Defining Regional and Local Sediment Sources in the Ancestral Colorado River System: A Heavy Mineral Study of a Mixed Provenance Unit in the Fish Creek-Vallecito Basin, Southern California
Abstract
:1. Introduction
2. Geological Background
2.1. Split Mountain Group
2.2. Imperial Group
2.3. Palm Springs Group
- The Canebrake Conglomerate Formation mantles the whole of the western basin margin, unconformably overlying Cretaceous basement and in contact with footwall basement in the hanging wall of the WSDF. It comprises locally derived, coarse-grained alluvial fan deposits. These local deposits (L-suite of Winker & Kidwell [6]) have a clear provenance in the surrounding diorite and granodiorite basement [33]. It interfingers with the Olla Formation to the southeast in a relatively narrow transition zone;
- The fluvial Olla Formation has both L-suite and C-suite units, interbedded on a scale of metres to tens of metres;
- The fluvial Arroyo Diablo Formation interfingers with the Olla Formation in the NW; it also is composed of mineralogically mature, pale yellowish buff, well-sorted, fine-medium sandstones with a heavy mineral composition very similar to that of the modern Colorado River [9]. They are thought to have a Colorado River provenance and have been defined as the C-suite by Winker & Kidwell [6].
3. Methodology
3.1. Field Work and Remote Observation
3.2. Heavy Mineral Analysis
4. Results
4.1. Field Work and Remote Observation—Stratigraphic Analysis
- The Olla–Arroyo Diablo unit is a coherent package in a relatively undisturbed unconformable relationship with basement on both sides of the basin. This suggests that Winker and Kidwell’s [56] possibility of independent movement of the Coyote Mountains with respect to the Vallecito and Fish Creek Mountains during post-depositional tectonics is probably untenable (their Figure 14, Alternative 1). We would, however, support their Alternative 2—rotation of the FCVB as a single entity.
- The pre-depositional topography of the hanging wall block was not overtopped until the end of deposition of the Olla–Arroyo Diablo formations (Figure 2).
- The restriction of the lacustrine Tapiado Formation to the area previously occupied by the Arroyo Diablo Formation may indicate that the Olla Formation and overlying parts of the Hueso Formation were deposited on a slope.
4.2. Field Work and Remote Observation—Sedimentology
- C-Suite sandstone;
- L-suite sandstone;
- L-Suite sandstone with interbedded black siltstone;
- Black siltstone, dominantly associated with L-Suite;
- Mixed C- and L-Suite sandstone;
- Red mudstone, dominantly associated with C-Suite.
- A lower, C-Suite dominant unit which has a predictable basinward increase in C-Suite;
- A middle, L-Suite dominant unit which extends relatively far into the basin and is characterised by the highest proportion of black siltstone and of mixed association and the lowest percentage of red mudstone;
- An upper unit which is C-Suite dominant and shows a marked expansion of the C-Suite toward the basin margin.
4.3. Stable Minerals of Fish Creek-Vallecito Basin
4.4. Garnet Geochemistry
4.5. Detrital Zircon U-Pb Dating
5. Discussion
5.1. Provenance of Large Rivers
5.2. External Forcing Factors
5.3. Provenance Mixing—Controls and Processes
6. Conclusions
- The Pliocene Colorado River system was unusual among the Earth’s great rivers in having its delta deposited in a strike-slip plate boundary and in having a floodplain depositional unit (Olla Formation) with a genuine mixed and interbedded provenance;
- The interbedding and mixing of far-travelled and locally derived deposits was facilitated by persistent local topography within and adjacent to the receiving basin;
- Climate, tectonics, and overall geometry of the sediment routing system of the Colorado River remained relatively constant through the deposition of the Olla and Arroyo Diablo formations. However, climate variation on the Milankovitch scale may have had an effect on the local sediment flux, which would have been more sensitive to local rainfall variation than the very large, buffered, Colorado system;
- The low ATi of much of the Olla Formation, when compared to the L- and C-suite end-member samples, could be the result of longer time spent in storage on the flood plain top environment prior to burial. It should also be acknowledged that the lower ATi could be the result of sediment recycling along the lower Colorado River corridor as a result of remobilization from fill-and-spill processes upstream of the FCVB [77,78,79,80];
- The combination of stratigraphic, sedimentological, and heavy mineral work suggests that the Olla L-Suite was deposited on the distal part of the Canebrake alluvial fan system still with a depositional slope towards the basin. Deposition of the Olla was probably by both the main trunk stream of the Colorado and smaller tributaries coming across the fans. The migration of the main river could have cannibalised fan toe deposits, and vice versa, leading to true mixed provenance units in a restricted area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Axen, G.J.; Fletcher, J.M. Late Miocene-Pleistocene extensional faulting, northern Gulf of California, Mexico and Salton Trough, California. Int. Geol. Rev. 1998, 40, 217–244. [Google Scholar] [CrossRef]
- Winker, C.D.; Kidwell, S.M. Paleocurrent evidence for lateral displacement of the Pliocene Colorado River delta by the San Andreas fault system, southeastern California. Geology 1986, 14, 788–791. [Google Scholar] [CrossRef]
- Dibblee, T.W., Jr. Geology of the Imperial Valley Region, California. Geol. South. Calif. Calif. Div. Mines Geol. Bull. 1954, 70, 21–28. [Google Scholar]
- Dibblee, T.W. Stratigraphy and Tectonics of the San Felipe Hills, Borrego Badlands, Superstition Hills, and Vicinity. In The Imperial Basin – Tectonics, Sedimentation and Thermal Aspects; Rigsby, C.A., Ed.; Pacific Section Society of Economic Paleontologists and Mineralogists: Los Angeles, CA, USA, 1984; Volume 40, pp. 31–44. [Google Scholar]
- Dibblee, T.W.; Ehrenspeck, H.E. Field Relations of Miocene Volcanic and Sedimentary Rocks of the Western Santa Monica Mountains, California. In Depositional and Volcanic Environments of Middle Tertiary Rocks in the Santa Mountains, Southern California; Weigand, P.W., Fritsche, A.E., Davis, G.E., Eds.; Pacific Section Society of Economic Paleontology Mineralogy: Los Angeles, CA, USA, 1993; Volume 72, pp. 75–92. [Google Scholar]
- Winker, C.D.; Kidwell, S.M. Stratigraphy of a marine rift basin: Neogene of the Western Salton Trough, California. In Field Conference Guide 1996; Patrick, L., Abbott, J.D., Eds.; Pacific Section American Association Petroleum Geology: San Diego, CA, USA; Volume 73, pp. 295–336.
- Kimbrough, D.L.; Grove, M.; Gehrels, G.E.; Dorsey, R.J.; Howard, K.A.; Lovera, O.; Aslan, A.; House, P.K.; Pearthree, P.A. Detrital zircon U-Pb provenance of the Colorado River: A 5 m.y. record of incision into cover strata overlying the Colorado Plateau and adjacent regions. Geosphere 2015, 11, 1719–1748. [Google Scholar] [CrossRef] [Green Version]
- Dorsey, R.J.; Housen, B.A.; Janecke, S.U.; Fanning, C.M.; Spears, A.L.F. Stratigraphic record of basin development within the San Andreas fault system: Late Cenozoic Fish Creek–Vallecito basin, southern California. Geol. Soc. Am. Bull. 2011, 123, 771–793. [Google Scholar] [CrossRef]
- Nicholson, U.; Carter, A.; Robinson, P.J.; Macdonald, D.I.M. Eocene–Recent Drainage Evolution of the Colorado River and Its Precursor: An Integrated Provenance Perspective from SW California. In River to Reservoir: Geoscience to Engineering; Special Publication; Corbett, P.W.M., Owen, A., Hartley, A.J., Pla-Pueyo, S., Barreto, D., Hackney, C., Kape, S.J., Eds.; Geological Society: London, UK, 2019; Volume 488, pp. 47–72. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Beard, L.S.; Brakenridge, R.; Erjavec, J.L.; Ferguson, R.C.; Inman, K.F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. GSA Bull. 1983, 94, 222–235. [Google Scholar] [CrossRef]
- Jefferson, G.; Lindsay, L. Fossil Treasures of the Anza Borrego Desert; Sunbelt Publications: Chula Vista, CA, USA, 2006. [Google Scholar]
- <sc>Wood</sc>, L.J. Chronostratigraphy and tectonostratigraphy of the Columbus Basin, Eastern Offshore Trinidad. Bull. Am. Assoc. Pet. Geol. 2000, 84, 1905–1928. [Google Scholar]
- Nicholson, U.; Vanlaningham, S.; Macdonald, D.I.M. Quaternary landscape evolution over a strike-slip plate boundary: Drainage network response to incipient orogenesis in Sakhalin, Russian far east. Geosphere 2013, 9, 588–601. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, U.; Van Der, E.S.B.; Clift, P.D.; Flecker, R.; Macdonald, D.I.M. The sedimentary and tectonic evolution of the Amur River and North Sakhalin Basin: New evidence from seismic stratigraphy and Neogene–Recent sediment budgets. Basin Res. 2016, 28, 273–297. [Google Scholar] [CrossRef]
- Dorsey, R.J. Sedimentation and crustal recycling along an active oblique-rift margin: Salton Trough and northern Gulf of California. Geology 2010, 38, 443–446. [Google Scholar] [CrossRef]
- Dorsey, R.J.; Axen, G.J.; Peryam, T.C.; Kairouz, M.E. Initiation of the Southern Elsinore Fault at ∼1.2 Ma: Evidence from the Fish Creek–Vallecito Basin, southern California. Tectonics 2012, 31, 21. [Google Scholar] [CrossRef]
- Crow, R.S.; Schwing, J.; Karlstrom, K.E.; Heizler, M.; Pearthree, P.A.; House, P.K.; Dulin, S.; Jänecke, S.U.; Stelten, M.; Crossey, L.J. Redefining the age of the lower Colorado River, southwestern United States. Geology 2021, 49, 635–640. [Google Scholar] [CrossRef]
- Dorsey, R.J.; Axen, G.J.; Grove, M.J.; Housen, B.A.; Jefferson, G.; Mcdougall, K.; Murray, L.; Oskin, M.E.; Peryam Van Wijk, J.W.; Young, E.K. Redefining the age of the lower Colorado River, southwestern United States: Comment. Geology 2021, 49, e531. [Google Scholar] [CrossRef]
- Crow, R.S.; Schwing, J.; Karlstrom, K.E.; Heizler, M.; Pearthree, P.A.; House, P.K.; Dulin, S.; Jänecke, S.U.; Stelten, M.; Crossey, L.J. Redefining the age of the lower Colorado River, southwestern United States: REPLY. Geology 2021, 49, e532–e533. [Google Scholar] [CrossRef]
- Winker, C.D. Neogene Stratigraphy of the Fish Creek-Vallecito Section, Southern California: Implications for Early History of the Northern Gulf of California and the Colorado Delta. Ph.D. Thesis, University of Arizona, Tucson, AZ, USA, 1987; p. 494. Available online: http://hdl.handle.net/10150/191123 (accessed on 3 July 2022).
- Allen, P.A.; Allen, J.R. Basin Analysis: Principles and Application to Petroleum Play Assessment, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; p. 602. [Google Scholar]
- Van Andel, T.H. Provenance, Transport and Deposition of Rhine Sediments: A Heavy Mineral Study on River Sands from the Drainage Area of the Rhine; Veenman: Groningen, The Netherlands, 1950. [Google Scholar]
- Nicholson, U.; Poynter, S.; Clift, P.D.; Macdonald, D.I.M. Tying Catchment to Basin in a Giant Sediment Routing System: A Source-to-Sink Study of the Neogene—Recent Amur River and Its Delta in the North Sakhalin Basin. In Sediment Provenance Studies in Hydrocarbon Exploration and Production; Special Publications; Scott, R.A., Smyth, H.R., Morton, A.C., Richardson, N., Eds.; Geological Society: London, UK, 2014; Volume 386, pp. 163–193. [Google Scholar]
- Dorsey, R.J. Stratigraphy, Tectonics, and Basin Evolution in the Anza-Borrego Desert Region. In Fossil Treasures of the Anza-Borrego Desert; Jefferson, G.T., Lindsay, L., Eds.; Sunbelt Publications: Chula Vista, CA, USA, 2005; pp. 89–104. ISBN 9780932653505. [Google Scholar]
- Shirvell, C.R.; Stockli, D.F.; Axen, G.J.; Grove, M. Miocene-Pliocene exhumation along the west Salton detachment fault, southern California, from (U-Th)/He thermochronometry of apatite and zircon. Teconics 2009, 28, 14. [Google Scholar] [CrossRef]
- Umhoefer, P.J.; Darin, M.H.; Bennett, S.E.K.; Skinner, L.A.; Dorsey, R.J.; Oskin, M.E. Breaching of strike-slip faults and successive flooding of pull-apart basins to form the Gulf of California seaway from ca. 8-6 Ma. Geology 2018, 46, 695–698. [Google Scholar] [CrossRef]
- Steely, A.N.; Janecke, S.U.; Dorsey, R.J.; Axen, G.J. Early Pleistocene initiation of the San Felipe fault zone, SW Salton Trough, during reorganization of the San Andreas fault system. Bull. Geol. Soc. Am. 2009, 121, 663–687. [Google Scholar] [CrossRef]
- Ruisaard, C.I. Stratigraphy of the Miocene Alverson Formation, Imperial County, California. Master’s Thesis, San Diego State University, San Diego, CA, USA, 1979; p. 125. Available online: https://digitallibrary.sdsu.edu/islandora/object/sdsu%3A235 (accessed on 21 April 2022).
- Oskin, M.; Stock, J.; Martín-Barajas, A. Rapid localization of Pacific-North American plate motion in the Gulf of California. Geology 2001, 29, 459–462. [Google Scholar] [CrossRef]
- Oskin, M.; Stock, J. Marine incursion synchronous with plate-boundary localization in the Gulf of California. Geology 2003, 31, 23–26. [Google Scholar] [CrossRef]
- Van De Kamp, P.C. Holocene continental sedimentation in the Salton Basin, California: A reconnaissance. Bull. Geol. Soc. Am. 1973, 84, 827–848. [Google Scholar] [CrossRef]
- Dorsey, R.J.; Fluette, A.; Mcdougall, K.; Housen, B.A.; Janecks, S.U.; Axen, G.J.; Shirvell, C.R. Chronology of Miocene–Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution. Geology 2007, 35, 57–60. [Google Scholar] [CrossRef]
- Nicholson, U.A.M. Landscape Evolution and Sediment Routing Across A Strike-Slip Plate Boundary. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 2009; p. 475. [Google Scholar]
- Robinson, P.J. A Provenance Study of Cenozoic Palaeo-Deltaic Sediments in California as A Tool for Understanding the Evolution of the Colorado River. Ph.D. Thesis, University of Aberdeen, Aberdeen, UK, 2013; p. 425. [Google Scholar]
- Thürach, H. Über das verkommen mikrospokischer zirkone und titanmineralien in des gesteinen. Verh. Der Phys.-Med. Ges. Zu Würzburg 1884, 18, 203–284. [Google Scholar]
- Hedberg, H.D. Some aspects of sedimentary petrology in relation to stratigraphy in the Bolivar coast fields of the Maracaibo Basin, Venezuela. J. Palaeontol. 1928, 2, 32–42. [Google Scholar]
- Illing, V.C. The oilfields of Trinidad. Proc. Geol. Assoc. 1916, 27, 115. [Google Scholar]
- Reed, R.D. Some methods for heavy mineral investigations. Econ. Geol. 1924, 19, 320–337. [Google Scholar] [CrossRef]
- Tickell, F.G. The correlative value of the heavy minerals. Am. Assoc. Of. Pet. Geol. Bull. 1924, 8, 158–168. [Google Scholar]
- Mange, M.A.; Wright, D.T. (Eds.) Heavy Minerals in Use; Elsevier: Amsterdam, The Netherlands, 2007; pp. 439–464. [Google Scholar]
- Morton, A.C.; Knox, R.W. O’.B.; Hallsworth, C. Correlation of reservoir sandstones using quantitative heavy mineral analysis. Pet. Geosci. 2002, 8, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.C.; Milne, A. Heavy mineral stratigraphic analysis on the Clair Field, UK, West of Shetlands: A unique real-time solution for red-bed correlation while drilling. Pet. Geosci. 2012, 18, 115–128. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H. Heavy Minerals in Colour; Chapman and Hall: London, UK, 2012. [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Morton, A.C. A new approach to provenance studies: Electron microprobe analysis of detrital garnets from Middle Jurassic sandstones of the northern North Sea. Sedimentology 1985, 32, 553–566. [Google Scholar] [CrossRef]
- Rainbird, R.H.; Heaman, L.M.; ANDYoung, G. Sampling Laurentia: Detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen. Geology 1992, 20, 351–354. [Google Scholar] [CrossRef]
- Mange, M.A.; Morton, A.C. Chapter 13: Geochemistry of Heavy Minerals. In Heavy Minerals in Use; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 345–391. [Google Scholar]
- Gerdes, A.; Zeh, A. Combined U–Pb and Hf isotope LA-(MC)-ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Frei, D.; Gerdes, A. Precise and accurate in situ U-Pb dating of zircon with high sample throughout by automated LA-SF-ICP-MS. Chem. Geol. 2009, 261, 261–270. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Nasdala, L.; Hofmeister, W.; Norberg, N.; Martinson, J.; Corfu, F.; Dörr, W.; Kamo, S.; Kennedy, A.; Kronz, A.; Reiners, P.; et al. Zircon M257-a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostand. Geoanalytical Res. 2008, 32, 247–265. [Google Scholar] [CrossRef]
- Mattinson, J.M. Analysis of the relative decay constants of 235U and 238U by multi-step CA-TIMS measurements of closed-system natural zircon samples. Chem. Geol. 2010, 275, 186–198. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel; Special Publications; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; p. 4. [Google Scholar]
- Rey, F.M.; Olariu, C.; Steel, R.J. Using the modern Colorado delta to reconstruct the compound clinoforms of the Pliocene Colorado delta. J. Sediment. Res. 2022, 92, 405–432. [Google Scholar] [CrossRef]
- Winker, C.D.; Kidwell, S.M. Stratigraphic evidence for ages of different extensional styles in the Salton Trough, southern California. Geol. Soc. Am. Abstr. Programs 2002, 34, 884. [Google Scholar]
- Cloos, M.E. Detrital Zircon U-Pb and (U-Th)/He Geo-Thermochronometry and Submarine Turbidite Fan Development in the Mio-Pliocene Gulf of California, Fish Creek-Vallecito Basin, Southern California. Ph.D. Thesis, University of Texas Austin, Austin, TX, USA, 2014. [Google Scholar]
- Hovius, N. Controls on Sediment Supply by Large Rivers. In Relative Role of Eustacy, Climate, and Tectonism in Continental Rocks; Kocurek, G., Ed.; SEPM Special Publication: Tulsa, OK, USA, 1998; Volume 59, pp. 2–16. [Google Scholar] [CrossRef]
- Steckler, M.S.; Akhter, S.H.; Seeber, L. Collision of the Ganges–Brahmaputra delta with the Burma Arc: Implications for earthquake hazard. Earth Planet. Sci. Lett. 2008, 273, 367–378. [Google Scholar] [CrossRef]
- Stow, D.; Nicholson, U.; Kearsey, S.; Tatum, D.; Gardiner, A.; Ghabra, A.; Jaweesh, M. The Pliocene-Recent Euphrates river system: Sediment facies and architecture as an analogue for subsurface reservoirs. Energy Geosci. 2020, 1, 174–193. [Google Scholar] [CrossRef]
- Pindell, J.L.; Kennan, L.; Wright, D.; Erikson, J. Clastic domains of sandstones in central/eastern Venezuela, Trinidad, and Barbados: Heavy mineral and tectonic constraints on provenance and palaeogeography. Geol. Soc. Lond. Spec. Publ. 2009, 328, 743–797. [Google Scholar] [CrossRef]
- George, C.F.; Macdonald, D.I.M.; Spagnolo, M. 2019. Deltaic sedimentary environments in the Niger Delta. J. Afr. Earth Sci. 2019, 160. [Google Scholar] [CrossRef]
- Udo, I.; Udofia, P.A. Petrography and provenance analysis of conglomeritic lithofacies of the Ameki Formation in the northeastern part of the Niger Delta Basin, Nigeria. Int. J. Eng. Sci. 2020, 9, 42–55. [Google Scholar]
- Fielding, L.; Najman, Y.; Millar, I.; Butterworth, P.; Garzanti, E.; Vezzoli, G.; Barfod, D.; Kneller, B. 2018. The initiation and evolution of the River Nile. Earth Planet. Sci. Lett. 2018, 489, 166–178. [Google Scholar] [CrossRef]
- Craddock, W.H.; Kylander-Clark, R.C. U-Pb ages of detrital zircons from the Tertiary Mississippi River Delta in central Louisiana: Insights into sediment provenance. Geosphere 2013, 9, 1832–1851. [Google Scholar] [CrossRef]
- Vivirol, D.; Weingartner, R.; Messereli, B. Assessing the hydrological significance of the world’s mountains. Mt. Res. Dev. 2003, 23, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Fernandes, V.M.; Roberts, G.G.; White, N.; Whittaker, A.C. Continental-scale landscape evolution: A history of North American topography. J. Geophys. Res. Earth Surf. 2019, 124, 2689–2722. [Google Scholar] [CrossRef]
- Thompson, R.S. Pliocene environments and climates in the western United States. Quat. Sci. Rev. 1991, 10, 115–132. [Google Scholar] [CrossRef]
- Haywood, A.M.; Dowsett, H.J.; Dolan, A.M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 2016, 7, 10646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.; Lourens, L.J.; Hilgen, F.J.; Van Der Laan, E.; Kouwenhoven, T.J.; Reichart, G.R. Late Pliocene climate variability on Milankovitch to millennial time scales: A high-resolution study of MIS100 from the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 228, 338–360. [Google Scholar] [CrossRef]
- Haywood, A.M.; Dowsett, H.J.; Valdes, P.J.; Lunt, D.J.; Francis, J.F.; Sellwood, B.W. Introduction. Pliocene climate, processes and problems. Philos. Trans. R. Soc. A 2009, 367, 3–17. [Google Scholar] [CrossRef]
- Galloway, W.E.; Whiteaker, T.L.; Ganey-Curry, P. History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin. Geosphere 2011, 7, 938–973. [Google Scholar] [CrossRef]
- Dorsey, R.J.; Lazear, G. A post-6 Ma sediment budget for the Colorado River. Geosphere 2013, 9, 781–791. [Google Scholar] [CrossRef]
- Sincavage, T.R.; Liang, M.; Pickering, J.; Goodbred, S.; Passalacqua, P. Antecedent topography and sediment dispersal: The influence of geologically instantaneous events on basin fill patterns. JGR Earth Surf. 2022, 127, 17. [Google Scholar] [CrossRef]
- House, P.K.; Pearthree, P.A.; Howard, K.A.; Bell, J.W.; Perkins, M.E.; Faulds, J.E.; Brock, A.L.; Pederson, J.; Dehler, C.M. Birth of the Lower Colorado River—Stratigraphic and Geomorphic Evidence for Its Inception Near the Conjunction of Nevada, Arizona, and California: Interior Western United States: Geological Society of America Field Guide; Geological Society of America: Boulder, CO, USA, 2005; Volume 6, pp. 357–387. [Google Scholar]
- House, P.K.; Pearthree, P.A.; Perkins, M.E. Stratigraphic Evidence for the Role of Lake Spillover in the Inception of the Lower Colorado River in Southern Nevada and Western Arizona: Geological Society of America Special Papers; Geological Society of America: Boulder, CO, USA, 2008; Volume 439, pp. 335–353. [Google Scholar]
- Pearthree, P.A.; House, P.K. Paleogeomorphology and Evolution of the Early Colorado River Inferred from Relationships in Mohave and Cottonwood Valleys, Arizona, California, and Nevada. Geosphere 2014, 10, 1139–1160. [Google Scholar] [CrossRef] [Green Version]
- Thacker, J.O.; Karlstrom, K.E.; Crossey, L.J.; Crow, R.S.; Cassidy, C.E.; Beard, L.S.; Singleton, J.S.; Strickland, E.D.; Seymour, N.M.; Wyatt, M.R. Post–12 Ma Deformation in the Lower Colorado River Corridor, Southwestern USA: Implications for Diffuse Transtension and the Bouse Formation. Geosphere 2019, 16, 111–135. [Google Scholar] [CrossRef]
Group | Formation | Member | Thickness (m) | Age (Ma) | Lithology | Interpretation | Notes |
---|---|---|---|---|---|---|---|
Pleistocene not assigned to a group | Mesa | > 100 | 0.126–0 | Gravels | Fluvial | All locally derived | |
Bow Willow Beds | 5–30 | 0.9–0.126 | Sst, conglom., & minor lst. | Fluvial and lacustrine | Locally derived; abundant paleosols | ||
Palm Springs | Hueso | Fanning-dip Interval (200 m) | 52 | 2.8–0.9 | Sandstone | Fluvial | For a discussion of the Fanning-dip Interval, see Dorsey et al. [16]. |
Tapiado | 375 | 2.8–2.0 | Mudstone | Lacustrine | Contains tuffs | ||
Diablo | 2520 | 4.2–2.8 | Sandstone | Fluvial—delta plain | Colorado River provenance | ||
Olla | Colorado & local provenance | ||||||
Canebrake | c. 2700 | c. 4.3–2.0 | Conglomerate | Alluvial fan | Local derivation | ||
Imperial | Deguynos | Camel’s Head | 325 | 4.2–4.09 | Mudstone & sandstone | Prograding delta front | Mixed provenance |
Yuha | 350 | 4.49–4.2 | |||||
Mud Hills | 400 | 5.1–4.49 | Mudstone | Prodelta | Contains shell coquinas | ||
Latrania | Wind Caves | 150 | 5.33 or 4.8 | Sandstone | Turbidites | First Colorado sands | |
Upper Megabreccia | 0–50 | 5.4 | Breccia | Mass flow | Instantaneous event | ||
Lycium | 140 | 6.27–5.4 | Sandstone & mudstone | Turbidites | Local provenance | ||
Fish Creek Gypsum | 0->65 | Gypsum | Marginal marine | Adjacent to FCVB to north | |||
Split Mountain (age ranges extrapolated from modelled sedimentation rates) | Lower Megabreccia | Split Mountain | 500 | c. 6.4 | Breccia | Subaerial rock avalanche | Instantaneous event |
Red & Grey | |||||||
Elephant Trees | Conglomerate | 8.0–6.4 | Sandstone & conglomerate | Alluvial fan & fluvial | Local provenance; bed thickness variable (0–200 m) | ||
Lower Tan Sst. | |||||||
Alverson Andesite | 22–14 | Olivine basalt and andesite | Extension | 0–120 m thick in FCVB area (Woodard 1974) | |||
Red Rock | >22 | Pebbly Sst. | ?Fluvial |
Section # (Figures 4 and 6) | Aggregate Thicknesses for Each Section (m) | Percentages of Each Facies by Section | C Suite as a % Total Sand | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Section Length | Buff sst (C Suite) | Green sst (L Suite) | Green sst & silt (L) | Mixed (L & C) | Siltsone | Red Mudstone | Buff sst (C Suite) | Green sst (L Suite) | Green sst & Silt (L) | Mixed (L & C) | Siltsone | Red Mudstone | ||
1 | 46.26 | 16.83 | 7.58 | 11.96 | 0.00 | 0.61 | 9.29 | 36.40 | 16.40 | 25.90 | 0.00 | 1.30 | 20.10 | 46 |
2 | 11.82 | 2.28 | 0.00 | 0.00 | 4.81 | 2.06 | 2.67 | 19.30 | 0.00 | 0.00 | 40.70 | 17.40 | 22.60 | 32 |
3 | 10.30 | 1.52 | 5.05 | 0.00 | 2.02 | 0.61 | 1.11 | 14.80 | 49.00 | 0.00 | 19.60 | 5.90 | 10.80 | 18 |
4 | 7.98 | 1.47 | 0.00 | 2.46 | 0.00 | 0.00 | 4.04 | 18.40 | 0.00 | 30.80 | 0.00 | 0.00 | 50.60 | 37 |
5 | 7.07 | 2.12 | 0.00 | 3.13 | 0.00 | 0.00 | 1.82 | 30.00 | 0.00 | 44.30 | 0.00 | 0.00 | 25.70 | 40 |
6 & 7 | 13.64 | 6.20 | 4.04 | 0.61 | 0.00 | 1.49 | 1.29 | 45.50 | 29.60 | 4.50 | 0.00 | 10.90 | 9.50 | 57 |
8 | 16.16 | 7.25 | 2.63 | 1.82 | 0.00 | 0.10 | 4.36 | 44.90 | 16.30 | 11.30 | 0.00 | 0.60 | 27.00 | 62 |
9 | 9.39 | 5.84 | 0.00 | 2.02 | 0.00 | 0.00 | 1.54 | 62.20 | 0.00 | 21.50 | 0.00 | 0.00 | 16.40 | 74 |
10 | 11.52 | 5.56 | 0.00 | 3.64 | 0.00 | 0.40 | 1.92 | 48.30 | 0.00 | 31.60 | 0.00 | 3.50 | 16.70 | 60 |
11 | 15.56 | 5.76 | 1.31 | 3.33 | 0.00 | 0.51 | 4.65 | 37.00 | 8.40 | 21.40 | 0.00 | 3.30 | 29.90 | 55 |
12 | 9.70 | 4.55 | 1.27 | 0.81 | 0.00 | 0.00 | 3.07 | 46.90 | 13.10 | 8.40 | 0.00 | 0.00 | 31.60 | 69 |
13 | 4.24 | 2.32 | 0.00 | 0.61 | 0.00 | 0.91 | 0.40 | 54.70 | 0.00 | 14.40 | 0.00 | 21.50 | 9.40 | 79 |
14 | 11.60 | 8.36 | 0.00 | 2.22 | 0.00 | 0.00 | 1.01 | 72.10 | 0.00 | 19.10 | 0.00 | 0.00 | 8.70 | 79 |
15 & 16 | 6.67 | 1.82 | 3.33 | 0.00 | 0.00 | 1.01 | 0.51 | 27.30 | 49.90 | 0.00 | 0.00 | 15.10 | 7.60 | 35 |
17 | 32.42 | 23.35 | 2.71 | 4.55 | 0.00 | 0.30 | 1.52 | 72.00 | 8.40 | 14.00 | 0.00 | 0.90 | 4.70 | 76 |
18B | 43.43 | 34.24 | 0.00 | 0.61 | 3.74 | 2.63 | 2.22 | 78.80 | 0.00 | 1.40 | 8.60 | 6.10 | 5.10 | 89 |
19 | 19.60 | 5.90 | 7.33 | 0.00 | 0.00 | 4.55 | 1.82 | 30.10 | 37.40 | 0.00 | 0.00 | 23.20 | 9.30 | 45 |
20 | 11.72 | 1.52 | 0.40 | 0.00 | 4.95 | 2.42 | 2.42 | 13.00 | 3.40 | 0.00 | 42.20 | 20.60 | 20.60 | 22 |
21A | 38.99 | 15.05 | 9.60 | 1.62 | 1.52 | 11.21 | 0.00 | 38.60 | 24.60 | 4.20 | 3.90 | 28.80 | 0.00 | 54 |
21B | 26.87 | 6.40 | 2.12 | 14.34 | 2.42 | 0.00 | 1.58 | 23.80 | 7.90 | 53.40 | 9.00 | 0.00 | 5.90 | 25 |
22 | 16.16 | 6.18 | 0.00 | 5.76 | 3.58 | 0.65 | 0.00 | 38.20 | 0.00 | 35.60 | 22.20 | 4.00 | 0.00 | 40 |
23 | 19.80 | 7.68 | 0.00 | 5.25 | 1.31 | 4.75 | 0.81 | 38.80 | 0.00 | 26.50 | 6.60 | 24.00 | 4.10 | 54 |
24 | 32.32 | 15.90 | 0.00 | 0.00 | 5.21 | 11.11 | 0.10 | 49.20 | 0.00 | 0.00 | 16.10 | 34.40 | 0.30 | 75 |
25 | 39.39 | 10.63 | 8.99 | 1.01 | 7.47 | 9.31 | 1.98 | 27.00 | 22.80 | 2.60 | 19.00 | 23.60 | 5.00 | 38 |
26 | 11.01 | 10.30 | 0.00 | 0.00 | 0.00 | 0.00 | 0.71 | 93.60 | 0.00 | 0.00 | 0.00 | 0.00 | 6.40 | 100 |
27 | 22.83 | 17.37 | 0.61 | 0.00 | 0.00 | 1.72 | 3.13 | 76.10 | 2.70 | 0.00 | 0.00 | 7.50 | 13.70 | 97 |
30 | 24.95 | 11.74 | 1.33 | 0.00 | 3.94 | 1.92 | 6.02 | 47.10 | 5.30 | 0.00 | 15.80 | 7.70 | 24.10 | 69 |
31 | 10.61 | 5.25 | 1.41 | 0.00 | 0.00 | 0.10 | 3.84 | 49.50 | 13.30 | 0.00 | 0.00 | 0.90 | 36.20 | 79 |
32 | 10.71 | 6.67 | 0.71 | 0.00 | 0.00 | 0.61 | 2.73 | 62.30 | 6.60 | 0.00 | 0.00 | 5.70 | 25.50 | 90 |
33 | 21.62 | 14.71 | 0.65 | 0.00 | 2.12 | 0.81 | 3.33 | 68.00 | 3.00 | 0.00 | 9.80 | 3.70 | 15.40 | 84 |
34 | 21.41 | 17.90 | 0.00 | 0.20 | 1.35 | 0.61 | 1.35 | 83.60 | 0.00 | 0.90 | 6.30 | 2.80 | 6.30 | 92 |
35 | 42.83 | 32.36 | 0.00 | 0.20 | 4.34 | 0.87 | 5.05 | 75.60 | 0.00 | 0.50 | 10.10 | 2.00 | 11.80 | 88 |
36 | 19.39 | 15.15 | 0.00 | 1.11 | 0.00 | 0.81 | 2.32 | 78.10 | 0.00 | 5.70 | 0.00 | 4.20 | 12.00 | 93 |
37 | 30.81 | 19.19 | 0.71 | 1.11 | 2.42 | 0.61 | 6.77 | 62.30 | 2.30 | 3.60 | 7.90 | 2.00 | 22.00 | 82 |
Total/Ave % | 678.77 | 349.37 | 61.78 | 68.36 | 51.21 | 62.67 | 85.37 | 51.50% | 9.10% | 10.10% | 7.50% | 9.20% | 12.60% | 66 |
Unit | Sections Included | Percentages of Each Facies by Section | C Suite as a % Total Sand | |||||
---|---|---|---|---|---|---|---|---|
Buff sst (C Suite) | Green sst (L Suite) | Green sst & Silt (L) | Mixed (L & C) | Siltstone | Red Mudstone | |||
Upper | 14, 17, 26, 27, 34, 35, 36, 37 | 74.9 | 2.1 | 4.9 | 4.2 | 2.6 | 11.4 | 87 |
Middle | 1, 2, 3, 15/16, 19, 20, 21A, 21B, 22, 23, 24, 25, 30 | 33.9 | 15 | 13.1 | 12.2 | 16.5 | 9.3 | 46 |
Lower | 4, 5, 6/7, 8, 9, 10, 11, 12, 13, 31, 32, 33 | 49 | 8.7 | 13.3 | 1.5 | 3.6 | 23.9 | 68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGill, P.; Nicholson, U.; Frei, D.; Macdonald, D. Defining Regional and Local Sediment Sources in the Ancestral Colorado River System: A Heavy Mineral Study of a Mixed Provenance Unit in the Fish Creek-Vallecito Basin, Southern California. Geosciences 2023, 13, 45. https://doi.org/10.3390/geosciences13020045
McGill P, Nicholson U, Frei D, Macdonald D. Defining Regional and Local Sediment Sources in the Ancestral Colorado River System: A Heavy Mineral Study of a Mixed Provenance Unit in the Fish Creek-Vallecito Basin, Southern California. Geosciences. 2023; 13(2):45. https://doi.org/10.3390/geosciences13020045
Chicago/Turabian StyleMcGill, Paula, Uisdean Nicholson, Dirk Frei, and David Macdonald. 2023. "Defining Regional and Local Sediment Sources in the Ancestral Colorado River System: A Heavy Mineral Study of a Mixed Provenance Unit in the Fish Creek-Vallecito Basin, Southern California" Geosciences 13, no. 2: 45. https://doi.org/10.3390/geosciences13020045
APA StyleMcGill, P., Nicholson, U., Frei, D., & Macdonald, D. (2023). Defining Regional and Local Sediment Sources in the Ancestral Colorado River System: A Heavy Mineral Study of a Mixed Provenance Unit in the Fish Creek-Vallecito Basin, Southern California. Geosciences, 13(2), 45. https://doi.org/10.3390/geosciences13020045