Hydrogeochemical Characteristics and Isotopic Tools Used to Identify the Mineralization Processes of Bottled Mineral Water in Morocco
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sampling and Analytical Techniques
3. Results and Discussion
3.1. Water Quality
3.2. Water Mineralization Process
3.2.1. Water–Rock Interaction
3.2.2. Ion Exchange Index
- CAI close to 0: there is a balance between the chemical compositions of the water and the aquifer.
- CAI < 0: the aquifer releases calcium and magnesium and fixes sodium and potassium, direct exchange.
- CAI > 0: the aquifer releases sodium and potassium and fixes calcium and magnesium, indirect exchange.
3.2.3. Saturation Index
3.2.4. Gibbs Diagram
3.3. Isotopic Characterization
3.3.1. Relation between δ18O and δ2H in Rainwater and Water Sources
3.3.2. Correlation between Altitude and δ18O
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ochilova, N.R.; Muratova, G.S.; Karshieva, D.R. The Importance of Water Quality and Quantity in Strengthening the Health and Living Conditions of the Population. CAJMS 2021, 2, 399–402. [Google Scholar]
- Official Bulletin. n°6506 du 6 Octobre 2016 Dahir n°1-16-113 du 6 Kaada 1437 Portant Promulgation de la loi n°36-15 Relative à L'eau; Nabu Press: Charleston, South Carolina, 2016. [Google Scholar]
- EU Directive 1980/777/EEC. Council Directive 1980/778/EEC of 15 July 1980 on the Approximation of the Laws of the Member States Relating to the Exploitation and Marketing of Natural Mineral Water. Off. J. Eur. Communities 1980, L229, 1–10. [Google Scholar]
- EU Directive 1996/70/EC. Directive 1996/70/EC of the European Parliament and of the Council of 28 October 1996 amending Council Directive 80/777/EEC on the approximation of the laws of the Member States relating to the exploitation and marketing of natural mineral waters. Off. J. Eur. Communities 1996, L299, 26–28. [Google Scholar]
- EU Directive 2003/40/EC. Establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters. Off. J. Eur. Communities L 2003, 126, 34–39. [Google Scholar]
- Grappein, B.; Lasagna, M.; Capodaglio, P.; Caselle, C.; Luca, D.A.D. Hydrochemical and Isotopic Applications in the Western Aosta Valley (Italy) for Sustainable Groundwater Management. Sustainability 2021, 13, 487. [Google Scholar] [CrossRef]
- Mushtaq, N.; Younas, A.; Mashiatullah, A.; Javed, T.; Ahmad, A.; Farooqi, A. Hydrogeochemical and isotopic evaluation of groundwater with elevated arsenic in alkaline aquifers in Eastern Punjab, Pakistan. Chemosphere 2018, 200, 576–586. [Google Scholar] [CrossRef]
- Bouaissa, M.; Ghalit, M.; Taupin, J.D.; El Khattabi, J.; Gharibi, E. Assessment of groundwater quality in the Bokoya Massif (Central Rif, Northern Morocco) using several analytical techniques. Euro-Mediterr. J. Env. Integr. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Bouaissa, M.; Gharibi, E.; Ghalit, M.; Taupin, J.D.; El Khattabi, J. Identifying the origin of groundwater salinization in the Bokoya massif (central Rif, northern Morocco) using hydrogeochemical and isotopic tools. Groundw. Sustain. Dev. 2021, 14, 100646. [Google Scholar] [CrossRef]
- Fugedi, U.; Kuti, L.; Jordan, G.; Kerek, B. Investigation of the hydrogeochemistry of some bottled mineral waters in Hungary. J. Geochem. Explor. 2010, 107, 305–316. [Google Scholar] [CrossRef]
- Bouaissa, M.; Ghalit, M.; Taupin, J.D.; Patris, N.; El Khattabi, J.; Gharibi, E. Assessment of medium mountain groundwater for consumption and irrigation using quality index method: Application to the Bokoya Massif (Central Rif, Northern Morocco). Arab. J. Geosci. 2021, 14, 1–13. [Google Scholar] [CrossRef]
- Voica, C.; Cristea, G.; Feher, I. Multielement and Isotopic Characterization of Bottled Mineral Waters on the Romanian Market. In Bottled and Packaged Water vol. 4: The Sciences of Beverages; Woodhead Publishing: Cambridge, UK, 2019; pp. 121–144. [Google Scholar]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Qin, W.; Han, D.; Song, X.; Liu, S. Environmental isotopes (δ18O, δ2H, 222Rn) and hydrochemical evidence for understanding rainfall-surface water-groundwater transformations in a polluted karst area. J. Hydrol 2021, 592, 125748. [Google Scholar] [CrossRef]
- Li, J.; Pang, Z.; Kong, Y.; Wang, S.; Bai, G.; Zhao, H.; Yang, Z. Groundwater isotopes biased toward heavy rainfall events and implications on the local meteoric water line. J. Geophys. Res. Atmos 2018, 123, 6259–6266. [Google Scholar] [CrossRef]
- Gourcy, L. Isotopic composition of precipitation in the Mediterranean basin in relation to air circulation patterns and climate. Iaea-Tecdoc 2005, 1453, 223. [Google Scholar]
- Felipe-Sotelo, M.; Henshall-Bell, E.R.; Evans, N.D.M.; Read, D. Comparison of the chemical composition of British and Continental European bottled waters by multivariate analysis. J. Food Compost. Anal. 2015, 39, 33–42. [Google Scholar] [CrossRef]
- Peters, M.; Guo, Q.; Strauss, H.; Zhu, G. Geochemical and multiple stable isotope (N, O, S) investigation on tap and bottled water from Beijing, China. J. Geochem. Explor. 2015, 157, 36–51. [Google Scholar] [CrossRef]
- Bertoldi, D.; Bontempo, L.; Larcher, R.; Nicolini, G.; Voerkelius, S.; Lorenz, G.D.; Brereton, P. Survey of the chemical composition of 571 European bottled mineral waters. J. Food Compos. Anal. 2011, 24, 376–385. [Google Scholar] [CrossRef]
- Dinelli, E.; Lima, A.; De Vivo, B.; Albanese, S.; Cicchella, D.; Valera, P. Hydrogeochemical analysis on Italian bottled mineral waters: Effects of geology. J. Geochem. Explor. 2010, 107, 317–335. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Frizon de Lamotte, D.; Crespo-Blanc, A.; Saint-Bezar, B.; Comas, M.; Fernadez, M.; Zeyen, H.; Ayarza, H.; Robert-Charrue, C.; Chalouan, A.; Zizi, M.; et al. The Transmed Atlas—The Mediterranean Region from Crust to Mantle, Cavazza, W., Roure, F., Spakman, W., Stampfli, G., Ziegler, P., Eds.; Springer: Berlin, Germany, 2004. [Google Scholar]
- Elbatloussi, D.; Cheddadi, M.; Dadi, S.; Ruthy, I.; Orban, P.; Dassargues, A. Carte Hydrogéologique du Plateau d’Oulmès (Maroc); Notice Explicative, 2005. Available online: https://orbi.uliege.be/bitstream/2268/127371/2/NOTICEp_carte_hydro_oulmes.pdf (accessed on 15 May 2022).
- Heron, D.P.; Ghienne, J.F.; El Houicha, M.; Khoukhi, Y.; Rubino, J.L. Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol 2007, 245, 200–226. [Google Scholar] [CrossRef]
- Cherai, B.; Idrissi, B.E.F.; Charroud, M.; El Hnot, H. Les mouvements de terrain dans le secteur urbain de la ville de Fès (Maroc): Facteurs de genèse et cartographie des zones à risques. AJIRAS 2017, 5, 405–414. [Google Scholar]
- Sabri, K.; Marrero-Diaz, R.; Ntarmouchant, A.; dos Santos, T.B.; Ribeiro, M.L.; Solá, A.R.; Jesus, A.P. Geology and hydrogeochemistry of the thermo-mineral waters of the South Rif Thrust (Northern Morocco). Geothermics 2019, 78, 28–49. [Google Scholar] [CrossRef]
- Charroud, M.; Cherai, B.; Benabdelhadi, M.; Falguères, C. Impact de la néotectonique quaternaire sur la dynamique sédimentaire du Saïs (Maroc): Du bassin d'avant fosse pliocène au plateau continental quaternaire. Quaternaire Revue de l'Association Française Pour l'étude du Quaternaire 2007, 18, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Cidu, R.; Bahaj, S. Geochemistry of thermal waters from Morocco. Geothermics 2000, 29, 407–430. [Google Scholar] [CrossRef]
- Saadi, M.; Hilali, E.A.; Bensaıd, M.; Boudda, A.; Dahmani, M. Geological map of Morocco, scale 1: 1000000. Edition du Service Géologique du Maroc. Notes et Mémoires 1985, 8, 260. [Google Scholar]
- Chalouan, A.; Michard, A.; El Kadiri, K.; Negro, F.; de Lamotte, D.F.; Soto, J.I.; Saddiqi, O. The Rif Belt. In Continental Evolution: The Geology of Morocco; Springer: Berlin/Heidelberg, Germany, 2008; pp. 203–302. [Google Scholar]
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, and Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- WHO. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Official Bulletin n°6506 of October 6, 2016 Dahir n°1-16-113 of 6 Kaada 1437 Promulgating Law n°36-15 Relating to Water. 2016. Available online: http://www.auks.ma/wp-content/uploads/2019/11/loi%20eau.pdf(accessed on 27 November 2022).
- Mimi, A.L.; Dhia, H.B.; Bouri, S.; Lahrach, A.; Abidate, L.B.; Bouchareb-Haouchim, F.Z. Application of chemical geothermometers to thermal springs of the Maghreb, North Africa. Geothermics 1998, 27, 211–233. [Google Scholar] [CrossRef]
- Zarhloule, Y.; Bouri, S.; Lahrach, A.; Boughriba, M.; El Mandour, A.; Ben Dhia, H. Hydrostratigraphical study, geochemistry of thermal springs, shallow and deep geothermal exploration in Morocco: Hydrogeothermal potentialities. In Proceedings of the World Geothermal Congress, Antalya, Turkey, 24–29 April 2005; pp. 24–29. [Google Scholar]
- Barkaoui, A.E.; Zarhloule, Y.; Rimi, A.; Verdoya, M.; Bouri, S. Hydrogeochemical investigations of thermal waters in the northeastern part of Morocco. Environ. Earth Sci. 2014, 71, 1767–1780. [Google Scholar] [CrossRef]
- Reimann, C.; Birke, M. Geochemistry of European Bottled Water; Borntraeger Science Publishers: Stuttgart, Germany, 2010. [Google Scholar]
- Rossiter, A.G.; Gray, M.C. Barium contents of granites: Key to understanding crustal architecture in the southern Lachlan Fold Belt? Aust. J. Earth Sci. 2008, 55, 433–448. [Google Scholar] [CrossRef]
- Shin, W.J.; Ryu, J.S.; Shin, H.S.; Jung, Y.Y.; Ko, K.S.; Lee, K.S. Major and Trace Element Geochemistry of Korean Bottled Waters. Water 2020, 12, 2585. [Google Scholar] [CrossRef]
- Petrović, T.; Mandić, M.Z.; Veljković, N.; Papić, P.; Stojković, J. Geochemistry of Bottled Waters of Serbia. In Clean Soil and Safe Water; Springer: Dordrecht, The Netherlands, 2012; pp. 247–266. [Google Scholar]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. AGU 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Schoeller, H. Qualitative evaluation of groundwater resources. In Methods and Techniques of Groundwater Investigations and Development; UNESCO: Paris, France, 1967; pp. 44–52. [Google Scholar]
- Velde, B. Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance; Chapman & Hall: London, UK, 1992; Volume 198. [Google Scholar]
- Elango, L.; Kannan, R. Rock–water interaction and its control on chemical composition of groundwater. Dev. Environ. Sci. 2007, 5, 229–243. [Google Scholar]
- Taillefer, A. Interactions Entre Tectonique et Hydrothermalisme: Rôle de la Faille Normale de la Têt sur la Circulation Hydrothermale et la Distribution des Sources Thermales des Pyrénées Orientales. Ph. D. Thesis, Université Montpellier, Montpellier, France, 2017. [Google Scholar]
- Garcia, G.M.; Hidalgo, M.D.V.; Blesa, M.A. Geochemistry of groundwater in the alluvial plain of Tucuman province, Argentina. Hydrogeol. J. 2001, 9, 597–610. [Google Scholar] [CrossRef]
- McLean, W.; Jankowski, J.; Lavitt, N. Groundwater quality and sustainability in an alluvial aquifer, Australia. In Groundwater: Past Achievements and Future Challenges; A.A. Balkema: Rotterdam, The Netherlands, 2000; pp. 567–573. [Google Scholar]
- Mohamed, A.; Asmoay, A.; Alshehri, F.; Abdelrady, A.; Othman, A. Hydro-geochemical applications and multivariate analysis to assess the water–rock interaction in arid environments. Appl. Sci. 2022, 12, 6340. [Google Scholar] [CrossRef]
- Paternoster, M.; Liotta, M.; Favara, R. Stable isotope ratios in meteoric recharge and groundwater at Mt. Vulture volcano, southern Italy. J. Hydrol. 2008, 348, 87–97. [Google Scholar] [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Nir, A. Development of isotope methods applied to groundwater hydrology. Isot. Tech. Hydrol. Cycle 1967, 11, 109–116. [Google Scholar]
- Celle-Jeanton, H.; Travi, Y.; Blavoux, B. Isotopic typology of the precipitation in the Western Mediterranean Region at three different time scales. Geophys. Res. Lett. Am. Geophys. Union 2001, 28, 1215–1218. [Google Scholar] [CrossRef]
- Ben Ammar, S.; Taupin, J.-D.; Ben Alaya, M.; Zouari, K.; Patris, N.; Khouatmia, M. Using isotopes and geochemistry tools to characterize groundwater in a coastal phreatic aquifer from the NE of Tunisia: Guenniche basin. J. Arid. Environ. 2020, 178, 104150. [Google Scholar] [CrossRef]
- Ettayfi, N.; Bouchaou, L.; Michelot, J.L.; Tagma, T.; Warner, N.; Boutaleb, S.; Vengosh, A. Geochemical and isotopic (oxygen, hydrogen, carbon, strontium) constraints for the origin, salinity, and residence time of groundwater from a carbonate aquifer in the Western Anti-Atlas Mountains, Morocco. J. Hydrol. 2012, 438, 97–111. [Google Scholar] [CrossRef]
- Ait Lemkademe, A.; Michelot, J.L.; Benkaddour, A.; Hanich, L.; Maliki, A. Isotopic and hydrochemical approach to the functioning of an aquifer system in the region of Marrakech (Morocco). Rapid Commun. Mass Spectrom. 2011, 25, 2785–2792. [Google Scholar] [CrossRef]
- Ouda, B.; El Hamdaoui, A.; Ibn Majah, M. Isotopic composition of precipitation at three Moroccan stations influenced by oceanic and Mediterranean air masses. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA-Tecdoc 1453: Vienna, Austria, 2005; pp. 125–140. [Google Scholar]
- Olive, P.; Dassargues, A.; Griere, O.; Ruthy, I.; El Youbi, A. Caractérisation Isotopique des eaux du Granite et de l’auréole Métamorphique d’Oulmès (Maroc Central). In GIRE3D, Integrated Water Resources management and Challenges of the Sustainable Development. 2006. Available online: https://orbi.uliege.be/bitstream/2268/3459/1/publi135-2006.pdf (accessed on 15 May 2022).
- Gat, J.R. The isotopes of hydrogen and oxygen in precipitation. In Handbook of Environmental Isotope Geochemistry; IAEA: Vienna, Austria, 1980; Volume 1. [Google Scholar]
- Sefrioui, S.; Fassi Fihri, O.; El Ouali, A.; Marah, H.; Newman, B.; Essahlaoui, A. Utilisation des outils isotopiques pour la détermination de l’altitude de recharge des principales sources du bassin de Sebou-Maroc. J. Geomaghreb. 2010, 6. [Google Scholar]
- Winckel, A.; Marlin, C.; Dever, L.; Morel, J.L.; Morabiti, K.; Makhlouf, M.B.; Chalouan, A. Apport des isotopes stables dans l'estimation des altitudes de recharge de sources thermales du Maroc. C.R. Geosci. 2002, 334, 469–474. [Google Scholar] [CrossRef]
Water Type | Name | City | Origin | Depths Below the Ground Surface (m) | Geology |
---|---|---|---|---|---|
EM1 | Ain Saiss | Fez | Middle Atlas | 750 | Jurassic carbonate formation (limestone and dolomite) |
EM2 | Sidi Ali | Oulmes | Oulmes Plateau | 13.8 | Granite |
EM3 | Sidi Harazem | Fez | Middle Atlas | 90 | Miocene detrital marls of the Pre-Rif deposited on the Jurassic carbonates of the Atlas |
EM4 | Ain Atlas | Oulmes | Oulmes Plateau | - | Granite |
EM5 | Ain Ifrane | Ifrane | Middle Atlas | - | Jurassic carbonate formation (limestone and dolomite) |
EM6 | Ain Soultane | Ain Soultane | Middle Atlas | - | Jurassic carbonate formation (limestone and dolomite) |
EM7 | Chaouen | Chefchaoen | Rif | 65 | Limestone ridge of the internal Riffian domain |
EMG | Oulmes | Oulmes | Oulmes Plateau | - | Granite |
EMGF | Ain Saiss Finely | Fez | Middle Atlas | 750 | Jurassic carbonate formation (limestone and dolomite) |
EMGL | Oulmes Light | Oulmes | Oulmes Plateau | - | Granite |
ES | Rif | Chefchaoen | Rif | 35 | limestone ridge of the internal Riffian domain |
Water Type | pH | EC | TDS | Na+ | K+ | Mg2+ | Ca2+ | NH4+ | P | Cl− | SO42− | HCO3− | NO3− | NO2− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
µS/cm | mg/L | |||||||||||||
EM1 | 7.50 | 663 | 381 | 15.5 | 0.47 | 36.4 | 63.2 | 0.003 | 0.007 | 42.6 | 5.14 | 366.0 | 8.04 | 0.004 |
EM2 | 7.55 | 291 | 213 | 21.2 | 1.92 | 8.87 | 18.2 | <DL | 0.008 | 16.0 | 32.1 | 91.50 | 0.05 | 0.002 |
EM3 | 7.44 | 1299 | 750 | 121.9 | 2.47 | 36.8 | 72.4 | <DL | 0.003 | 244.9 | 20.1 | 341.6 | 4.50 | 0.025 |
EM4 | 7.73 | 335 | 277 | 35.5 | 5.68 | 10.1 | 18.2 | <DL | 0.083 | 12.4 | 12.6 | 158.6 | 8.34 | 0.003 |
EM5 | 7.55 | 582 | 358 | 2.54 | 0.70 | 37.9 | 70.1 | <DL | 0.023 | 8.88 | 6.57 | 420.9 | 7.15 | 0.010 |
EM6 | 7.58 | 695 | 440 | 3.23 | 0.63 | 44.4 | 75.2 | 0.055 | 0.008 | 10.6 | 10.0 | 420.9 | 22.5 | 0.005 |
EM7 | 7.32 | 518 | 345 | 10.9 | 0.36 | 13.1 | 79.8 | <DL | 0.004 | 19.5 | 27.0 | 256.2 | 1.58 | 0.009 |
EMG | 6.02 | 2160 | 1343 | 230.7 | 23.4 | 39.7 | 112.8 | <DL | <DL | 289.3 | 9.68 | 799.1 | 2.27 | 0.068 |
EMGF | 5.45 | 653 | 376 | 14.9 | 0.46 | 35.7 | 61.8 | <DL | 0.009 | 47.9 | 4.66 | 335.5 | 8.02 | 0.004 |
EMGL | 5.71 | 2160 | 1318 | 231.6 | 23.9 | 47.8 | 126.6 | 0.010 | 0.003 | 292.9 | 10.3 | 841.8 | 2.74 | 0.035 |
ES | 7.78 | 175 | 157 | 6.41 | 0.35 | 6.85 | 29.9 | <DL | 0.002 | 10.6 | 13.4 | 109.8 | 0.78 | <DL |
DL | 0.1 | 0.1 | 0.1 | 0.0002 | 0.001 | 0.0001 | 0.0001 | 0.001 | 0.0003 | 0.1 | 0.02 | 0.1 | 0.01 | 0.001 |
WHO | 6.5–8 | - | - | - | - | - | - | - | - | 250 | 250 | - | 50 | 3 |
MS | 6.5–8.5 | 2700 | - | - | - | - | - | 0.5 | - | 750 | 400 | - | 50 | 0.5 |
Water type | Si | B | Li | Ba | Rb | Sr | Cs | |||||||
µg/L | ||||||||||||||
EM1 | 2845 | 8.38 | 0.46 | 12.1 | 0.34 | 43.7 | 0.08 | |||||||
EM2 | 19,911 | 16.1 | 74.8 | 29.5 | 6.85 | 197.6 | 1.65 | |||||||
EM3 | 5240 | 41.1 | 87.5 | 18.3 | 6.05 | 499.9 | 2.17 | |||||||
EM4 | 17,824 | 62.7 | 28.5 | 47.3 | 18.3 | 314.0 | 0.10 | |||||||
EM5 | 8408 | 4.16 | 0.31 | 5.80 | 1.86 | 72.8 | 0.01 | |||||||
EM6 | 2555 | 7.31 | 0.68 | 8.30 | 0.26 | 36.1 | 0.02 | |||||||
EM7 | 4275 | 31.4 | 1.39 | 25.5 | 0.17 | 257.0 | 0.00 | |||||||
EMG | 74,898 | 545.5 | 3956.4 | 260.5 | 323.6 | 641.6 | 205.8 | |||||||
EMGF | 2707 | 8.48 | 0.55 | 12.2 | 0.31 | 41.0 | 0.08 | |||||||
EMGL | 75,674 | 589.6 | 4339.9 | 269.9 | 327.2 | 645.4 | 211.3 | |||||||
ES | 4070 | 14.8 | 0.59 | 13.7 | 0.24 | 117.5 | 0.00 | |||||||
DL | 78.8456 | 0.1027 | 0.0034 | 0.0022 | 0.0048 | 0.0012 | 0.0002 | |||||||
WHO | - | 500 | - | 700 | - | - | - | |||||||
MS | - | 300 | - | 700 | - | - | - |
Variables | TDS | Na+ | K+ | Mg2+ | Ca2+ | NH4+ | PO42− | Cl− | SO42− | HCO3− | NO3− |
---|---|---|---|---|---|---|---|---|---|---|---|
TDS | 1 | ||||||||||
Na+ | 0.97 | 1 | |||||||||
K+ | 0.92 | 0.94 | 1 | ||||||||
Mg2+ | 0.65 | 0.48 | 0.41 | 1 | |||||||
Ca2+ | 0.86 | 0.73 | 0.69 | 0.78 | 1 | ||||||
NH4+ | 0.02 | −0.12 | −0.07 | 0.41 | 0.19 | 1 | |||||
PO42− | −0.31 | −0.23 | −0.10 | −0.35 | −0.49 | −0.11 | 1 | ||||
Cl− | 0.95 | 0.97 | 0.83 | 0.55 | 0.74 | −0.13 | −0.34 | 1 | |||
SO42− | −0.22 | −0.10 | −0.18 | −0.61 | −0.32 | −0.18 | −0.11 | −0.10 | 1 | ||
HCO3− | 0.93 | 0.83 | 0.84 | 0.81 | 0.93 | 0.17 | −0.32 | 0.79 | −0.45 | 1 | |
NO3− | −0.16 | −0.32 | −0.27 | 0.45 | 0.03 | 0.85 | 0.20 | −0.30 | −0.46 | 0.05 | 1 |
δ18O (‰) | δ2H (‰) | d-Excess (‰) | δ18O (‰) | δ2H (‰) | d-Excess (‰) | Origin | |
---|---|---|---|---|---|---|---|
2015 | 2018 | ||||||
EM1 | −6.67 | −42.5 | 10.8 | −6.93 | −41.4 | 14.1 | Middle Atlas |
EM2 | −6.30 | −37.6 | 12.8 | −6.61 | −37.9 | 15.0 | Oulmes |
EM3 | −6.49 | −42.2 | 9.7 | −6.79 | −41.4 | 12.9 | Middle Atlas |
EM4 | −5.98 | −36.9 | 10.9 | −6.30 | −37.7 | 12.7 | Oulmes |
EM5 | −7.63 | −45.4 | 15.6 | −7.74 | −45.4 | 16.5 | Middle Atlas |
EM6 | −6.92 | −45.2 | 10.2 | −7.27 | −45.0 | 13.2 | Middle Atlas |
EM7 | −5.35 | −30.4 | 12.3 | −5.57 | −34.6 | 10.0 | Rif |
EMG | −6.89 | −38.9 | 16.3 | −7.20 | −38.3 | 19.3 | Oulmes |
EMGF | −6.93 | −42.6 | 12.9 | −6.93 | −41.4 | 14.1 | Middle Atlas |
EMGL | −6.87 | −38.1 | 16.9 | −7.09 | −36.6 | 20.1 | Oulmes |
ES1 | −5.35 | −30.4 | 12.3 | Rif |
Water Type | δ18O (‰) (2015) | δ18O (‰) (2018) | Altitude (m asl) |
---|---|---|---|
EM1 | −6.67 | −6.93 | 247 |
EM2 | −6.30 | −6.61 | 1108 |
EM3 | −6.49 | −6.79 | 245 |
EM4 | −5.98 | −6.3 | 934 |
EM5 | −7.63 | −7.74 | 1560 |
EM6 | −6.92 | −7.27 | 1360 |
EM7 | −5.35 | −5.57 | 402 |
EMG | −6.89 | −7.20 | 1050 |
EMGF | −6.93 | −6.93 | 247 |
EMGL | −6.87 | −7.09 | 1050 |
ES | −5.35 | 314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghalit, M.; Bouaissa, M.; Gharibi, E.; Taupin, J.-D.; Patris, N. Hydrogeochemical Characteristics and Isotopic Tools Used to Identify the Mineralization Processes of Bottled Mineral Water in Morocco. Geosciences 2023, 13, 38. https://doi.org/10.3390/geosciences13020038
Ghalit M, Bouaissa M, Gharibi E, Taupin J-D, Patris N. Hydrogeochemical Characteristics and Isotopic Tools Used to Identify the Mineralization Processes of Bottled Mineral Water in Morocco. Geosciences. 2023; 13(2):38. https://doi.org/10.3390/geosciences13020038
Chicago/Turabian StyleGhalit, Mohammad, Mohamed Bouaissa, Elkhadir Gharibi, Jean-Denis Taupin, and Nicolas Patris. 2023. "Hydrogeochemical Characteristics and Isotopic Tools Used to Identify the Mineralization Processes of Bottled Mineral Water in Morocco" Geosciences 13, no. 2: 38. https://doi.org/10.3390/geosciences13020038
APA StyleGhalit, M., Bouaissa, M., Gharibi, E., Taupin, J. -D., & Patris, N. (2023). Hydrogeochemical Characteristics and Isotopic Tools Used to Identify the Mineralization Processes of Bottled Mineral Water in Morocco. Geosciences, 13(2), 38. https://doi.org/10.3390/geosciences13020038