Laboratory-Scale Investigation on Shear Behavior of Non-Persistent Joints and Joint Infill Using Lattice-Spring-Based Synthetic Rock Mass Model
Abstract
:1. Introduction
2. Model Development
2.1. Lattice-Spring-Based Synthetic Rock Mass Model (LS-SRM)
2.2. Model Setup
2.2.1. Models with Two Pre-Existing Flaws
2.2.2. Models with Infilled Joints
3. Model Calibration
3.1. Calibration of Rock-like Specimens
3.2. Calibration of Mechanical Parameters of Joints
3.3. Validation of LS-SRM Models
4. Design of Experiments Based on Response Surface Methodology
- (1)
- Defining the independent variables that have a significant impact on the model response;
- (2)
- Choosing the experimental design and performing the tests in accordance with the experimental matrix chosen;
- (3)
- The mathematical statistical analysis of the generated experimental data by the fitting of a polynomial function;
- (4)
- Assessing the model’s performance;
- (5)
- Selecting the optimum values for each studied parameter [37].
5. Results and Discussion
5.1. Results of Pre-Cracked Shear Specimens
5.1.1. Effect of Normal Stress on the Pre-Cracked Shear Specimens
5.1.2. Effect of Rock Bridge Angle on the Pre-Cracked Shear Specimens
5.1.3. Effect of Rock Bridge Length on the Pre-Cracked Shear Specimens
5.1.4. Effect of Joint Roughness Coefficients on the Pre-Cracked Shear Specimens
5.2. Results of Shear Specimens with Infill Mineral
5.2.1. Effect of Rock Bridge Length on the Pre-Cracked Shear Specimens
5.2.2. Effect of the Infill Thickness on the Shear Specimens
5.2.3. Effect of Infill Waviness on the Shear Specimens
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lee, H.; Jeon, S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression. Int. J. Solids Struct. 2011, 48, 979–999. [Google Scholar] [CrossRef] [Green Version]
- Bastola, S.; Cai, M. Investigation of mechanical properties and crack propagation in pre-cracked marbles using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach. Comput. Geotech. 2019, 110, 28–43. [Google Scholar] [CrossRef]
- Bobet, A.; Einstein, H.H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int. J. Rock Mech. Min. Sci. 1998, 35, 863–888. [Google Scholar] [CrossRef]
- Li, Y.P.; Chen, L.Z.; Wang, Y.H. Experimental research on pre-cracked marble under compression. Int. J. Solids Struct. 2005, 42, 2505–2516. [Google Scholar] [CrossRef]
- Manouchehrian, A.; Marji, M.F. Numerical analysis of confinement effect on crack propagation mechanism from a flaw in a pre-cracked rock under compression. Acta Mech. Sin. 2012, 28, 1389–1397. [Google Scholar] [CrossRef]
- Marji, M.F.; Gholamnejad, J.; Eghbal, M. On the Crack Propagation Mechanism of Brittle Rocks Under Various Loading Conditions; International Multidisciplinary Scientific GeoConference SGEM: Sofia, Bulgaria, 2011; pp. 561–568. [Google Scholar]
- Mughieda, O.; Alzo’ubi, A.K. Fracture mechanisms of offset rock joints—A laboratory investigation. Geotech. Geol. Eng. 2004, 22, 545–562. [Google Scholar] [CrossRef]
- Park, C.H.; Bobet, A. Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression. Eng. Fract. Mech. 2010, 77, 2727–2748. [Google Scholar] [CrossRef]
- Brown, E.T. Fracture of rock under uniform biaxial compression. In Proceedings of the Third Congress of the International Society for Rock Mechanics, Washingon, DC, USA, 1–7 September 1974; pp. 111–117. [Google Scholar]
- Papamichos, E.; Labuz, J.F.; Vardoulakis, I. A surface instability detection apparatus. Rock Mech. Rock Eng. 1994, 27, 37–56. [Google Scholar] [CrossRef]
- Sahouryeh, E.; Dyskin, A.V.; Germanovich, L.N. Crack growth under biaxial compression. Eng. Fract. Mech. 2002, 69, 2187–2198. [Google Scholar] [CrossRef]
- Chang, C.; Haimson, B. Non-dilatant deformation and failure mechanism in two Long Valley Caldera rocks under true triaxial compression. Int. J. Rock Mech. Min. Sci. 2005, 42, 402–414. [Google Scholar] [CrossRef]
- Duan, K.; Kwok, C.Y.; Ma, X. DEM simulations of sandstone under true triaxial compressive tests. Acta Geotech. 2017, 12, 495–510. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Kou, M.; Wang, Z. Mechanical and failure characteristics of fissured marble specimens under true triaxial compression: Insights from 3-D numerical simulations. Comput. Geotech. 2020, 127, 103785. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Wang, W.; Tang, L.; Liu, Q.; Cheng, G. Modeling of rheological fracture behavior of rock cracks subjected to hydraulic pressure and far field stresses. Theor. Appl. Fract. Mech. 2019, 101, 59–66. [Google Scholar] [CrossRef]
- Asadizadeh, M.; Moosavi, M.; Hossaini, M.F.; Masoumi, H. Shear Strength and Cracking Process of Non-persistent Jointed Rocks: An Extensive Experimental Investigation. Rock Mech. Rock Eng. 2018, 51, 415–428. [Google Scholar] [CrossRef]
- Shang, J.; West, L.J.; Hencher, S.R.; Zhao, Z. Tensile strength of large-scale incipient rock joints: A laboratory investigation. Acta Geotech. 2018, 13, 869–886. [Google Scholar] [CrossRef] [Green Version]
- Jing, L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int. J. Rock Mech. Min. Sci. 2003, 40–43, 283–353. [Google Scholar]
- Vesga, L.F.; Vallejo, L.E.; Lobo-Guerrero, S. DEM analysis of the crack propagation in brittle clays under uniaxial compression tests. Int. J. Numer. Anal. Methods Geomech. 2008, 32, 1405–1415. [Google Scholar] [CrossRef]
- Manouchehrian, A.; Sharifzadeh, M.; Marji, M.F.; Gholamnejad, J. A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Arch. Civ. Mech. Eng. 2014, 14, 40–52. [Google Scholar] [CrossRef]
- Peng, J.; Ngai, L.; Wong, Y.; Ing, C. Effects of grain size-to-particle size ratio on micro-cracking behavior using a bonded-particle grain-based model. Int. J. Rock Mech. Min. Sci. 2017, 100, 207–217. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. A numerical approach to investigate the effects of rock texture on the damage and crack propagation of a pre-cracked granite. Comput. Geotech. 2019, 111, 89–111. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. A cohesive grain-based model to simulate shear behaviour of rock joints with asperity damage in polycrystalline rock. Comput. Geotech. 2020, 117, 103254. [Google Scholar] [CrossRef]
- Saadat, M.; Taheri, A. Modelling micro-cracking behaviour of granite during direct tensile test using cohesive GBM approach. Eng. Fract. Mech. 2020, 239, 107297. [Google Scholar] [CrossRef]
- Bastola, S.; Cai, M.; Damjanac, B. Slope stability assessment of an open pit using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach. J. Rock Mech. Geotech. Eng. 2020, 12, 927–942. [Google Scholar] [CrossRef]
- Gottron, D.; Henk, A. Upscaling the Mechanical Properties of a Fractured Rock Mass Using the Lattice-Spring-Based Synthetic Rock Mass (LS-SRM) Modeling Approach—Comparison of Discontinuum, Continuum and Empirical Approaches. Geosciences 2022, 12, 343. [Google Scholar] [CrossRef]
- Itasca. PFC (Particle Flow Code); Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2022. [Google Scholar]
- Cundall, P.A. Continuum and Distinct Element Numerical Modeling in Geomechanics: Lattice method for modeling brittle, jointed rock. In Proceedings of the 2nd International FLAC/DEM Symposium, Melbourne, Australia, 14–16 February 2011; pp. 14–16. [Google Scholar]
- Gulli, D.; Pellegri, M.; Marchetti, D. Mechanical behaviour of Carrara marble rock mass related to geo-structural conditions and in-situ stress. In Proceedings of the ISRM Regional Symposium—8th South American Congress on Rock Mechanics, Buenos Aires, Argentina, 15–18 November 2015; pp. 253–260. [Google Scholar]
- Meng, Z.; Zhang, J.; Peng, S. Influence of sedimentary environments on mechanical properties of clastic rocks. Environ. Geol. 2006, 51, 113–120. [Google Scholar] [CrossRef]
- Elarabi, H. Verification of Numerical and Analytical methods of Analysis of Tunnel. In Proceedings of the 8th European Conference on Numerical Methods in Geotechnical Engineering, Delft, Netherlands, 18–20 June 2014. [Google Scholar]
- Al-E’Bayat, M.; Sherizadeh, T.; Guner, D.; Asadizadeh, M. Lattice-spring-based synthetic rock mass model calibration using response surface methodology. Geomech. Eng. 2022, 31, 529–543. [Google Scholar]
- Bastola, S.; Cai, M. Simulation of Stress-Strain Relations of Zhenping Marble Using Lattice-Spring-Based Synthetic Rock Mass Models. In Proceedings of the 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, DC, USA, 17–20 June 2018. [Google Scholar]
- Box, G.E.; Hunter, J.S.; Hunter, W.G. Statistics for Experimenters: Design, Innovation, and Discovery; Wiley-Interscience: New York, NY, USA, 2005; Volume 2. [Google Scholar]
- Heidarzadeh, S. Probabilistic Stability Analysis of Open Stopes in Sublevel Stoping Method by Numerical Modeling. Ph.D. Dissertation, University of Quebec, Quebec City, QC, Canada, 2018. [Google Scholar]
- Wong, F.S. Slope reliability and response surface method. J. Geotech. Eng. 1985, 111, 32–53. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Babanouri, N.; Asadizadeh, M.; Hasan-Alizade, Z. Modeling shear behavior of rock joints: A focus on interaction of influencing parameters. Int. J. Rock Mech. Min. Sci. 2020, 134, 104449. [Google Scholar] [CrossRef]
- Li, D.; Chen, Y.; Lu, W.; Zhou, C. Stochastic response surface method for reliability analysis of rock slopes involving correlated non-normal variables. Comput. Geotech. 2011, 38, 58–68. [Google Scholar] [CrossRef]
- Haeri, H. Simulating the Crack Propagation Mechanism of Pre-Cracked Concrete Specimens Under Shear Loading Conditions. Strength Mater. 2015, 47, 618–632. [Google Scholar] [CrossRef]
- Shang, J. Persistence and tensile strength of incipient rock discontinuities. In Proceedings of the ISRM International Symposium-EUROCK 2020, Trondheim, Norway, 14–19 June 2020; International Society for Rock Mechanics and Rock Engineering: Salzburg, Austria; pp. 1–20. [Google Scholar]
- Barton, N. Review of a new shear-strength criterion for rock joints. Eng. Geol. 1973, 7, 287–332. [Google Scholar] [CrossRef]
Mechanical Properties | Hosted Rock | Infilled Minerals | ||||
---|---|---|---|---|---|---|
Amphibolite | Quartz | Calcite | Mudstone | Clay | ||
Density (kg/m3) | 3001 | 2650 | 2700 | 2460 | 1600 | |
Young’s modulus (GPa) | micro | 110.0 | 78.02 | 9.0 | 14.0 | 1.0 |
macro | 880.0 | 528.0 | 73.0 | 11.2 | 0.9 | |
UCS (MPa) | micro | 225.0 | 175.0 | 75.0 | 25.0 | 0.2 |
macro | 298.0 | 231.0 | 90.0 | 43.0 | 0.4 | |
Tensile strength (MPa) | micro | 22.50 | 17.50 | 8.00 | 2.00 | 0.20 |
macro | 22.5 | 17.50 | 8.00 | 2.10 | 0.20 | |
Friction angle (°) | micro | 26.56 | 26.56 | 30.00 | 45.00 | 26.00 |
macro | 26.56 | 32.80 | 32.00 | 36.40 | 18.70 |
Intact Rock Properties | Experimental | Numerical | |
---|---|---|---|
Micro-Properties | Macro-Properties | ||
Density (Kg/m3) | 1610 | 1610 | 1610 |
Young’s modulus (GPa) | 10.03 | 14.00 | 10.19 |
UCS (MPa) | 31.32 | 26.00 | 30.71 |
Tensile strength (MPa) | 3.43 | 3.43 | 3.43 |
Internal friction angle (°) | 26.95 | 33.00 | 25.04 |
Joint Properties | Unit | Experimental | Numerical | |
---|---|---|---|---|
Micro-Properties | Macro-Properties | |||
Friction angle (°) | (Degree) | 54.15 | 45.00 | 52.09 |
Deformability of the system | (GPa) | 4.03 | 5.50 | 3.97 |
Shear stiffness (GPa/m) | (GPa/m) | 1.19 | 1.05 | 1.18 |
Specimen | Method | Shear Strength (MPa) |
---|---|---|
Noncoplanar rock bridge | Experiment | 5.34 |
LS-SRM | 5.98 | |
Coplanar rock bridge | Experiment | 8.61 |
LS-SRM | 9.2 |
Variable/Parameter/Factor | Code | Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Rock bridge angle (°) | A | 50 | 70 | 90 |
Rock bridge length (mm) | B | 10 | 20 | 30 |
Joint roughness coefficient | C | 0 | 10 | 20 |
Normal stress (MPa) | D | 0.5 | 1.0 | 1.5 |
γ | L | JRC | Normal Stress | Shear Strength | Shear Stiffness |
---|---|---|---|---|---|
(°) | (mm) | (MPa) | (MPa) | (GPa/m) | |
Intact sample | 1.5 | 13.96 | - | ||
50 | 10 | 0–2 | 1.0 | 6.49 | 5.95 |
10–12 | 0.5 | 4.62 | 5.01 | ||
1.5 | 7.02 | 6.10 | |||
18–20 | 1.0 | 6.49 | 6.00 | ||
20 | 0–2 | 0.5 | 5.20 | 5.27 | |
1.5 | 8.24 | 6.07 | |||
10–12 | 1.0 | 6.77 | 5.07 | ||
18–20 | 0.5 | 4.86 | 5.36 | ||
1.5 | 8.02 | 6.49 | |||
30 | 0–2 | 1.0 | 6.76 | 5.75 | |
10–12 | 0.5 | 4.64 | 5.03 | ||
1.5 | 7.57 | 5.64 | |||
18–20 | 1.0 | 6.67 | 5.39 | ||
70 | 10 | 10–12 | 1.0 | 5.91 | 5.73 |
20 | 0–2 | 1.0 | 7.18 | 5.95 | |
10–12 | 0.5 | 5.00 | 5.03 | ||
1.5 | 6.32 | 5.72 | |||
18–20 | 1.0 | 6.95 | 5.80 | ||
30 | 10–12 | 1.0 | 6.61 | 5.47 | |
90 | 10 | 12–12 | 1.0 | 6.19 | 5.05 |
20 | 0–2 | 1.0 | 7.05 | 5.08 | |
10–12 | 0.5 | 4.96 | 5.13 | ||
1.5 | 7.43 | 4.95 | |||
18–20 | 1.0 | 6.81 | 5.07 | ||
30 | 10–12 | 1.0 | 6.56 | 4.95 |
Source | Sum of Squares | df * | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 23.76 | 6 | 3.96 | 47.77 | <0.0001 |
B: rock bridge length | 0.364 | 1 | 0.364 | 4.39 | 0.0479 |
D: normal stress | 11.63 | 1 | 11.63 | 140.27 | <0.0001 |
AD | 0.28 | 1 | 0.28 | 3.38 | 0.049 |
B2 | 0.5455 | 1 | 0.5455 | 6.58 | 0.0177 |
C2 | 0.7343 | 1 | 0.7343 | 8.86 | 0.007 |
D2 | 1.60 | 1 | 1.60 | 19.34 | 0.0002 |
Residual | 1.82 | 22 | 0.0829 | ||
Lack of Fit | 0.000453 | 19 | 0.096 |
Source | Sum of Squares | df * | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 4.78 | 8 | 0.5969 | 18.22 | <0.0001 |
A: rock bridge angle | 0.3228 | 1 | 0.3228 | 9.86 | 0.0052 |
B: rock bridge length | 0.216 | 1 | 0.216 | 6.6 | 0.0183 |
D: normal stress | 1.43 | 1 | 1.43 | 43.61 | <0.0001 |
AD | 0.4325 | 1 | 0.4325 | 13.21 | 0.0017 |
A2 | 0.8103 | 1 | 0.8103 | 24.74 | <0.0001 |
B2 | 0.4175 | 1 | 0.4175 | 12.75 | 0.0019 |
C2 | 1.34 | 1 | 1.34 | 40.92 | 0.0001 |
D2 | 0.3158 | 1 | 0.3158 | 9.64 | 0.0056 |
Residual | 0.6551 | 20 | 0.0328 | ||
Lack of Fit | 0.6551 | 17 | 0.0385 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-E’Bayat, M.; Sherizadeh, T.; Guner, D. Laboratory-Scale Investigation on Shear Behavior of Non-Persistent Joints and Joint Infill Using Lattice-Spring-Based Synthetic Rock Mass Model. Geosciences 2023, 13, 23. https://doi.org/10.3390/geosciences13020023
Al-E’Bayat M, Sherizadeh T, Guner D. Laboratory-Scale Investigation on Shear Behavior of Non-Persistent Joints and Joint Infill Using Lattice-Spring-Based Synthetic Rock Mass Model. Geosciences. 2023; 13(2):23. https://doi.org/10.3390/geosciences13020023
Chicago/Turabian StyleAl-E’Bayat, Mariam, Taghi Sherizadeh, and Dogukan Guner. 2023. "Laboratory-Scale Investigation on Shear Behavior of Non-Persistent Joints and Joint Infill Using Lattice-Spring-Based Synthetic Rock Mass Model" Geosciences 13, no. 2: 23. https://doi.org/10.3390/geosciences13020023
APA StyleAl-E’Bayat, M., Sherizadeh, T., & Guner, D. (2023). Laboratory-Scale Investigation on Shear Behavior of Non-Persistent Joints and Joint Infill Using Lattice-Spring-Based Synthetic Rock Mass Model. Geosciences, 13(2), 23. https://doi.org/10.3390/geosciences13020023