Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Generalized Extreme Value Distribution
2.2. Generalized Pareto Distribution
2.3. Weibull Distribution
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tolman, H.L. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr. 1991, 21, 782–797. [Google Scholar] [CrossRef]
- Tolman, H.L. Alleviating the Garden Sprinkler Effect in wind wave models. Ocean Model. 2002, 4, 269–289. [Google Scholar] [CrossRef]
- Tolman, H.L. A mosaic approach to wind wave modeling. Ocean Model. 2007, 25, 35–47. [Google Scholar] [CrossRef]
- Abdolali, A.; Roland, A.; Van der Westhuysen, A.; Meixner, J.; Chawla, A.; Hesser, T.J.; Smith, J.M.; Sikiric, M.D. Large-scale hurricane modeling using domain decomposition parallelization and implicit scheme implemented in WAVEWATCH III wave model. Coast. Eng. 2020, 157, 103656. [Google Scholar] [CrossRef]
- Abdolali, A.; van der Westhuysen, A.; Ma, Z.; Mehra, A.; Roland, A.; Moghimi, S. Evaluating the accuracy and uncertainty of atmospheric and wave model hindcasts during severe events using model ensembles. Ocean Dyn. 2021, 71, 217–235. [Google Scholar] [CrossRef]
- Longuet-Higgins, M.S. On the statistical distribution of the height of sea waves. J. Mar. Res. 1952, 11, 245–266. Available online: https://images.peabody.yale.edu/publications/jmr/jmr11-03-01.pdf (accessed on 10 November 2023).
- Longuet-Higgins, M.S. On the joint distribution of the periods and amplitudes of sea waves. J. Geophys. Res. 1975, 80, 2688–2694. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Cooley, R.P. Statistical distribution of periods and heights of ocean waves. J. Geophys. Res. 1977, 82, 1363–1368. [Google Scholar] [CrossRef]
- Morton, I.D.; Bowers, J.; Mould, G. Estimating return period wave heights and wind speeds using a seasonal point process model. Coast. Eng. 1997, 31, 305–326. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer Series in Statistics; Springer: London, UK, 2001. [Google Scholar]
- Muraleedharan, G.; Rao, A.D.; Kurup, P.G.; Nair, N.U.; Sinha, M. Modified Weibull distribution for maximum and significant wave height simulation and prediction. Coast. Eng. 2007, 54, 630–638. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Carvalho, A.N. Probability Distributions of Wave Heights and Periods in Measured Combined Sea-States from the Portuguese Coast. J. Offshore Mech. Arct. Eng. 2003, 125, 198–204. [Google Scholar] [CrossRef]
- Jones, M.; Randell, D.; Ewans, K.; Jonathan, P. Statistics of extreme ocean environments: Non-stationary inference for directionality and other covariate effects. Ocean Eng. 2016, 119, 30–46. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Liu, G.; Chen, B.; Chen, Z. A new method to estimate wave height of specified return period. Chin. J. Oceanol. Limnol. 2017, 35, 1002–1009. [Google Scholar] [CrossRef]
- Mackay, E.; Johanning, L. Long-term distributions of individual wave and crest heights. Ocean Eng. 2018, 165, 164–183. [Google Scholar] [CrossRef]
- Naseef, T.M.; Kumar, V.S.; Joseph, J.; Jena, B.K. Uncertainties of the 50-year wave height estimation using generalized extreme value and generalized Pareto distributions in the Indian Shelf seas. Nat. Hazards 2019, 97, 1231–1251. [Google Scholar] [CrossRef]
- Thevasiyani, T.; Perera, K. Statistical analysis of extreme ocean waves in Galle, Sri Lanka. Weather Clim. Extrem. 2014, 5–6, 40–47. [Google Scholar] [CrossRef]
- Roy, S.; Sinha, M.; Pradhan, T. Generation of 100-year-return value maps of maximum significant wave heights with automated threshold value estimation. Spat. Inf. Res. 2020, 28, 335–344. [Google Scholar] [CrossRef]
- Wang, Y. Prediction of height and period joint distributions for stochastic ocean waves. China Ocean Eng. 2017, 31, 291–298. [Google Scholar] [CrossRef]
- Antão, E.; Soares, C.G. Approximation of the joint probability density of wave steepness and height with a bivariate gamma distribution. Ocean Eng. 2016, 126, 402–410. [Google Scholar] [CrossRef]
- Mazas, F.; Hamm, L. An event-based approach for extreme joint probabilities of waves and sea levels. Coast. Eng. 2017, 122, 44–59. [Google Scholar] [CrossRef]
- Huang, W.; Dong, S. Probability distribution of wave periods in combined sea states with finite mixture models. Appl. Ocean Res. 2019, 92, 101938. [Google Scholar] [CrossRef]
- Huang, W.; Dong, S. Joint distribution of significant wave height and zero-up-crossing wave period using mixture copula method. Ocean Eng. 2020, 219, 108305. [Google Scholar] [CrossRef]
- Zhao, M.; Deng, X.; Wang, J. Description of the Joint Probability of Significant Wave Height and Mean Wave Period. J. Mar. Sci. Eng. 2022, 10, 1971. [Google Scholar] [CrossRef]
- Polson, N.G.; Sokolov, V.O. Deep learning for short-term traffic flow prediction. Transp. Res. Part C Emerg. Technol. 2017, 79, 1–17. [Google Scholar] [CrossRef]
- Romascanu, A.; Ker, H.; Sieber, R.; Greenidge, S.; Lumley, S.; Bush, D.; Morgan, S.; Zhao, R.; Brunila, M. Using deep learning and social network analysis to understand and manage extreme flooding. J. Contingencies Crisis Manag. 2020, 28, 251–261. [Google Scholar] [CrossRef]
- Cheng, S.; Jin, Y.; Harrison, S.P.; Prentice, I.C.; Guo, Y.; Arcucci, R. Parameter Flexible Wildfire Prediction Using Machine Learning Techniques: Forward and Inverse Modelling. Remote Sens. 2021, 14, 3228. [Google Scholar] [CrossRef]
- Wang, Y.; Qin, L.; Wang, Q.; Chen, Y.; Yang, Q.; Xing, L.; Ba, S. A novel deep learning carbon price short-term prediction model with dual-stage attention mechanism. Appl. Energy 2023, 347, 121380. [Google Scholar] [CrossRef]
- Xu, P.; Zhang, M.; Chen, Z.; Wang, B.; Cheng, C.; Liu, R. A Deep Learning Framework for Day Ahead Wind Power Short-Term Prediction. Appl. Sci. 2022, 13, 4042. [Google Scholar] [CrossRef]
- Foster, D.; Gagne, D.J.; Whitt, D.B. Probabilistic Machine Learning Estimation of Ocean Mixed Layer Depth From Dense Satellite and Sparse In Situ Observations. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002474. [Google Scholar] [CrossRef]
- Panda, J.P. Machine learning for naval architecture, ocean and marine engineering. J. Mar. Sci. Technol. 2023, 28, 1–26. [Google Scholar] [CrossRef]
- Lou, R.; Lv, Z.; Dang, S.; Su, T.; Li, X. Application of machine learning in ocean data. Multimed. Syst. 2023, 29, 1815–1824. [Google Scholar] [CrossRef]
- Chen, J.; Pillai, A.C.; Johanning, L.; Ashton, I. Using machine learning to derive spatial wave data: A case study for a marine energy site. Environ. Model. Softw. 2021, 142, 105066. [Google Scholar] [CrossRef]
- James, S.C.; Zhang, Y.; O’Donncha, F. A machine learning framework to forecast wave conditions. Coast. Eng. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Dramsch, J.S. 70 years of machine learning in geoscience in review. Adv. Geophys. 2019, 61, 1–55. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Sinha, M. Basin scale wind-wave prediction using empirical orthogonal function analysis and neural network models. Results Geophys. Sci. 2021, 8, 100032. [Google Scholar] [CrossRef]
- Biswas, S.; Sinha, M. Assessment and Prediction of a Cyclonic Event: A Deep Learning Model. In Proceedings of the 7th International Conference on Advances in Computing and Data Sciences (ICACDS 2023), Kumool, India, 22–23 April 2023; Singh, M., Tyagi, V., Gupta, P., Flusser, J., Ören, T., Eds.; Springer: Cham, Switzerland, 2023; Volume 1848. [Google Scholar] [CrossRef]
- Yu, S.; Ma, J. Deep Learning for Geophysics: Current and Future Trends. Rev. Geophys. 2021, 59, e2021RG000742. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Zhang, L. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Bento, P.; Pombo, J.; Mendes, R.; Calado, M.; Mariano, S. Ocean wave energy forecasting using optimised deep learning neural networks. Ocean Eng. 2020, 219, 108372. [Google Scholar] [CrossRef]
- Xu, S.; Dai, D.; Cui, X.; Yin, X.; Jiang, S.; Pan, H.; Wang, G. A deep learning approach to predict sea surface temperature based on multiple modes. Ocean Model. 2023, 181, 102158. [Google Scholar] [CrossRef]
- Biswas, S.; Sinha, M. Assessment of Shallow and Deep Learning Models for Prediction of Sea Surface Temperature. In Proceedings of the 7th Annual International Conference on Information System and Artificial Intelligence (ISAI 2022), Chengdu, China, 24–26 October 2022; Sk, A.A., Turki, T., Ghosh, T.K., Joardar, S., Barman, S., Eds.; Springer: Cham, Switzerland, 2022; Volume 1695. [Google Scholar] [CrossRef]
- Rather, A.M. LSTM-based Deep Learning Model for Stock Prediction and Predictive Optimization Model. EURO J. Decis. Process. 2020, 9, 100001. [Google Scholar] [CrossRef]
- Saka, K.; Kakuzaki, T.; Metsugi, S.; Kashiwagi, D.; Yoshida, K.; Wada, M.; Tsunoda, H.; Teramoto, R. Antibody design using LSTM based deep generative model from phage display library for affinity maturation. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Bakhshi Ostadkalayeh, F.; Moradi, S.; Asadi, A.; Moghaddam Nia, A.; Taheri, S. Performance Improvement of LSTM-based Deep Learning Model for Streamflow Forecasting Using Kalman Filtering. Water Resour. Manag. 2023, 37, 3111–3127. [Google Scholar] [CrossRef]
- Yang, H. LSTM-Based Deep Model for Investment Portfolio Assessment and Analysis. Appl. Bionics Biomech. 2022, 2022, 1852138. [Google Scholar] [CrossRef]
- Crivellari, A.; Beinat, E. LSTM-Based Deep Learning Model for Predicting Individual Mobility Traces of Short-Term Foreign Tourists. Sustainability 2019, 12, 349. [Google Scholar] [CrossRef]
- Sinha, M.; Jha, S.; Kumar, A. A Comparison of Wave Spectra during Pre-Monsoon and Post-Monsoon Tropical Cyclones under an Intense Positive IOD Year 2019. Climate 2023, 11, 44. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. Available online: https://www.bioinf.jku.at/publications/older/2604.pdf (accessed on 10 November 2023). [CrossRef]
- Biswas, S.; Sinha, M. Performances of deep learning models for Indian Ocean wind speed prediction. Model. Earth Syst. Environ. 2021, 7, 809–831. [Google Scholar] [CrossRef]
Distribution | EV | PD | WD |
---|---|---|---|
Log Likelihood | 52.8762 | 77.5813 | 10,252.5 |
N | 72 | 48 | 8760 |
Parameter | Distribution (EV) | Parameter | Distribution (PD) | Parameter | Distribution (WD) |
---|---|---|---|---|---|
Scale (σ) | 0.127231 | Scale (σ) | 0.0971834 | Scale (a) | 0.116467 |
Location (μ) | 0.273351 | Threshold (ϴ) | 0.3 | Shape (b) | 1.04565 |
Shape (ξ) | −0.404984 | Shape (ξ) | −0.285123 |
Return Period in Years | Return Period in Months | Buoy-Observed July SWH in Meters | WW3 Model-Computed July SWH in Meters | EV-Predicted SWH in Meters | PD-Predicted SWH in Meters | WD-Predicted SWH in Meters |
---|---|---|---|---|---|---|
5 (2011) | 54 (July 2011) | 0.43 | 8.85725 | 0.604507 | 1.83484 | |
10 (2016) | 114 (July 2016) | 1.9352 | 0.36 | 12.0258 | 0.611521 | 1.90821 |
25 (2031) | 294 (July 2031) | 17.6883 | 0.619635 | 2.00101 | ||
50 (2056) | 594 (July 2056) | 23.5388 | 0.623044 | 2.06977 | ||
100 (2106) | 1194 (July 2106) | 31.2494 | 0.626061 | 2.13792 |
2001–2006 | WW3 Model-Computed in Meters | WD-Predicted in Meters |
---|---|---|
Mean maximal wave height | 0.114314 | 0.169868 |
Highest occurring maximal wave height | 0.02 | 0.0304615 |
Distribution | EV | PD | WD |
---|---|---|---|
Log Likelihood | −65.2102 | −34.7233 | −4074.67 |
N | 72 | 51 | 8760 |
Parameter | Distribution (EV) | Parameter | Distribution (PD) | Parameter | Distribution (WD) |
---|---|---|---|---|---|
Scale (σ) | 0.533797 | Scale (σ) | 1.12742 | Scale (a) | 1.00646 |
Location (μ) | 1.24476 | Threshold (ϴ) | 1 | Shape (b) | 2.33187 |
Shape (ξ) | −0.0893259 | Shape (ξ) | −0.439085 |
Return Period in Years | Return Period in Months | Buoy-Observed July SWH in Meters | WW3 Model-Computed July SWH in Meters | EV-Predicted SWH in Meters | PD-Predicted SWH in Meters | WD-Predicted SWH in Meters |
---|---|---|---|---|---|---|
5 (2011) | 54 (July 2011) | 1.97 | 7.76266 | 3.48807 | 3.46521 | |
10 (2016) | 114 (July 2016) | 0.940827 | 2.10 | 8.6309 | 3.51045 | 3.52667 |
25 (2031) | 294 (July 2031) | 9.8144 | 3.53292 | 3.60257 | ||
50 (2056) | 594 (July 2056) | 10.7587 | 3.54113 | 3.65756 | ||
100 (2106) | 1194 (July 2106) | 11.7561 | 3.54773 | 3.71108 |
2001–2006 | WW3 Model-Computed in Meters | WD-Predicted in Meters |
---|---|---|
Mean maximal wave height | 0.888559 | 1.12111 |
Highest occurring maximal wave height | 0.51 | 0.598255 |
Distribution | EV | PD | WD |
---|---|---|---|
Log Likelihood | −89.6849 | −76.9481 | −8796.47 |
N | 72 | 70 | 8760 |
Parameter | Distribution (EV) | Parameter | Distribution (PD) | Parameter | Distribution (WD) |
---|---|---|---|---|---|
Scale (σ) | 0.535057 | Scale (σ) | 1.67673 | Scale (a) | 1.56261 |
Location (μ) | 1.46356 | Threshold (ϴ) | 1 | Shape (b) | 2.0096 |
Shape (ξ) | 0.536103 | Shape (ξ) | −0.417586 |
Return Period in Years | Return Period in Months | Buoy-Observed July SWH in Meters | WW3 Model-Computed July SWH in Meters | EV-Predicted SWH in Meters | PD-Predicted SWH in Meters | WD-Predicted SWH in Meters |
---|---|---|---|---|---|---|
5 (2011) | 54 (July 2011) | 3.47 | 2.44967 | 4.88603 | 6.55977 | |
10 (2016) | 114 (July 2016) | 4.0352 | 3.63 | 2.45363 | 4.92087 | 6.69497 |
25 (2031) | 294 (July 2031) | 2.45682 | 4.95654 | 6.86246 | ||
50 (2056) | 594 (July 2056) | 2.45832 | 4.96983 | 6.98415 | ||
100 (2106) | 1194 (July 2106) | 2.45935 | 4.98066 | 7.10287 |
2001–2006 | WW3 Model-Computed in Meters | WD-Predicted in Meters |
---|---|---|
Mean maximal wave height | 1.374715 | 1.78866 |
Highest occurring maximal wave height | 0.87 | 0.503189 |
Distribution | EV | PD | WD |
---|---|---|---|
Log Likelihood | −78.7948 | −79.5613 | −8015.56 |
N | 72 | 72 | 8760 |
Parameter | Distribution (EV) | Parameter | Distribution (PD) | Parameter | Distribution (WD) |
---|---|---|---|---|---|
Scale (σ) | 0.442394 | Scale (σ) | 1.52242 | Scale (a) | 1.1676 |
Location (μ) | 1.0413 | Threshold (ϴ) | 0.5 | Shape (b) | 1.51565 |
Shape (ξ) | 0.600161 | Shape (ξ) | −0.315281 |
Return Period in Years | Return Period in Months | Buoy-Observed July SWH in Meters | WW3 Model-Computed July SWH in Meters | EV-Predicted SWH in Meters | PD-Predicted SWH in Meters | WD-Predicted SWH in Meters |
---|---|---|---|---|---|---|
5 (2011) | 54 (July 2011) | 5.43 | 1.77323 | 4.97123 | 7.82312 | |
10 (2016) | 114 (July 2016) | 0.68 | 3.6 | 1.77512 | 5.04671 | 8.03762 |
25 (2031) | 294 (July 2031) | 1.77656 | 5.11972 | 8.30531 | ||
50 (2056) | 594 (July 2056) | 1.7772 | 5.16134 | 8.50115 | ||
100 (2106) | 1194 (July 2106) | 1.77762 | 5.16134 | 8.69328 |
2001–2006 | WW3 Model-Computed in Meters | WD-Predicted in Meters |
---|---|---|
Mean maximal wave height | 1.039466 | 1.43913 |
Highest occurring maximal wave height | 0.49 | 0.303976 |
RMSE Values | |||||
---|---|---|---|---|---|
Delays | Hidden Units and Epochs | Digha | Gopalpur | Agatti | Ratnagiri |
1 (06 h) | 250, 500 | 0.049335 | 0.070723 | 0.055905 | 0.071619 |
2 (12 h) | 250, 500 | 0.06092 | 0.11549 | 0.096463 | 0.11075 |
3 (18 h) | 250, 500 | 0.063134 | 0.14338 | 0.12751 | 0.13041 |
4 (24 h) | 250, 500 | 0.064954 | 0.1649 | 0.15446 | 0.14584 |
RMSE Values | |||||
---|---|---|---|---|---|
Delays | Hidden Units and Epochs | Digha | Gopalpur | Agatti | Ratnagiri |
1 (06 h) | 250, 500 | 0.024988 | 0.068257 | 0.052124 | 0.039547 |
2 (12 h) | 250, 500 | 0.03718 | 0.12198 | 0.0991 | 0.068863 |
3 (18 h) | 250, 500 | 0.04092 | 0.1631 | 0.14182 | 0.092527 |
4 (24 h) | 250, 500 | 0.046922 | 0.19624 | 0.18077 | 0.11493 |
RMSE Values | |||||
---|---|---|---|---|---|
Delays | Hidden Units and Epochs | Digha | Gopalpur | Agatti | Ratnagiri |
1 (06 h) | 250, 500 | 0.075417 | 0.040927 | 0.14921 | 0.031102 |
2 (12 h) | 250, 500 | 0.085182 | 0.047803 | 0.15635 | 0.038444 |
3 (18 h) | 250, 500 | 0.095974 | 0.058306 | 0.16299 | 0.046756 |
4 (24 h) | 250, 500 | 0.10611 | 0.06632 | 0.16676 | 0.053908 |
RMSE Values | |||||
---|---|---|---|---|---|
Delays | Hidden Units and Epochs | Digha | Gopalpur | Agatti | Ratnagiri |
1 (06 h) | 250, 500 | 0.038891 | 0.043244 | 0.090862 | 0.037566 |
2 (12 h) | 250, 500 | 0.051811 | 0.053535 | 0.088777 | 0.04375 |
3 (18 h) | 250, 500 | 0.063706 | 0.065724 | 0.095211 | 0.052782 |
4 (24 h) | 250, 500 | 0.07577 | 0.079693 | 0.094568 | 0.061184 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, M.; Bhattacharya, M.; Seemanth, M.; Bhowmick, S.A. Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards. Geosciences 2023, 13, 380. https://doi.org/10.3390/geosciences13120380
Sinha M, Bhattacharya M, Seemanth M, Bhowmick SA. Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards. Geosciences. 2023; 13(12):380. https://doi.org/10.3390/geosciences13120380
Chicago/Turabian StyleSinha, Mourani, Mrinmoyee Bhattacharya, M. Seemanth, and Suchandra A. Bhowmick. 2023. "Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards" Geosciences 13, no. 12: 380. https://doi.org/10.3390/geosciences13120380
APA StyleSinha, M., Bhattacharya, M., Seemanth, M., & Bhowmick, S. A. (2023). Probabilistic Models and Deep Learning Models Assessed to Estimate Design and Operational Ocean Wave Statistics to Reduce Coastal Hazards. Geosciences, 13(12), 380. https://doi.org/10.3390/geosciences13120380