Melting Processes of Pelitic Rocks in Combustion Metamorphic Complexes of Mongolia: Mineral Chemistry, Raman Spectroscopy, Formation Conditions of Mullite, Silicate Spinel, Silica Polymorphs, and Cordierite-Group Minerals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Thermally Modified Pelitic Rocks and Clinkers
3.2. Ferroan Paralavas
3.2.1. Tridymite–Sekaninaite Paralava
3.2.2. Cristobalite–Fayalite Paralava
3.3. Rock-Forming Minerals of Clinkers and Ferroan Paralavas
3.3.1. Cordierite-Group Minerals: Raman Spectroscopy, and Compositional Variations
3.3.2. Mullite
3.3.3. Al-Fe-Mg Silicate Spinel
3.3.4. Quartz and Silica Polymorphs
3.3.5. Olivine-Group Minerals
3.3.6. Pyroxene-Group Minerals
4. Discussion
4.1. Melting Processes of Fe-Enriched Pelitic Rocks
4.1.1. Nonequilibrium Conditions Formation of Clinkers
4.1.2. Formation Conditions of Ferroan Paralavas
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peretyazhko, I.S.; Savina, E.A.; Khromova, E.A. Minerals of the rhönite-kuratite series in paralavas from a new combustion metamorphic complex of Choir–Nyalga Basin (Central Mongolia): Chemistry, mineral assemblages, and formation conditions. Min. Mag. 2017, 81, 949–974. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Savina, E.A.; Khromova, E.A.; Karmanov, N.S.; Ivanov, A.V. Unique clinkers and paralavas from a new Nyalga combustion metamorphic complex in central Mongolia: Mineralogy, geochemistry, and genesis. Petrology 2018, 26, 181–211. [Google Scholar] [CrossRef]
- Savina, E.A.; Peretyazhko, I.S.; Khromova, E.A.; Glushkova, V.E. Melted rocks (clinkers and paralavas) of Khamaryn-Khural-Khiid combustion metamorphic complex in Eastern Mongolia: Mineralogy, geochemistry and genesis. Petrology 2020, 28, 431–457. [Google Scholar] [CrossRef]
- Peretyazhko, I.S.; Savina, E.A.; Khromova, E.A. Low–pressure (>4 MPa) and high–temperature (>1250 °C) incongruent melting of marl limestone: Formation of carbonate melt and melilite–nepheline paralava in the Khamaryn–Khural–Khiid combustion metamorphic complex, East Mongolia. Contrib. Miner. Petrol. 2021, 176, 38. [Google Scholar] [CrossRef]
- Glushkova, V.E.; Peretyazhko, I.S.; Savina, E.A.; Khromova, E.A. Olivine-group minerals in melilite-nepheline paralava of combustion metamorphic complexes in Mongolia. Zap. Ross. Mineral. Obs. 2023, 1, 61–77. (In Russian) [Google Scholar]
- Glushkova, V.E.; Peretyazhko, I.S.; Savina, E.A.; Khromova, E.A. Rock-forming minerals in paralava of combustion metamorphic complexes in Mongolia. Zap. Ross. Mineral. Obs. 2023, 4, 65–83. (In Russian) [Google Scholar]
- Grapes, R. Pyrometamorphism, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2011; 377p. [Google Scholar] [CrossRef]
- Sokol, E.V.; Maksimova, N.V.; Nigmatulina, E.N.; Sharygin, V.V.; Kalugin, V.M. (Eds.) Combustion Metamorphism; Pub. SB RAS: Novosibirsk, Russia, 2005. (In Russian) [Google Scholar]
- Cosca, M.A.; Essene, E.J.; Geissman, J.G.; Simmons, W.B.; Coates, D.A. Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming. Am. Mineral. 1989, 74, 85–100. [Google Scholar]
- Foit, F.F.; Hooper, R.L.; Rosenberg, P.E. An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal–fire buchite from Buffalo, Wyoming. Am. Mineral. 1987, 72, 137–147. [Google Scholar]
- Cosca, M.; Peacor, D. Chemistry and structure of esseneite (CaFe3+AlSiO6), a new pyroxene produced by pyrometamorphism. Am. Mineral. 1987, 72, 148–156. [Google Scholar]
- Erdenetsogt, B.; Lee, I.; Bat-Erdene, D.; Jargal, L. Mongolian coal-bearing basins: Geological settings, coal characteristics, distribution, and resources. Int. J. Coal. Geol. 2009, 80, 87–104. [Google Scholar] [CrossRef]
- Pokrovsky, P.V. Ammonium chloride from the Khamaryn–Khyral–Khiid brown coal field in Mongolia. Zap. Ross. Mineral. Obs. 1949, 3, 38–45. (In Russian) [Google Scholar]
- Lavrent’ev, Y.G.; Karmanov, N.S.; Usova, L.V. Electron probe microanalysis of minerals: Microanalyzer or scanning electron microscope? Russ. Geol. Geophys. 2015, 56, 1154–1161. [Google Scholar] [CrossRef]
- Peretyazhko, I.S. CRYSTAL—Applied software for mineralogist, petrologist, and geochemists. Zap. Ross. Mineral. Obs. 1996, 3, 141–148. (In Russian) [Google Scholar]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; Armbruster, T., Danisi, R.M., Eds.; De Gruyter: Berlin, Germany, 2016; pp. 1–30. [Google Scholar] [CrossRef]
- Miyashiro, A. Cordierite-indialite relations. Am. J. Sci. 1957, 255, 43–62. [Google Scholar] [CrossRef]
- Putnis, A. The distortion index in anhydrous Mg-Cordierite. Contrib. Mineral. Petrol. 1980, 74, 135–141. [Google Scholar] [CrossRef]
- Pirczka, A.; Hawthorne, F.C.; Ball, N.A.; Abdu, Y.A.; Gołȩbiowska, B.; Włodek, A.; Żukrowski, J. Graftonite-(Mn), ideally M1MnM2,M3 Fe2(PO4)2, and graftonite-(Ca), ideally M1CaM2,M3 Fe2(PO4)2, two new minerals of the graftonite group from Poland. Min. Mag. 2018, 82, 1307–1322. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Wise, M.A.; Černy, P.; Abdu, Y.A.; Ball, N.A.; Pirczka, A.; Włodek, A. Beusite-(Ca), ideally CaMn22+ (PO4)2, a new graftonite-group mineral from the Yellowknife pegmatite field, Northwest Territories, Canada: Description and crystal structure. Min. Mag. 2018, 82, 1323–1332. [Google Scholar] [CrossRef]
- Haefeker, U.; Kaindl, R.; Tropper, P. Semi-quantitative determination of the Fe/Mg ratio in synthetic cordierite using Raman spectroscopy. Am. Miner. 2012, 97, 1662–1669. [Google Scholar] [CrossRef]
- Bost, N.; Duraipandian, S.; Guimbretière, G.; Poirier, J. Raman spectra of synthetic and natural mullite. Vibr. Spec. 2016, 82, 50–52. [Google Scholar] [CrossRef]
- Schneider, H. Temperature-dependent iron solubility in mullite. J. Am. Ceram. Soc. 1987, 70, 43–45. [Google Scholar] [CrossRef]
- Hazen, R.; Downs, R.; Finger, L. Crystal chemistry of ferromagnesian silicate spinels: Evidence for Mg-Si disorder. Am. Min. 1993, 78, 1320–1323. [Google Scholar]
- Ma, C.; Tschauner, O.; Beckett, J.R.; Liu, Y.; Rossman, G.R.; Sinogeikin, S.V.; Smith, J.S.; Taylor, L.A. Ahrensite, γ-Fe2SiO4, a new shock-metamorphic mineral from the Tissint meteorite: Implications for the Tissint shock event on Mars. Geochim. Cosmochim. Acta 2016, 184, 240–256. [Google Scholar] [CrossRef]
- Binns, R.; Davis, R.; Reed, S. Ringwoodite, natural (Mg,Fe)2SiO4 spinel in the Tenham Meteorite. Nature 1969, 221, 943–944. [Google Scholar] [CrossRef]
- Querol, X.; Fernandez Turiel, J.L.; Lopez Soler, A. The behaviour of mineral matter during combustion of Spanish subbituminous and brown coals. Mineral. Mag. 1994, 58, 119–133. [Google Scholar] [CrossRef]
- Bosi, F.; Biagioni, C.; Pasero, M. Nomenclature and classification of the spinel supergroup. Eur. J. Mineral. 2019, 31, 183–192. [Google Scholar] [CrossRef]
- Tropper, P.; Recheis, A.; Konzett, J. Experimental investigations on the pyrometamorphic formation of phosphorous-bearing olivines in partially molten metapelitic gneisses. Eur. J. Mineral. 2004, 16, 631–640. [Google Scholar] [CrossRef]
- Schneider, P.; Tropper, P.; Kaindl, R. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria). Min. Petrol. 2013, 107, 327–334. [Google Scholar] [CrossRef]
- Reverdatto, V.V. Facies of Contact Metamorphism; Nedra: Moscow, Russia, 1979; 271p. (In Russian) [Google Scholar]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, V.L.L.; Galán, E.; Kogure, T.; Stanjek, H. Summary of Recommendations of Nomenclature Committees Relevant to Clay Mineralogy: Report of the Association Internationale Pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clay Miner. 2006, 41, 863–877. [Google Scholar] [CrossRef]
- Kumar, C.A. (Ed.) Mullite Formations: Analysis and Applications, 1st ed.; Jenny Stanford Publishing: Dubai, United Arab Emirates, 2021. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Aksenov, S.M.; Pekov, I.V.; Ternes, B.; Schüller, W.; Belakovskiy, D.I.; Van, K.V.; Blass, G. Ferroindialite (Fe2 + Mg)2Al4Si5O18, a new beryl group mineral from the Eifel volcanic area, Germany. Geol. Ore Dep. 2014, 56, 637–643. [Google Scholar] [CrossRef]
- Heaney, P.J.; Post, J.E. The widespread distribution of a novel silica polymorph in microcrystalline quartz varieties. Science 1992, 225, 441–443. [Google Scholar] [CrossRef]
- Prostakova, V.; Shishin, D.; Shevchenko, M.; Jak, E. Thermodynamic optimization of the Al2O3–FeO–Fe2O3–SiO2 oxide system. CALPHAD Comput. Coupling Phase Diagr. Thermochem. 2019, 67, 101680. [Google Scholar] [CrossRef]
- Balassone, G.; Franco, E.; Mattia, C.F.; Pulity, R. Indialite in xenolitic rocks from Somma-Vesuvius volcano (Southern Italy): Crystal chemistry and petrogenetic features. Am. Miner. 2004, 89, 1–6. [Google Scholar] [CrossRef]
- Grapes, R.; Korzhova, S.; Sokol, E.; Seryotkin, Y. Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia. Contrib. Miner. Petrol. 2011, 162, 253–273. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Sokol, E.; Belakovsky, D. Mineralogy and Origin of Fayalite–Sekaninaite Paralava: Ravat Coal Fire, Central Tajikistan. In Coal and Peat Fires: A Global Perspective, Vol. 3 Case Studies—Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 581–607. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peretyazhko, I.S.; Savina, E.A. Melting Processes of Pelitic Rocks in Combustion Metamorphic Complexes of Mongolia: Mineral Chemistry, Raman Spectroscopy, Formation Conditions of Mullite, Silicate Spinel, Silica Polymorphs, and Cordierite-Group Minerals. Geosciences 2023, 13, 377. https://doi.org/10.3390/geosciences13120377
Peretyazhko IS, Savina EA. Melting Processes of Pelitic Rocks in Combustion Metamorphic Complexes of Mongolia: Mineral Chemistry, Raman Spectroscopy, Formation Conditions of Mullite, Silicate Spinel, Silica Polymorphs, and Cordierite-Group Minerals. Geosciences. 2023; 13(12):377. https://doi.org/10.3390/geosciences13120377
Chicago/Turabian StylePeretyazhko, Igor S., and Elena A. Savina. 2023. "Melting Processes of Pelitic Rocks in Combustion Metamorphic Complexes of Mongolia: Mineral Chemistry, Raman Spectroscopy, Formation Conditions of Mullite, Silicate Spinel, Silica Polymorphs, and Cordierite-Group Minerals" Geosciences 13, no. 12: 377. https://doi.org/10.3390/geosciences13120377
APA StylePeretyazhko, I. S., & Savina, E. A. (2023). Melting Processes of Pelitic Rocks in Combustion Metamorphic Complexes of Mongolia: Mineral Chemistry, Raman Spectroscopy, Formation Conditions of Mullite, Silicate Spinel, Silica Polymorphs, and Cordierite-Group Minerals. Geosciences, 13(12), 377. https://doi.org/10.3390/geosciences13120377