ghienne, J.F.; Manatschal, G.; Galster, F.; Karner, G.D.; Figueredo, P.H.; Johnson, C.A.; Karpoff, A.M. Tectono-sedimentary evolution of a fossil ocean-continent transition: Tasna nappe, central Alps (SE Switzerland). Bull. Geol. Soc. Am. 2020, 132, 1427–1446. [Google Scholar] [CrossRef]
- Picazo, S.; Manatschal, G.; Cannat, M.; Andréani, M. Deformation associated to exhumation of serpentinized mantle rocks in a fossil Ocean Continent Transition: The Totalp unit in SE Switzerland. Lithos 2013, 175, 255–271. [Google Scholar] [CrossRef]
- Masini, E.; Manatschal, G.; Tugend, J.; Mohn, G.; Flament, J.-M. The tectono-sedimentary evolution of a hyperextended rift basin: The example of the Arzacq–Mauléon rift system (Western Pyrenees, SW France). Int. J. Earth Sci. 2014, 103, 1569–1596. [Google Scholar] [CrossRef]
- Saspiturry, N.; Issautier, B.; Razin, P.; Baudin, T.; Asti, R.; Lagabrielle, Y.; Allanic, C.; Serrano, O.; Duretz, T. Review of Iberia–Eurasia Plate-Boundary Basins: Role of Sedimentary Burial and Salt Tectonics during Rifting and Continental Breakup. Basin Research 2021, 33, 1626–1661. [Google Scholar] [CrossRef]
- Hochscheid, F.; Coltat, R.; Ulrich, M.; Munoz, M.; Manatschal, G.; Boulvais, P. The Sr isotope geochemistry of oceanic ultramafic-hosted mineralizations. Ore Geol. Rev. 2022, 144, 104824. [Google Scholar] [CrossRef]
- Florineth, D.; Froitzheim, N. Transition from continental to oceanic basement in the Tasna nappe (Engadine window, Graubünden, Switzerland): Evidence for Early Cretaceous opening of the Valais ocean. Schweiz. Mineral. Petrogr. Mitteilungen 1994, 74, 437–448. [Google Scholar]
- Manatschal, G.; Engström, A.; Desmurs, L.; Schaltegger, U.; Cosca, M.; Müntener, O.; Bernoulli, D. What is the tectono-metamorphic evolution of continental break-up: The example of the Tasna Ocean–Continent Transition. J. Struct. Geol. 2006, 28, 1849–1869. [Google Scholar] [CrossRef]
- Masini, E.; Manatschal, G.; Mohn, G.; Ghienne, J.-F.; Lafont, F. The tectono-sedimentary evolution of a supra-detachment rift basin at a deep-water magma-poor rifted margin: The example of the Samedan Basin preserved in the Err nappe in SE Switzerland. Basin Res. 2011, 23, 652–677. [Google Scholar] [CrossRef]
- Evans, B.W.; Hattori, K.; Baronnet, A. Serpentinite: What, Why, Where? Elements 2013, 9, 99–106. [Google Scholar] [CrossRef]
- Hauser, A.-C.; Müntener, O. New age constraints on the opening of the Piemont-Ligurian Ocean (Tasna-Nauders area, CH-A). In Proceedings of the 9th Swiss Geoscience Meeting, Zurich, Switzerland, 11–13 November 2011. [Google Scholar]
- Li, X.-H.; Faure, M.; Lin, W.; Manatschal, G. New isotopic constraints on age and magma genesis of an embryonic oceanic crust: The Chenaillet Ophiolite in the Western Alps. Lithos 2013, 160, 283–291. [Google Scholar] [CrossRef]
- Sawyer, D.S.; Whitmarsh, R.B.; Klaus, A.; Beslier, M.O.; Collins, E.S.; Comas, M.C.; Cornen, G.; Kaenel, E.; Pinheiro, L.M.; Gervais, E.; et al. Proceedings of the Ocean Drilling Program, Initial Reports, 149; Ocean Drilling Program: College Station, TX, USA, 1994; p. 268. [Google Scholar] [CrossRef]
- Whitmarsh, R.B.; Beslier, M.O.; Wallace, P.J. Proceedings of the Ocean Drilling Program, Initial Reports, 173; Ocean Drilling Program: College Station, TX, USA, 1998. [Google Scholar]
- Manatschal, G.; Froitzheim, N.; Rubenach, M.; Turrin, B.D. The role of detachment faulting in the formation of an ocean-continent transition: Insights from the Iberia Abyssal Plain. Geol. Soc. Lond. Spec. Publ. 2001, 187, 405–428. [Google Scholar] [CrossRef]
- Wilson, R.C.L.; Manatschal, G.; Wise, S. Rifting along non-volcanic passive margins: Stratigraphic and seismic evidence from the Mesozoic successions of the Alps and Western Iberia. Geol. Soc. Lond. Spec. Publ. 2001, 187, 429–452. [Google Scholar] [CrossRef]
- Jagoutz, O.; Müntener, O.; Manatschal, G.; Rubatto, D.; Péron-Pinvidic, G.; Turrin, B.D.; Villa, I.M. The rift-to-drift transition in the North Atlantic: A stuttering start of the MORB machine? Geology 2007, 35, 1087. [Google Scholar] [CrossRef]
- Jammes, S.; Manatschal, G.; Lavier, L.; Masini, E. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: Example of the western Pyrenees. Tectonics 2009, 28, 4. [Google Scholar] [CrossRef]
- Fortane, A.; Duee, G.; Lagabrielle, Y.; Coutelle, A. Lherzolites and the western “Chainons bearnais” (French Pyrenees): Structural and paleogeographical pattern. Tectonophysics 1986, 129, 81–98. [Google Scholar] [CrossRef]
- Lagabrielle, Y.; Bodinier, J.L. Submarine reworking of exhumed subcontinental mantle rocks: Field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 2008, 20, 11–21. [Google Scholar] [CrossRef]
- Lagabrielle, Y.; Labaume, P.; de Saint Blanquat, M. Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): Insights from the geological setting of the lherzolite bodies. Tectonics 2010, 29, TC4012. [Google Scholar] [CrossRef]
- Cadenas, P.; Lescoutre, R.; Manatschal, G.; Fernández-Viejo, G. The role of extensional detachment systems in thinning the crust and exhuming granulites: Analogies between the offshore le Danois High and the onshore Labourd Massif in the Biscay/Pyrenean rifts. BSGF-Earth Sci. Bull. 2021, 192, 57. [Google Scholar] [CrossRef]
- Hart, N.R.; Stockli, D.F.; Lavier, L.L.; Hayman, N.W. Thermal evolution of a hyperextended rift basin, Mauléon Basin, western Pyrenees. Tectonics 2017, 36, 1103–1128. [Google Scholar] [CrossRef]
- Hébert, R.; Beaudoin, G.; Rochon, M.; Gardien, V. Metamorphic evolution and oxygen isotope geochemistry of rift-precursor amphibolites from Hole 1067A ODP Leg 173 off West Iberian Galicia Bank rifted margin. Lithos 2008, 101, 162–176. [Google Scholar] [CrossRef]
- Boissonnas, J.; Destombes, J.; Heddebaut, C.; Le Pochat, G.; Lorsignol, S.; Roger, P.; Ternet, Y. Carte Géologique de France au 1/50,000; Chapter Feuille de Iholdy; BRGM: Orléans, France, 1964. [Google Scholar]
- Moody, J.B. Serpentinization: A review. Lithos 1976, 9, 125–138. [Google Scholar] [CrossRef]
- Früh-Green, G.L.; Weissert, H.; Bernoulli, D. A multiple fluid history recorded in Alpine ophiolites. J. Geol. Soc. Lond. 1990, 147, 959–970. [Google Scholar] [CrossRef]
- Evans, C.A.; Baltuck, M. 15. Low-temperature alteration of peridotite, Hole 637A. In Proceedings of the Ocean Drilling Program, Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1988; Volume 103, pp. 235–239. [Google Scholar]
- Milliken, K.; Morgan, J. Chemical evidence for near-seafloor precipitation of calcite in serpentinites (Site 897) and serpentinite breccias (Site 899). Iberia abyssal plain. In Proceedings of the Ocean Drilling Program, Scientific Results; Whitmarsh, R.B., Sawyer, D.S., Klaus, D.G., Masson, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 149, pp. 553–558. [Google Scholar]
- Skelton, A.D.; Valley, J.W. The relative timing of serpentinisation and mantle exhumation at the ocean–continent transition, Iberia: Constraints from oxygen isotopes. Earth Planet. Sci. Lett. 2000, 178, 327–338. [Google Scholar] [CrossRef]
- Engström, A.; Skelton, A.; Grassineau, N. Isotopic and petrological evidence of fluid-rock interaction at a Tethyan ocean-continent transition in the Alps: Implications for tectonic processes and carbon transfer during early ocean formation. Geofluids 2007, 7, 401–414. [Google Scholar] [CrossRef]
- Clerc, C.; Boulvais, P.; Lagabrielle, Y.; de Saint Blanquat, M. Ophicalcites from the northern Pyrenean belt: A field, petrographic and stable isotope study. Int. J. Earth Sci. 2013, 103, 141–163. [Google Scholar] [CrossRef]
- DeFelipe, I.; Pedreira, D.; Pulgar, J.A.; Iriarte, E.; Mendia, M. Mantle exhumation and metamorphism in the Basque-Cantabrian Basin (N Spain): Stable and clumped isotope analysis in carbonates and comparison with ophicalcites in the North-Pyrenean Zone (Urdach and Lherz). Geochem. Geophys. Geosyst. 2017, 18, 631–652. [Google Scholar] [CrossRef]
- Beard, J.S.; Hopkinson, L. A fossil, serpentinization-related hydrothermal vent, Ocean Drilling Program Leg 173, Site 1068 (Iberia Abyssal Plain): Some aspects of mineral and fluid chemistry. J. Geophys. Res. 2000, 105, 16527. [Google Scholar] [CrossRef]
- Morgan, J.K.; Milliken, K.L. Petrography of calcite veins in serpentinized peridotite basement rocks from the Iberia abyssal plain, Sites 897 and 899: Kinematic and environmental implications. In Proceedings of the Ocean Drilling Program, Scientific Results; Whitmarsh, R.B., Sawyer, D.S., Klaus, A., Masson, D.G., Eds.; Ocean Drilling Program: College Station, TX, USA, 1996; Volume 149, pp. 559–569. [Google Scholar]
- Boillot, G.; Winterer, E.L.; Meyer, A.W. (Eds.) Introduction, objectives, and principal results: Ocean Drilling Program Leg 103, West Galicia Margin. In Proceedings of the Ocean Drilling Program, 103 Initial Reports; Ocean Drilling Program: College Station, TX, USA, 1987. [Google Scholar]
- Govindaraju, K. 1995 working values with confidence limits for twenty-six CRPG, ANRT and IWG-GIT geostandards. Geostand. Newsl. 1995, 19, 1–32. [Google Scholar] [CrossRef]
- Müntener, O.; Manatschal, G.; Desmurs, L.; Pettke, T. Plagioclase Peridotites in Ocean-Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere. J. Petrol. 2010, 51, 255–294. [Google Scholar] [CrossRef]
- Clauser, S.; Renard, M.; Richebois, G. 29. Variations in trace element contents and isotopic compositions of lower cretaceous carbonates from the Galicia Margin (ODP, Leg 103): Reconstruction of the paleochemistry of the early Cretaceous Ocean. In Proceedings of the Ocean Drilling Program, Scientific Results; Ocean Drilling Program: College Station, TX, USA, 1988; Volume 103, pp. 115–117. [Google Scholar]
- Ague, J.J.; Van Haren, J.L.M. Assessing metasomatic mass and volume changes using the bootstrap, with application to deep crustal hydrothermal alteration of marble. Econ. Geol. 1996, 91, 1169–1182. [Google Scholar] [CrossRef]
- MacLean, W.H.; Barrett, T.J. Lithogeochemical techniques using immobile elements. J. Geochem. Explor. 1993, 48, 109–133. [Google Scholar] [CrossRef]
- Manatschal, G.; Marquer, D.; Früh-Green, G.L. Channelized fluid flow and mass transfer along a rift-related detachment fault (Eastern Alps, southeast Switzerland). Geol. Soc. Am. Bull. 2000, 112, 21. [Google Scholar] [CrossRef]
- Hebert, R.; Gueddari, K.; LaFleche, M.R.; Beslier, M.-O.; Gardien, V. Petrology and geochemistry of exhumed peridotites and gabbros at non-volcanic margins: ODP Leg 173 West Iberia ocean-continent transition zone. Geol. Soc. Lond. Spec. Publ. 2001, 187, 161–189. [Google Scholar] [CrossRef]
- Fabriès, J.; Lorand, J.-P.; Bodinier, J.-L. Petrogenetic evolution of orogenic lherzolite massifs in the central and western Pyrenees. Tectonophysics 1998, 292, 145–167. [Google Scholar] [CrossRef]
- Baker, P.A.; Gieskes, J.M.; Elderfield, H. Diagenesis of Carbonates in Deep-Sea Sediments--Evidence From SR/CA Ratios and Interstitial Dissolved SR2+ Data. SEPM J. Sediment. Res. 1982, 52, 71–82. [Google Scholar] [CrossRef]
- Graham, D.W.; Bender, M.L.; Williams, D.F.; Keigwin, L.D. Strontium-calcium ratios in Cenozoic planktonic foraminifera. Geochim. Cosmochim. Acta 1982, 46, 1281–1292. [Google Scholar] [CrossRef]
- Ando, A.; Kawahata, H.; Kakegawa, T. Sr/Ca ratios as indicators of varying modes of pelagic carbonate diagenesis in the ooze, chalk and limestone realms. Sediment. Geol. 2006, 191, 37–53. [Google Scholar] [CrossRef]
- Meyer, A.W.; Davies, T.A. Clay mineralogy of sediments from the Galicia Margin, ODP Leg 103. In Proceedings of the Ocean Drilling Program Scientific Results, 103; Boillot, G., Winterer, E.L., Meyer, A.W., Applegate, M.B., Baltuck, M., Bergen, J.A., Comas, M.C., Davies, T.A., Dunham, K., Evans, C.A., et al., Eds.; Ocean Drilling Program: College Station, TX, USA, 1988; pp. 461–475. [Google Scholar] [CrossRef]
- Haggerty, J.A.; Germann, S.H. Resedimentation and diagenesis, including silicification, of barremian-aptian shallow-water carbonates from the Galicia Margin, Eastern North Atlantic, at ocean drilling program site 641. In Proceedings of the Ocean Drilling Program, Scientific Results 103; Boillot, G., Winterer, E.L., Meyer, A.W., Applegate, J., Eds.; Ocean Drilling Program: College Station, TX, USA, 1988; Volume 103, pp. 513–530. [Google Scholar]
- Perseil, E.A.; Latouche, L. Découverte de microstructures de nodules polymétaliques dans les minéralisations manganésifères métamorphiques de Falotta et de Parsettens (Grisons-Suisse). Miner. Depos. 1989, 24, 111–116. [Google Scholar] [CrossRef]
- Coltat, R.; Boulvais, P.; Riegler, T.; Pelleter, E.; Branquet, Y. Element Distribution in the Root Zone of Ultramafic-Hosted Black Smoker-like Systems: Constraints from an Alpine Analog. Chem. Geol. 2021, 559, 119916. [Google Scholar] [CrossRef]
- McKenzie, J.A.; Isern, A.; Karpoff, A.M.; Swart, P.K. Basal dolomitic sediments, Tyrrhenian sea, ocean drilling program leg 107. In Proceedings of the Ocean Drilling Program, 107 Scientific Results; Kastens, K.A., Mascle, J., Auroux, C., Bonatti, E., Broglia, C., Channel, J., Curzi, P., Emeis, K.C., Glaçon, G., Hasegawa, S., et al., Eds.; Ocean Drilling Program: College Station, TX, USA, 1990; Volume 107, pp. 141–152. [Google Scholar]
- Péron-Pinvidic, G.; Manatschal, G.; Minshull, T.; Sawyer, D. Tectonosedimentary Evolution of the Deep Iberia-Newfoundland Margins: Evidence for a Complex Breakup History. Tectonics 2007, 26, TC2011. [Google Scholar] [CrossRef]
- Shipboard Scientific Party. Leg 210 summary. In Ocean Drilling Program Leg 210; Tucholke, B.E., Sibuet, J.-C., Klaus, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 2004; Volume 210, pp. 1–78. [Google Scholar]
- Peverelli, V.; Berger, A.; Wille, M.; Pettke, T.; Lanari, P.; Villa, I.M.; Herwegh, M. Epidote dissolution–precipitation during viscous granular flow: A micro-chemical and isotope study. EGUsphere 2022, 2022, 1–29. [Google Scholar] [CrossRef]
- Boschi, C.; Dini, A.; Früh-Green, G.L.; Kelley, D.S. Isotopic and element exchange during serpentinization and metasomatism at the Atlantis Massif (MAR 30 °N): Insights from B and Sr isotope data. Geochim. Cosmochim. Acta 2008, 72, 1801–1823. [Google Scholar] [CrossRef]
- Harvey, J.; Savov, I.P.; Agostini, S.; Cliff, R.A.; Walshaw, R. Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209. Geochim. Cosmochim. Acta 2014, 126, 30–48. [Google Scholar] [CrossRef]
- Malvoisin, B. Mass transfer in the oceanic lithosphere: Serpentinization is not isochemical. Earth Planet. Sci. Lett. 2015, 430, 75–85. [Google Scholar] [CrossRef]
- Roumejon, S.; Cannat, M.; Agrinier, P.; Godard, M.; Andreani, M. Serpentinization and Fluid Pathways in Tectonically Exhumed Peridotites from the Southwest Indian Ridge (62–65 E). J. Petrol. 2015, 56, 703–734. [Google Scholar] [CrossRef]
- Klein, F.; Le Roux, V. Quantifying the volume increase and chemical exchange during serpentinization. Geology 2020, 48, 552–556. [Google Scholar] [CrossRef]
- de Obeso, J.C.; Kelemen, P.B. Major element mobility during serpentinization, oxidation and weathering of mantle peridotite at low temperatures. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20180433. [Google Scholar] [CrossRef]
- Seyfried, W.E.J.; Foustoukos, D.I.; Fu, Q. Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200 °C, 500 bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges. Geochim. Cosmochim. Acta 2007, 71, 3872–3886. [Google Scholar] [CrossRef]
- Wetzel, L.R.; Shock, E.L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions. J. Geophys. Res. Solid Earth 2000, 105, 8319–8340. [Google Scholar] [CrossRef]
- Palandri, J.L.; Reed, M.H. Geochemical models of metasomatism in ultramafic systems: Serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim. Cosmochim. Acta 2004, 68, 1115–1133. [Google Scholar] [CrossRef]
- Frost, R.B.; Beard, J.S. On silica activity and serpentinization. J. Petrol. 2007, 48, 1351–1368. [Google Scholar] [CrossRef]
Sample | * | VA-T3-07 | VA-T3-20 | T-7-rt | VA-T2-09 | VA-T2-08 | VA-T3-18 | VA-L-9a | VA-L-9b | VA-BI3-1 | VP-GAR-03.B | VP-GAR-03.B | VP-GAR-01.A | VP-GAR-01.A | HHD-2 | HHD-1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lithologie | * | go | go | go | go | ca | chl-sch-cat | Granite | Granite | Granite | ca | ca | Paragneiss | Paragneiss | go | ca |
Unit | * | Tasna | Tasna | Tasna | Tasna | Tasna | Tasna | Middle Err | Middle Err | Middle Err | Mauléon | Mauléon | Mauléon | Mauléon | Hobby High | Hobby High |
Site | * | Mot de Ri | Mot de Ri | Mot de Ri | Mot de Ri | Mot de Ri | Mot de Ri | Laviner | Laviner | Val Bever | P. Garralda | P. Garralda | P. Garralda | P. Garralda | 19R-2 114–116 cm | 18R-1 91–93 cm |
Lab | * | Acme | Acme | SARM | SARM | SARM | Acme | SARM | LHyGeS | ACME | SARM | SARM | SARM | SARM | ODP | ODP |
Al2O3 | % | 15.52 | 15.45 | 17.00 | 16.20 | 16.56 | 10.86 | 15.84 | 15.80 | 20.59 | 1.16 | 1.16 | 2.97 | 2.97 | 15.89 | 16.12 |
CaO | % | 1.00 | 0.88 | 0.98 | 0.87 | 0.67 | 0.51 | 1.53 | 1.64 | 6.13 | <0.03 | <0.03 | <0.03 | <0.03 | 9.40 | 13.17 |
Fe2O3 | % | 6.40 | 7.25 | 7.28 | 6.36 | 6.24 | 4.85 | 2.70 | 3.14 | 4.89 | 2.26 | 2.26 | 2.03 | 2.03 | 9.52 | 11.75 |
K2O | % | 3.14 | 3.53 | 3.53 | 4.70 | 4.36 | 2.51 | 3.88 | 3.82 | 2.35 | 0.05 | 0.05 | 0.51 | 0.51 | 0.75 | 1.36 |
MgO | % | 2.95 | 4.13 | 3.69 | 4.19 | 3.18 | 1.94 | 1.05 | 1.04 | 1.41 | 0.51 | 0.51 | 0.57 | 0.57 | 5.26 | 5.08 |
MnO | % | 0.07 | 0.10 | 0.11 | 0.09 | 0.09 | 0.06 | 0.04 | 0.05 | 0.06 | 0.00 | 0.00 | 0.01 | 0.01 | 0.17 | 0.36 |
Na2O | % | 2.33 | 1.26 | 1.27 | 0.84 | 1.50 | 0.99 | 4.03 | 3.83 | 3.96 | <0.01 | <0.01 | 0.07 | 0.07 | 4.30 | 4.27 |
P2O5 | % | 0.17 | 0.16 | 0.16 | 0.14 | 0.12 | 0.06 | 0.17 | 0.23 | 0.18 | <0.04 | <0.04 | <0.04 | <0.04 | 0.22 | 0.31 |
SiO2 | % | 64.33 | 62.35 | 61.80 | 61.97 | 63.13 | 74.79 | 67.45 | 67.60 | 56.87 | 93.84 | 93.84 | 92.02 | 92.02 | 51.97 | 47.22 |
TiO2 | % | 0.51 | 0.92 | 1.01 | 0.79 | 0.75 | 0.75 | 0.32 | 0.38 | 0.62 | 0.22 | 0.22 | 0.26 | 0.26 | 1.87 | 1.77 |
LOI | % | 3.40 | 3.70 | 3.75 | 4.21 | 4.05 | 2.50 | 1.78 | 1.61 | 2.70 | 0.97 | 0.97 | 1.00 | 1.00 | 5.70 | 10.13 |
As | ppm | 7.70 | 8.00 | * | 4.83 | 3.44 | 6.70 | 2.13 | * | <0.5 | 3.19 | 3.19 | 2.14 | 2.14 | * | * |
Ba | ppm | 380.00 | 654.00 | 828.70 | 671.10 | 731.90 | 489.00 | 724.80 | 820.90 | 602.00 | 13.46 | 13.46 | 85.02 | 85.02 | 46.00 | 163.00 |
Be | ppm | 3.00 | 3.00 | * | 3.36 | 1.82 | 2.00 | 2.77 | * | 2.00 | <0.4 | <0.4 | <0.4 | <0.4 | * | * |
Bi | ppm | 0.20 | <0.1 | * | <0.1 | 0.13 | 0.10 | <0.1 | * | <0.1 | <0.1 | <0.1 | 0.18 | 0.18 | * | * |
Cd | ppm | 1.00 | <0.1 | 1.00 | 0.33 | 0.14 | <0.1 | <0.12 | 0.30 | <0.1 | 0.25 | 0.25 | 0.22 | 0.22 | * | * |
Ce | ppm | 45.70 | 67.50 | 134.00 | 70.49 | 84.99 | 80.50 | 77.35 | 118.00 | 16.60 | 14.79 | 14.79 | 29.45 | 29.45 | 41.00 | 89.00 |
Co | ppm | 21.80 | 13.00 | 20.20 | 17.97 | 10.89 | 12.40 | 3.95 | 7.00 | 6.80 | 2.72 | 2.72 | 4.02 | 4.02 | * | * |
Cr | ppm | 41.05 | 68.42 | 126.60 | 130.00 | 79.12 | 61.58 | 15.00 | 31.70 | 20.53 | 22.30 | 22.30 | 21.76 | 21.76 | 367.00 | 115.00 |
Cs | ppm | 5.00 | 2.00 | 2.61 | 3.74 | 2.98 | 2.10 | 1.79 | 1.81 | 3.80 | <0.1 | <0.1 | 0.25 | 0.25 | * | * |
Cu | ppm | 195.70 | 25.10 | 41.90 | 31.79 | 12.90 | 16.50 | <0.5 | 24.70 | 5.60 | 5.54 | 5.54 | <5 | <5 | 45.00 | 52.00 |
Dy | ppm | 8.43 | 4.78 | 6.60 | 4.45 | 3.47 | 3.89 | 3.08 | 4.08 | 3.70 | 2.71 | 2.71 | 1.52 | 1.52 | * | * |
Er | ppm | 4.92 | 2.57 | 3.74 | 2.36 | 1.86 | 2.23 | 1.34 | 1.92 | 2.10 | 1.66 | 1.66 | 0.89 | 0.89 | * | * |
Eu | ppm | 1.70 | 1.36 | 1.96 | 1.19 | 1.28 | 1.13 | 1.20 | 1.48 | 1.65 | 0.44 | 0.44 | 0.35 | 0.35 | * | * |
Ga | ppm | 18.90 | 19.40 | * | 22.21 | 24.25 | 14.10 | 20.07 | * | 24.80 | 2.54 | 2.54 | 4.05 | 4.05 | * | * |
Gd | ppm | 8.30 | 5.92 | 9.30 | 5.21 | 4.78 | 5.17 | 4.29 | 6.38 | 3.65 | 2.09 | 2.09 | 1.60 | 1.60 | * | * |
Hf | ppm | 4.10 | 6.10 | 10.63 | 5.39 | 6.82 | 8.60 | 3.71 | 5.01 | 7.50 | 9.76 | 9.76 | 6.32 | 6.32 | * | * |
Ho | ppm | 1.61 | 0.97 | 1.41 | 0.85 | 0.64 | 0.76 | 0.51 | 0.77 | 0.77 | 0.61 | 0.61 | 0.32 | 0.32 | * | * |
La | ppm | 30.40 | 34.80 | 67.52 | 35.89 | 41.46 | 38.50 | 40.00 | 62.61 | 7.60 | 7.92 | 7.92 | 14.06 | 14.06 | * | * |
Lu | ppm | 0.51 | 0.37 | 0.54 | 0.36 | 0.30 | 0.34 | 0.17 | 0.23 | 0.33 | 0.29 | 0.29 | 0.16 | 0.16 | * | * |
Mo | ppm | <0.1 | 0.60 | 1.80 | <0.5 | 0.52 | 0.20 | <0.5 | * | 0.20 | <0.5 | <0.5 | <0.5 | <0.5 | * | * |
Nb | ppm | 9.80 | 12.90 | 18.68 | 12.26 | 13.32 | 12.10 | 11.01 | 16.03 | 9.40 | 3.59 | 3.59 | 4.51 | 4.51 | 9.00 | 10.00 |
Nd | ppm | 30.90 | 31.40 | 57.46 | 31.67 | 35.59 | 35.30 | 31.19 | 47.27 | 11.90 | 8.31 | 8.31 | 11.43 | 11.43 | * | * |
Ni | ppm | 50.60 | 35.10 | 46.00 | 48.15 | 34.98 | 30.30 | 9.78 | 10.00 | 3.60 | 7.75 | 7.75 | 9.13 | 9.13 | 78.00 | 40.00 |
Pb | ppm | 17.60 | 18.80 | 50.80 | 22.07 | 9.67 | 10.70 | 17.86 | 30.20 | 5.20 | 2.65 | 2.65 | 4.29 | 4.29 | * | * |
Pr | ppm | 7.39 | 8.26 | 15.40 | 8.37 | 9.82 | 9.39 | 8.61 | 13.10 | 2.42 | 2.08 | 2.08 | 3.16 | 3.16 | * | * |
Rb | ppm | 115.90 | 105.00 | 122.10 | 127.50 | 120.60 | 81.70 | 115.70 | 133.60 | 141.00 | 3.46 | 3.46 | 16.59 | 16.59 | 9.00 | 13.00 |
Sb | ppm | <0.1 | <0.1 | 0.40 | <0.2 | <0.2 | <0.1 | <0.2 | 0.50 | <0.1 | <0.2 | <0.2 | <0.2 | <0.2 | * | * |
Sc | ppm | 8.00 | 15.00 | 15.60 | 16.37 | 15.28 | 10.00 | 7.30 | 8.46 | 13.00 | 2.48 | 2.48 | 2.04 | 2.04 | * | * |
Sm | ppm | 7.46 | 6.29 | 11.01 | 6.20 | 6.72 | 6.44 | 5.63 | 8.20 | 3.26 | 1.97 | 1.97 | 2.02 | 2.02 | * | * |
Sn | ppm | 3.00 | 3.00 | 3.70 | 1.61 | 1.55 | <1 | 1.19 | 2.70 | 4.00 | <0.45 | <0.45 | 1.37 | 1.37 | * | * |
Sr | ppm | 73.60 | 28.10 | 40.00 | 41.80 | 52.36 | 38.60 | 204.50 | 207.30 | 340.50 | 6.84 | 6.84 | 51.21 | 51.21 | 275.00 | 194.00 |
Ta | ppm | 0.70 | 0.80 | 1.72 | 0.94 | 0.97 | 0.60 | 1.27 | 1.87 | 1.00 | 0.36 | 0.36 | 0.39 | 0.39 | * | * |
Tb | ppm | 1.37 | 0.90 | 1.26 | 0.77 | 0.66 | 0.72 | 0.59 | 0.77 | 0.64 | 0.39 | 0.39 | 0.25 | 0.25 | * | * |
Th | ppm | 8.50 | 10.60 | 21.90 | 11.47 | 17.01 | 14.50 | 14.19 | 19.80 | 3.10 | 4.26 | 4.26 | 5.45 | 5.45 | * | * |
Tm | ppm | 0.68 | 0.38 | 0.55 | 0.34 | 0.28 | 0.33 | 0.18 | 0.26 | 0.34 | 0.25 | 0.25 | 0.14 | 0.14 | * | * |
U | ppm | 30.60 | 2.30 | 2.05 | 1.57 | 1.61 | 1.70 | 2.04 | 2.64 | 4.40 | 0.86 | 0.86 | 0.90 | 0.90 | * | * |
V | ppm | 91.00 | 119.00 | 127.20 | 108.50 | 102.10 | 71.00 | 28.25 | 37.50 | 59.00 | 23.32 | 23.32 | 17.79 | 17.79 | 397.00 | 268.00 |
W | ppm | 0.60 | 0.90 | 1.30 | 1.64 | 0.82 | <0.5 | 0.70 | * | 0.90 | 0.91 | 0.91 | 0.59 | 0.59 | * | * |
Y | ppm | 45.00 | 28.10 | 37.70 | 25.73 | 18.05 | 20.20 | 15.36 | 20.60 | 19.60 | 18.53 | 18.53 | 8.50 | 8.50 | 28.00 | 36.00 |
Yb | ppm | 3.84 | 2.52 | 3.54 | 2.27 | 1.89 | 2.32 | 1.15 | 1.57 | 2.07 | 1.74 | 1.74 | 0.96 | 0.96 | * | * |
Zn | ppm | 155.00 | 88.00 | 83.00 | 115.50 | 118.50 | 65.00 | 44.32 | 47.90 | 61.00 | 18.07 | 18.07 | 16.79 | 16.79 | 85.00 | 100.00 |
Zr | ppm | 164.40 | 230.10 | 349.40 | 201.10 | 253.80 | 327.00 | 145.80 | 159.70 | 347.20 | 403.50 | 403.50 | 253.10 | 253.10 | 137.00 | 207.00 |
Observations/Sites | Err and Platta System in the Alps [4] | West Pyrenees (Mauléon) | Alps (Tasna) | Iberia Margin (Hobby High) | |
---|---|---|---|---|---|
Structural/ Microstructural and/or Field Observations of Fluid Circulation in OCT | Calcite veins with Fe-oxides in serpentinites | very common (see Figure 4d,e in Pinto et al. [4]) | very common (e.g., Figure 6e). | very common (Figure 4(b1–b3)). | described on Site 1068 (Figure 5b(b1,b2)). |
Mineralization over exhumed mantle | centimetric Fe-oxides | centimetric Fe-oxides (Figure 6f) | not observed | described on Site 1068 (Figure 5b) | |
Fault rocks: synkinematic phyllosilicates, extension related foliation and oxides | observed (see Figure 4d,e in Pinto et al. [4]) | observed (Figure 6b,c) | observed along the UTD (Figure 4(a4)) | described along the HHD (Figure 5(a2)) | |
Mineralization in the sedimentary rocks | hydrothermal cherts enriched in metals | Fe and Mn oxides at the fault break-away in the pre-rift sedimentary rocks (Figure 6g) | not investigated | not investigated | |
Geochemistry | Mass balance for serpentinised mantle rocks associated with detachment faulting | loss of major and minor/trace elements (e.g., Ca, Mg, Fe, Mn, Si, Ni, Cr and V) | not investigated | not investigated | not investigated |
Mass balance for continental crust associated with detachment faulting | gain of metals (eg., Ni, Cr, V) gain of these metals not observed in faults that are in a more proximal position in the margin | gain in metals (e.g., Ni, Cr, V) in fault rocks comparing to host rock protoliths | gain in metals (e.g., Ni, Cr, V) in fault rocks when compared to the protolith in the footwall | gain of metals (eg., Ni, Cr, V) in fault rocks | |
Supra-detachment sedimentary sequence | metal concentration increases toward the top of the syn-rift sedimentary sequence and is maximal in the sequence that is deposited during mantle exhumation (see their Figure 11). gradual decrease of these metal in post-exhumation sedimentary sequences (see Figure 11 in Pinto et al. [4]) | not investigated | not investigated | external source of Si (high temperature) Si, Mg and Mn increases in the syn-exhumation/serpentinization sedimentary sequence (Figure 10) | |
Major insight from each site |
| mantle-reacted fluid circulation along Albian to Cenomanian extensional detachment fault in the continental crust (NMD) | gain of mantle-derived elements in fault rocks show that circulation of mantle-reacted fluids in the continental crust was an important process during OCT formation | in addition to field and petrological evidence, this site is important to compare results with rifts preserved in orogens. The results show that fluids along faults are rift-related and not associated with orogenesis. They also support the idea that fluids are a characteristic element that needs to be considered in the evolution of magma-poor rifted margins. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinto, V.H.G.; Manatschal, G.; Karpoff, A.M.; Masini, E.; Victor, R.A.; Viana, A.R.; Ulrich, M. Mass-Transfer and Fluid Flow along Extensional Detachment Faults in Hyperextended Rift Systems: The Examples of Tasna in the Alps, Mauléon in the Pyrenees, and Hobby High Offshore Iberia. Geosciences 2023, 13, 374. https://doi.org/10.3390/geosciences13120374
Pinto VHG, Manatschal G, Karpoff AM, Masini E, Victor RA, Viana AR, Ulrich M. Mass-Transfer and Fluid Flow along Extensional Detachment Faults in Hyperextended Rift Systems: The Examples of Tasna in the Alps, Mauléon in the Pyrenees, and Hobby High Offshore Iberia. Geosciences. 2023; 13(12):374. https://doi.org/10.3390/geosciences13120374
Chicago/Turabian StylePinto, Victor Hugo Guimarães, Gianreto Manatschal, Anne Marie Karpoff, Emmanuel Masini, Rodolfo Araújo Victor, Adriano Roessler Viana, and Marc Ulrich. 2023. "Mass-Transfer and Fluid Flow along Extensional Detachment Faults in Hyperextended Rift Systems: The Examples of Tasna in the Alps, Mauléon in the Pyrenees, and Hobby High Offshore Iberia" Geosciences 13, no. 12: 374. https://doi.org/10.3390/geosciences13120374
APA StylePinto, V. H. G., Manatschal, G., Karpoff, A. M., Masini, E., Victor, R. A., Viana, A. R., & Ulrich, M. (2023). Mass-Transfer and Fluid Flow along Extensional Detachment Faults in Hyperextended Rift Systems: The Examples of Tasna in the Alps, Mauléon in the Pyrenees, and Hobby High Offshore Iberia. Geosciences, 13(12), 374. https://doi.org/10.3390/geosciences13120374