The Importance of Rock Mass Damage in the Kinematics of Landslides
Abstract
:1. Introduction
Rock Mass and Slope Damage
2. Content, Structure, and Objectives
3. The Importance of Slope Kinematics
4. Impacts of Scale and Stress on Slope Damage and Slope Kinematics
4.1. Slope Damage at the Outcrop Scale
4.2. Slope Damage at the Bench Scale
4.3. Slope Damage at the Multi-Bench Scale
5. The Role of Time in the Evolution of Slope Damage
5.1. Effects of Continuously Active Processes
5.2. Effects of Episodic or Cyclic Processes
5.3. Time-Dependent Processes and Multistage Landslides
6. The Role of Rock Mass Quality and Lithology in Slope Damage and Slope Kinematics
6.1. Effects of Low Rock Mass Quality
6.2. Effects of High Rock Mass Quality
6.3. Resistant-Over-Recessive (ROR) Stratigraphy and Slope Damage
7. The Characterization of Slope Damage: Methods, Challenges, and Considerations
7.1. Methods and Approaches for the Characterization of Slope Damage
7.2. A Kinematics-Based Slope Damage Characterization
8. Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garcia-Delgado, H.; Petley, D.N.; Bermúdez, M.A.; Sepúlveda, S.A. Fatal Landslides in Colombia (from Historical Times to 2020) and Their Socio-Economic Impacts. Landslides 2022, 19, 1689–1716. [Google Scholar] [CrossRef]
- Petley, D. Global Patterns of Loss of Life from Landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Brideau, M.-A.; Stead, D. Evaluating Kinematic Controls on Planar Translational Slope Failure Mechanisms Using Three-Dimensional Distinct Element Modelling. Geotech. Geol. Eng. 2012, 30, 991–1011. [Google Scholar] [CrossRef]
- Badger, T.C. Fracturing within Anticlines and Its Kinematic Control on Slope Stability. Environ. Eng. Geosci. 2002, 8, 19–33. [Google Scholar] [CrossRef]
- Zhuang, Y.; Xing, A.; Jiang, Y.; Sun, Q.; Yan, J.; Zhang, Y. Typhoon, Rainfall and Trees Jointly Cause Landslides in Coastal Regions. Eng. Geol. 2022, 298, 106561. [Google Scholar] [CrossRef]
- Marc, O.; Behling, R.; Andermann, C.; Turowski, J.M.; Illien, L.; Roessner, S.; Hovius, N. Long-Term Erosion of the Nepal Himalayas by Bedrock Landsliding: The Role of Monsoons, Earthquakes and Giant Landslides. Earth Surf. Dyn. 2019, 7, 107–128. [Google Scholar] [CrossRef]
- Dellow, S.; Massey, C.; Cox, S.; Archibald, G.; Begg, J.; Bruce, Z.; Carey, J.; Davidson, J.; Pasqua, F.D.; Glassey, P.; et al. Landslides Caused by the Mw7.8 Kaikōura Earthquake and the Immediate Response. Bull. N. Z. Soc. Earthq. Eng. 2017, 50, 106–116. [Google Scholar] [CrossRef]
- Barlow, J.; Barisin, I.; Rosser, N.; Petley, D.; Densmore, A.; Wright, T. Seismically-Induced Mass Movements and Volumetric Fluxes Resulting from the 2010 Mw=7.2 Earthquake in the Sierra Cucapah, Mexico. Geomorphology 2015, 230, 138–145. [Google Scholar] [CrossRef]
- Jian, W.; Xu, Q.; Yang, H.; Wang, F. Mechanism and Failure Process of Qianjiangping Landslide in the Three Gorges Reservoir, China. Environ. Earth Sci. 2014, 72, 2999–3013. [Google Scholar] [CrossRef]
- Wolter, A.; Stead, D.; Ward, B.C.; Clague, J.J.; Ghirotti, M. Engineering Geomorphological Characterisation of the Vajont Slide, Italy, and a New Interpretation of the Chronology and Evolution of the Landslide. Landslides 2016, 13, 1067–1081. [Google Scholar] [CrossRef]
- Massey, C.; Pasqua, F.D.; Holden, C.; Kaiser, A.; Richards, L.; Wartman, J.; McSaveney, M.J.; Archibald, G.; Yetton, M.; Janku, L. Rock Slope Response to Strong Earthquake Shaking. Landslides 2017, 14, 249–268. [Google Scholar] [CrossRef]
- Willenberg, H.; Loew, S.; Eberhardt, E.; Evans, K.F.; Spillmann, T.; Heincke, B.; Maurer, H.; Green, A.G. Internal Structure and Deformation of an Unstable Crystalline Rock Mass above Randa (Switzerland): Part I—Internal Structure from Integrated Geological and Geophysical Investigations. Eng. Geol. 2008, 101, 1–14. [Google Scholar] [CrossRef]
- Sartori, M.; Baillifard, F.; Jaboyedoff, M.; Rouiller, J.-D. Kinematics of the 1991 Randa Rockslides (Valais, Switzerland). Nat. Hazards Earth Syst. Sci. 2003, 3, 423–433. [Google Scholar] [CrossRef]
- Leith, K.J. Stress Development and Geomechanical Controls on the Geomorphic Evolution of Alpine Valleys. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2012. [Google Scholar]
- Mathews, W.H.; McTaggart, K.C. The Hope Landslide, British Columbia. Proc. Geol. Assoc. Can. 1969, 20, 65–75. [Google Scholar]
- Donati, D.; Stead, D.; Brideau, M.A.; Ghirotti, M. Using Pre-Failure and Post-Failure Remote Sensing Data to Constrain the Three-Dimensional Numerical Model of a Large Rock Slope Failure. Landslides 2021, 18, 827–847. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Coggan, J.S. Numerical Analysis of Initiation and Progressive Failure in Natural Rock Slopes—The 1991 Randa Rockslide. Int. J. Rock Mech. Min. Sci. 2004, 41, 69–87. [Google Scholar] [CrossRef]
- Gischig, V.; Preisig, G.; Eberhardt, E. Numerical Investigation of Seismically Induced Rock Mass Fatigue as a Mechanism Contributing to the Progressive Failure of Deep-Seated Landslides. Rock Mech. Rock Eng. 2016, 49, 2457–2478. [Google Scholar] [CrossRef]
- Kachanov, L.M. Introduction to Continuum Damage Mechanics; Springer: Dordrecht, The Netherlands, 1986; Volume 10, ISBN 978-90-481-8296-1. [Google Scholar]
- Paventi, M. Rock Mass Characteristics and Damage at the Birchtree Mine. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1996. [Google Scholar]
- Stead, D.; Coggan, J.S.; Eberhardt, E. Realistic Simulation of Rock Slope Failure Mechanisms: The Need to Incorporate Principles of Fracture Mechanics. Int. J. Rock Mech. Min. Sci. 2004, 41, 466. [Google Scholar] [CrossRef]
- Brideau, M.-A.; Yan, M.; Stead, D. The Role of Tectonic Damage and Brittle Rock Fracture in the Development of Large Rock Slope Failures. Geomorphology 2009, 103, 30–49. [Google Scholar] [CrossRef]
- Stead, D.; Elmo, D.; Yan, M.; Coggan, J.S. Modeling Brittle Fracture in Rock Slopes: Experience Gained and Lessons Learned. In Proceedings of the International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Perth, Australian, 12–14 September 2007. [Google Scholar]
- Collins, B.D.; Jibson, R.W. Assessment of Existing and Potential Landslide Hazards Resulting from the April 25, 2015 Gorkha, Nepal Earthquake Sequence. In U.S. Geological Survey Open-File Report; Geology, Minerals, Energy, and Geophysics Science Center U.S. Geological Survey: Menlo Park, CA, USA, 2015; 50p. [Google Scholar] [CrossRef]
- Preisig, G.; Eberhardt, E.; Smithyman, M.; Preh, A.; Bonzanigo, L. Hydromechanical Rock Mass Fatigue in Deep-Seated Landslides Accompanying Seasonal Variations in Pore Pressures. Rock Mech. Rock Eng. 2016, 49, 2333–2351. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A. Gravity-Induced Rock Mass Damage Related to Large En Masse Rockslides: Evidence from Vajont. Geomorphology 2015, 234, 28–53. [Google Scholar] [CrossRef]
- Havaej, M.; Wolter, A.; Stead, D. The Possible Role of Brittle Rock Fracture in the 1963 Vajont Slide, Italy. Int. J. Rock Mech. Min. Sci. 2015, 78, 319–330. [Google Scholar] [CrossRef]
- Donati, D.; Westin, A.M.; Stead, D.; Clague, J.J.; Stewart, T.W.; Lawrence, M.S.; Marsh, J. A Reinterpretation of the Downie Slide (British Columbia, Canada) Based on Slope Damage Characterization and Subsurface Data Interpretation. Landslides 2021, 18, 1561–1583. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Lato, M.; Gaib, S. Spatio-Temporal Characterization of Slope Damage: Insights from the Ten Mile Slide, British Columbia, Canada. Landslides 2020, 17, 1037–1049. [Google Scholar] [CrossRef]
- Toshioka, T.; Tsuchida, T.; Sasahara, K. Application of GPR to Detecting and Mapping Cracks in Rock Slopes. J. Appl. Geophys. 1995, 33, 119–124. [Google Scholar] [CrossRef]
- Hancox, G.T.; Perrin, N.D.; Dellow, G.D. Recent Studies of Historical Earthquake-Induced Landsliding, Ground Damage, and MM Intensity in New Zealand. Bull. N. Z. Soc. Earthq. Eng. 2002, 35, 59–95. [Google Scholar] [CrossRef]
- Bonzanigo, L.; Eberhardt, E.; Loew, S. Long-Term Investigation of a Deep-Seated Creeping Landslide in Crystalline Rock. Part I. Geological and Hydromechanical Factors Controlling Campo Vallemaggia. Can. Geotech. J. 2007, 44, 1157–1180. [Google Scholar] [CrossRef]
- Bedoui, S.E.; Guglielmi, Y.; Lebourg, T.; Pérez, J.L. Deep-Seated Failure Propagation in a Fractured Rock Slope over 10,000 Years: The La Clapière Slope, the South-Eastern French Alps. Geomorphology 2009, 105, 232–238. [Google Scholar] [CrossRef]
- Vyazmensky, A.; Stead, D.; Elmo, D.; Moss, A. Numerical Analysis of Block Caving-Induced Instability in Large Open Pit Slopes: A Finite Element/Discrete Element Approach. Rock Mech. Rock Eng. 2010, 43, 21–39. [Google Scholar] [CrossRef]
- Moore, J.R.; Gischig, V.; Burjanek, J.; Loew, S.; Fäh, D. Site Effects in Unstable Rock Slopes: Dynamic Behavior of the Randa Instability (Switzerland)Short Note. Bull. Seismol. Soc. Am. 2011, 101, 3110–3116. [Google Scholar] [CrossRef]
- Cheon, D.S.; Jung, Y.B.; Park, E.S.; Song, W.K.; Jang, H.I. Evaluation of Damage Level for Rock Slopes Using Acoustic Emission Technique with Waveguides. Eng. Geol. 2011, 121, 75–88. [Google Scholar] [CrossRef]
- Amitrano, D.; Gruber, S.; Girard, L. Evidence of Frost-Cracking Inferred from Acoustic Emissions in a High-Alpine Rock-Wall. Earth Planet. Sci. Lett. 2012, 341–344, 86–93. [Google Scholar] [CrossRef]
- Agliardi, F.; Crosta, G.B.; Meloni, F.; Valle, C.; Rivolta, C. Structurally-Controlled Instability, Damage and Slope Failure in a Porphyry Rock Mass. Tectonophysics 2013, 605, 34–47. [Google Scholar] [CrossRef]
- Havaej, M.; Stead, D.; Eberhardt, E.; Fisher, B.R. Characterization of Bi-Planar and Ploughing Failure Mechanisms in Footwall Slopes Using Numerical Modelling. Eng. Geol. 2014, 178, 109–120. [Google Scholar] [CrossRef]
- Kromer, R.A.; Hutchinson, D.J.; Lato, M.J.; Gauthier, D.; Edwards, T. Identifying Rock Slope Failure Precursors Using LiDAR for Transportation Corridor Hazard Management. Eng. Geol. 2015, 195, 93–103. [Google Scholar] [CrossRef]
- Vivas, J.; Stead, D.; Elmo, D.; Hunt, C. Simulating the Interaction between Groundwater and Brittle Failure in Open Pit Slopes. In Proceedings of the 13th International ISRM Congress, Montreal, QC, Canada, 10–13 May 2015. [Google Scholar]
- Parker, R.N.; Hancox, G.T.; Petley, D.N.; Massey, C.I.; Densmore, A.L.; Rosser, N.J. Spatial Distributions of Earthquake-Induced Landslides and Hillslope Preconditioning in the Northwest South Island, New Zealand. Earth Surf. Dyn. 2015, 3, 501–525. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Pasuto, A.; Galgaro, A. Integration of Laser Scanning and Thermal Imaging in Monitoring Optimization and Assessment of Rockfall Hazard: A Case History in the Carnic Alps (Northeastern Italy). Nat. Hazards 2015, 76, 1535–1549. [Google Scholar] [CrossRef]
- Bonilla-Sierra, V.; Scholtès, L.; Donzé, F.V.; Elmouttie, M. DEM Analysis of Rock Bridges and the Contribution to Rock Slope Stability in the Case of Translational Sliding Failures. Int. J. Rock Mech. Min. Sci. 2015, 80, 67–78. [Google Scholar] [CrossRef]
- Collins, B.D.; Stock, G.M. Rockfall Triggering by Cyclic Thermal Stressing of Exfoliation Fractures. Nat. Geosci. 2016, 9, 395–400. [Google Scholar] [CrossRef]
- Riva, F.; Agliardi, F.; Crosta, G.B.; Amitrano, D. Damage-Based Long Term Modelling of a Large Alpine Rock Slope. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-315-37500-7. [Google Scholar]
- de Vilder, S.J.; Rosser, N.J.; Brain, M.J. Forensic Analysis of Rockfall Scars. Geomorphology 2017, 295, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Lupogo, K. Characterization of Blast Damage in Rock Slopes: An Integrated Field-Numerical Modelling Approach. Ph. D. Thesis, Simon Fraser University, Burnaby, BC, Canada, 2017. [Google Scholar]
- Codeglia, D.; Dixon, N.; Fowmes, G.J.; Marcato, G. Analysis of Acoustic Emission Patterns for Monitoring of Rock Slope Deformation Mechanisms. Eng. Geol. 2017, 219, 21–31. [Google Scholar] [CrossRef]
- Danielson, J. An Investigation into the Time Dependent Deformation Behaviour of Open Pit Slopes at Gibraltar Mine. M. Sc. Thesis, Simon Fraser University, Burnaby, BC, Canada, 2018. [Google Scholar]
- Hamdi, P.; Stead, D.; Elmo, D.; Töyrä, J. Use of an Integrated Finite/Discrete Element Method-Discrete Fracture Network Approach to Characterize Surface Subsidence Associated with Sub-Level Caving. Int. J. Rock Mech. Min. Sci. 2018, 103, 55–67. [Google Scholar] [CrossRef]
- Riva, F.; Agliardi, F.; Amitrano, D.; Crosta, G.B. Damage-Based Time-Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes. J. Geophys. Res. Earth Surf. 2018, 123, 124–141. [Google Scholar] [CrossRef]
- Guerin, A.; Jaboyedoff, M.; Collins, B.D.; Derron, M.H.; Stock, G.M.; Matasci, B.; Boesiger, M.; Lefeuvre, C.; Podladchikov, Y.Y. Detection of Rock Bridges by Infrared Thermal Imaging and Modeling. Sci. Rep. 2019, 9, 13138. [Google Scholar] [CrossRef] [PubMed]
- Bolla, A.; Paronuzzi, P. Numerical Investigation of the Pre-Collapse Behavior and Internal Damage of an Unstable Rock Slope. Rock Mech. Rock Eng. 2019, 53, 2279–2300. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Elmo, D.; Borgatti, L. A Preliminary Investigation on the Role of Brittle Fracture in the Kinematics of the 2014 San Leo Landslide. Geosciences 2019, 9, 256. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Stewart, T.W.; Marsh, J. Numerical Modelling of Slope Damage in Large, Slowly Moving Rockslides: Insights from the Downie Slide, British Columbia, Canada. Eng. Geol. 2020, 273, 105693. [Google Scholar] [CrossRef]
- Piller, T. Characterizing the Checkerboard Creek Rock Slope Using a Combined Remote Sensing and Numerical Modelling Approach. Available online: https://summit.sfu.ca/item/35174 (accessed on 3 February 2023).
- Paronuzzi, P.; Bolla, A. In-Depth Field Survey of a Rockslide Detachment Surface to Recognise the Occurrence of Gravity-Induced Cracking. Eng. Geol. 2022, 302, 106636. [Google Scholar] [CrossRef]
- Donati, D.; Borgatti, L.; Stead, D.; Francioni, M.; Ghirotti, M.; Margottini, C. The Characterization of Slope Damage at the Civita Di Bagnoregio Plateau Using a Remote Sensing Approach. In Geotechnical Engineering for the Preservation of Monuments and Historic Sites III; CRC Press: Boca Raton, FL, USA, 2022; pp. 497–508. [Google Scholar] [CrossRef]
- Rechberger, C.; Zangerl, C. Rock Mass Characterisation and Distinct Element Modelling of a Deep-Seated Rock Slide Influenced by Glacier Retreat. Eng. Geol. 2022, 300, 106584. [Google Scholar] [CrossRef]
- Sharif, L.K.; Elmo, D.; Stead, D. New Approaches to Quantify Progressive Damage and Associated Dynamic Rock Mass Blockiness. J. Rock Mech. Geotech. Eng. 2023, 15, 285–295. [Google Scholar] [CrossRef]
- Wyllie, D. Rock Slope Engineering, 5th ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-4987-8627-0. [Google Scholar]
- Stead, D.; Wolter, A. A Critical Review of Rock Slope Failure Mechanisms: The Importance of Structural Geology. J. Struct. Geol. 2015, 74, 1–23. [Google Scholar] [CrossRef]
- Sturzenegger, M.; Stead, D. The Palliser Rockslide, Canadian Rocky Mountains: Characterization and Modeling of a Stepped Failure Surface. Geomorphology 2012, 138, 145–161. [Google Scholar] [CrossRef]
- Brideau, M.-A.; Stead, D. Controls on Block Toppling Using a Three-Dimensional Distinct Element Approach. Rock Mech. Rock Eng. 2010, 43, 241–260. [Google Scholar] [CrossRef]
- Corkum, A.G.; Martin, C.D. Analysis of a Rock Slide Stabilized with a Toe-Berm: A Case Study in British Columbia, Canada. Int. J. Rock Mech. Min. Sci. 2004, 41, 1109–1121. [Google Scholar] [CrossRef]
- Wolter, A.; Havaej, M.; Zorzi, L.; Stead, D.; Clague, J.J.; Ghirotti, M.; Genevois, R. Exploration of the Kinematics of the 1963 Vajont Slide, Italy, Using a Numerical Modelling Toolbox. Ital. J. Eng. Geol. Environ. 2013, 585–598. [Google Scholar] [CrossRef]
- Kos, A.; Amann, F.; Strozzi, T.; Delaloye, R.; von Ruette, J.; Springman, S. Contemporary Glacier Retreat Triggers a Rapid Landslide Response, Great Aletsch Glacier, Switzerland. Geophys. Res. Lett. 2016, 43, 412–466, 474. [Google Scholar] [CrossRef]
- Evans, S.G.; Clague, J.J. Recent Climatic Change and Catastrophic Geomorphic Processes in Mountain Environments. Geomorphology 1994, 10, 107–128. [Google Scholar] [CrossRef]
- Clayton, A.; Stead, D.; Kinakin, D.; Wolter, A. Engineering Geomorphological Interpretation of the Mitchell Creek Landslide, British Columbia, Canada. Landslides 2017, 14, 1655–1675. [Google Scholar] [CrossRef]
- McColl, S.T.; Davies, T.R.H.; McSaveney, M.J. Glacier Retreat and Rock-Slope Stability: Debunking Debuttressing. In Delegate Papers, Geologically Active, 11th Congress of the International Association for Engineering Geology and the Environment; CRC Press: Auckland, New Zealand, 2010; pp. 467–474. [Google Scholar]
- Grämiger, L.M.; Moore, J.R.; Gischig, V.S.; Ivy-Ochs, S.; Loew, S. Beyond Debuttressing: Mechanics of Paraglacial Rock Slope Damage during Repeat Glacial Cycles. J. Geophys. Res. Earth Surf. 2017, 122, 1004–1036. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R. Landslide Erosion Coupled to Tectonics and River Incision. Nat. Geosci. 2012, 5, 468–473. [Google Scholar] [CrossRef]
- Mysiorek, J.; Onsel, E.; Stead, D.; Rosser, N.J. Engineering Geological Characterization of the 2014 Jure Landslide, Nepal: An Interactive Mixed-Reality Approach to Slope Characterization. In Proceedings of the Under Land and Sea. GeoStJohn 2019—72nd Canadian Geotechnical Conference, St. John’s, NL, Canada, 29 September 29–2 October 2019. [Google Scholar]
- Griffiths, J.S.; Stokes, M.; Stead, D.; Giles, D. Landscape Evolution and Engineering Geology: Results from IAEG Commission 22. Bull. Eng. Geol. Environ. 2012, 71, 605–636. [Google Scholar] [CrossRef]
- Andriani, G.F.; Walsh, N. Rocky Coast Geomorphology and Erosional Processes: A Case Study along the Murgia Coastline South of Bari, Apulia—SE Italy. Geomorphology 2007, 87, 224–238. [Google Scholar] [CrossRef]
- Lim, M.; Rosser, N.J.; Allison, R.J.; Petley, D.N. Erosional Processes in the Hard Rock Coastal Cliffs at Staithes, North Yorkshire. Geomorphology 2010, 114, 12–21. [Google Scholar] [CrossRef]
- McAdoo, B.G.; Quak, M.; Gnyawali, K.R.; Adhikari, B.R.; Devkota, S.; Rajbhandari, P.L.; Sudmeier-Rieux, K. Roads and Landslides in Nepal: How Development Affects Environmental Risk. Nat. Hazards Earth Syst. Sci. 2018, 18, 3203–3210. [Google Scholar] [CrossRef]
- Kalkani, E.C.; Piteau, D.R. Finite Element Analysis of Toppling Failure at Hell’s Gate Bluffs, British Columbia. Bull. Assoc. Eng. Geol. 1976, 13, 315–327. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Elmo, D.; Onsel, E. New Techniques for Characterising Damage in Rock Slopes: Implications for Engineered Slopes and Open Pit Mines. In Proceedings of the 2020 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Perth, Australia, 12–14 May 2020; Australian Centre for Geomechanics: Crawley, Australia, 2020; pp. 129–144. [Google Scholar]
- Rose, N.D.; Hungr, O. Forecasting Potential Rock Slope Failure in Open Pit Mines Using the Inverse-Velocity Method. Int. J. Rock Mech. Min. Sci. 2007, 44, 308–320. [Google Scholar] [CrossRef]
- Elmo, D.; Donati, D.; Stead, D. Challenges in the Characterisation of Intact Rock Bridges in Rock Slopes. Eng. Geol. 2018, 245, 81–96. [Google Scholar] [CrossRef]
- Kalenchuk, K.S.; Diederichs, M.S.; McKinnon, S. Characterizing Block Geometry in Jointed Rockmasses. Int. J. Rock Mech. Min. Sci. 2006, 43, 1212–1225. [Google Scholar] [CrossRef]
- Tatone, B.S.A.; Grasselli, G. Modeling Direct Shear Tests with FEM/DEM: Investigation of Discontinuity Shear Strength Scale Effect as an Emergent Characteristic. In Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, 24–27 June 2012. [Google Scholar]
- Goodman, R.E. Block Theory and Its Application. Géotechnique 1995, 45, 383–423. [Google Scholar] [CrossRef]
- Goodman, R.E.; Shi, G. Block Theory and Its Application to Rock Engineering; Hall, W.J., Ed.; Prentice-Hall: Hoboken, NJ, USA, 1985; ISBN 978-0-13-078189-5. [Google Scholar]
- Einstein, H.H.; Veneziano, D.; Baecher, G.B.; O’Reilly, K.J. The Effect of Discontinuity Persistence on Rock Slope Stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 227–236. [Google Scholar] [CrossRef]
- Dershowitz, W.S.; Finnila, A.; Rogers, S.; Hamdi, P.; Moffitt, K.M. Step Path Rock Bridge Percentage for Analysis of Slope Stability. In Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium 2017, San Francisco, CA, USA, 25–28 June 2017; Volume 5. [Google Scholar]
- Brideau, M.-A.; Stead, D.; Kinakin, D.; Fecova, K. Influence of Tectonic Structures on the Hope Slide, British Columbia, Canada. Eng. Geol. 2005, 80, 242–259. [Google Scholar] [CrossRef]
- Pedrazzini, A.; Jaboyedoff, M.; Froese, C.R.; Langenberg, C.W.; Moreno, F. Structural Analysis of Turtle Mountain: Origin and Influence of Fractures in the Development of Rock Slope Failures. Geol. Soc. Lond. Spec. Publ. 2011, 351, 163–183. [Google Scholar] [CrossRef]
- Barton, N. The Shear Strength of Rock and Rock Joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 255–279. [Google Scholar] [CrossRef]
- Havaej, M.; Stead, D.; Lorig, L.; Vivas, J. Modelling Rock Bridge Failure and Brittle Fracturing In Large Open Pit Rock Slopes. In Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium, Chicago, IL, USA, 24–27 June 2012. [Google Scholar]
- Azzoni, A.; Chiesa, S.; Frassoni, A.; Govi, M. The Valpola Landslide. Eng. Geol. 1992, 33, 59–70. [Google Scholar] [CrossRef]
- Crosta, G.B.; Chen, H.; Lee, C.F. Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology 2004, 60, 127–146. [Google Scholar] [CrossRef]
- Semenza, E.; Ghirotti, M. History of the 1963 Vaiont Slide: The Importance of Geological Factors. Bull. Eng. Geol. Environ. 2000, 59, 87–97. [Google Scholar] [CrossRef]
- Kalenchuk, K.S.; Hutchinson, D.J.; Diederichs, M.S. Geomechanical Interpretation of the Downie Slide Considering Field Data and Three-Dimensional Numerical Modelling. Landslides 2013, 10, 737–756. [Google Scholar] [CrossRef]
- Kvapil, R.; Clews, M. An Examination of the Prandtl Mechanism in Large Dimension Slope Failures. Trans. Inst. Min. Metall. Sect. A 1979, 88, A1–A5. [Google Scholar]
- Pánek, T.; Klimeš, J. Temporal Behavior of Deep-Seated Gravitational Slope Deformations: A Review. Earth-Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Cornelius, R.R.; Scott, P.A. A Materials Failure Relation of Accelerating Creep as Empirical Description of Damage Accumulation. Rock Mech. Rock Eng. 1993, 26, 233–252. [Google Scholar] [CrossRef]
- Chandler, H.D. Creep Modelling Using Semiempirical Deformation and Damage Equations: F.c.c. Metals. Mater. Sci. Eng. A 1991, 131, 177–185. [Google Scholar] [CrossRef]
- Campanella, R.G.; Vaid, Y.P. Triaxial and Plane Strain Creep Rupture of an Undisturbed Clay. Can. Geotech. J. 1974, 11, 1–10. [Google Scholar] [CrossRef]
- Chigira, M. Long-Term Gravitational Deformation of Rocks by Mass Rock Creep. Eng. Geol. 1992, 32, 157–184. [Google Scholar] [CrossRef]
- Huang, R.Q.; Wu, L.Z.; He, Q.; Li, J.H. Stress Intensity Factor Analysis and the Stability of Overhanging Rock. Rock Mech. Rock Eng. 2017, 50, 2135–2142. [Google Scholar] [CrossRef]
- Atkinson, B.K. Subcritical Crack Growth in Geological Materials. J. Geophys. Res. Solid Earth 1984, 89, 4077–4114. [Google Scholar] [CrossRef]
- Kemeny, J. A Model for Non-Linear Rock Deformation under Compression Due to Sub-Critical Crack Growth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1991, 28, 459–467. [Google Scholar] [CrossRef]
- Kemeny, J. Time-Dependent Drift Degradation Due to the Progressive Failure of Rock Bridges along Discontinuities. Int. J. Rock Mech. Min. Sci. 2005, 42, 35–46. [Google Scholar] [CrossRef]
- Kemeny, J. The Time-Dependent Reduction of Sliding Cohesion Due to Rock Bridges along Discontinuities: A Fracture Mechanics Approach. Rock Mech. Rock Eng. 2003, 36, 27–38. [Google Scholar] [CrossRef]
- Sampaleanu, C.; Stead, D.; Donati, D.; Griffiths, C.; D’Ambra, S.; LeBreton, R. Characterizing Brittle Fracture Induced Rockfall in an Open Sub-Level Retreat Excavation. In Proceedings of the 51st US Rock Mechanics/Geomechanics Symposium 2017, San Francisco, CA, USA, 25–28 June 2017. [Google Scholar]
- Evans, S.G.; Couture, R. The 1965 Hope Slide, British Columbia; Catastrophic Failure of a Sagging Rock Slope. In Proceedings of the Geological Society of America Meeting, Denver, CO, USA, 27–30 October 2002. Paper No. 16-6. [Google Scholar]
- Grøneng, G.; Lu, M.; Nilsen, B.; Jenssen, A.K. Modelling of Time-Dependent Behavior of the Basal Sliding Surface of the Åknes Rockslide Area in Western Norway. Eng. Geol. 2010, 114, 414–422. [Google Scholar] [CrossRef]
- Chigira, M.; Kenzo, K. Deep-Seated Rockslide-Avalanches Preceded by Mass Rock Creep of Sedimentary Rocks in the Akaishi Mountains, Central Japan. Eng. Geol. 1994, 38, 221–230. [Google Scholar] [CrossRef]
- Marc, O.; Meunier, P.; Hovius, N. Prediction of the Area Affected by Earthquake-Induced Landsliding Based on Seismological Parameters. Nat. Hazards Earth Syst. Sci. 2017, 17, 1159–1175. [Google Scholar] [CrossRef]
- Azhari, A.; Ozbay, U. Investigating the Effect of Earthquakes on Open Pit Mine Slopes. Int. J. Rock Mech. Min. Sci. 2017, 100, 218–228. [Google Scholar] [CrossRef]
- Wolter, A.; Gischig, V.; Stead, D.; Clague, J.J. Investigation of Geomorphic and Seismic Effects on the 1959 Madison Canyon, Montana, Landslide Using an Integrated Field, Engineering Geomorphology Mapping, and Numerical Modelling Approach. Rock Mech. Rock Eng. 2016, 49, 2479–2501. [Google Scholar] [CrossRef]
- Gischig, V.S.; Eberhardt, E.; Moore, J.R.; Hungr, O. On the Seismic Response of Deep-Seated Rock Slope InstabilitiesInsights from Numerical Modeling. Eng. Geol. 2015, 193, 1–18. [Google Scholar] [CrossRef]
- Eberhardt, E.; Bonzanigo, L.; Loew, S. Long-Term Investigation of a Deep-Seated Creeping Landslide in Crystalline Rock. Part II. Mitigation Measures and Numerical Modelling of Deep Drainage at Campo Vallemaggia. Can. Geotech. J. 2007, 44, 1181–1199. [Google Scholar] [CrossRef]
- Matsuoka, N. Direct Observation of Frost Wedging in Alpine Bedrock. Earth Surf. Process. Landf. 2001, 26, 601–614. [Google Scholar] [CrossRef]
- Matsuoka, N. A Model of the Rate of Frost Shattering: Application to Field Data from Japan, Svalbard and Antarctica. Permafr. Periglac. Process. 1991, 2, 271–281. [Google Scholar] [CrossRef]
- Murton, J.B.; Peterson, R.; Ozouf, J.-C. Bedrock Failure by Ice Segregation in Cold Regions. Science 2006, 314, 1127–1129. [Google Scholar] [CrossRef]
- Hales, T.C.; Roering, J.J. Climatic Controls on Frost Cracking and Implications for the Evolution of Bedrock Landscapes. J. Geophys. Res. Earth Surf. 2007, 112, 1–14. [Google Scholar] [CrossRef]
- Matsuoka, N.; Sakai, H. Rockfall Activity from an Alpine Cliff during Thawing Periods. Geomorphology 1999, 28, 309–328. [Google Scholar] [CrossRef]
- Zwissler, B.; Oommen, T.; Vitton, S. A Study of the Impacts of Freeze-Thaw on Cliff Recession at the Calvert Cliffs in Calvert County, Maryland. Geotech. Geol. Eng. 2014, 32, 1133–1148. [Google Scholar] [CrossRef]
- Luo, X.; Jiang, N.; Fan, X.; Mei, N.; Luo, H. Effects of Freeze-Thaw on the Determination and Application of Parameters of Slope Rock Mass in Cold Regions. Cold Reg. Sci. Technol. 2015, 110, 32–37. [Google Scholar] [CrossRef]
- Gunzburger, Y.; Merrien-Soukatchoff, V.; Guglielmi, Y. Influence of Daily Surface Temperature Fluctuations on Rock Slope Stability: Case Study of the Rochers de Valabres Slope (France). Int. J. Rock Mech. Min. Sci. 2005, 42, 331–349. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.R.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical Forcing of Deep Rock Slope Deformation: 2. the Randa Rock Slope Instability. J. Geophys. Res. Earth Surf. 2011, 116, 1–17. [Google Scholar] [CrossRef]
- Friele, P.; Millard, T.H.; Mitchell, A.; Allstadt, K.E.; Menounos, B.; Geertsema, M.; Clague, J.J. Observations on the May 2019 Joffre Peak Landslides, British Columbia. Landslides 2020, 17, 913–930. [Google Scholar] [CrossRef] [PubMed]
- Fullin, N.; Ghirotti, M.; Donati, D.; Stead, D. Characterising the Kinematics of the Joffre Peak Landslides Using a Combined Numerical Modeling-Remote Sensing Approach. In Proceedings of the 23rd EGU General Assembly, online, 19–30 April 2021. [Google Scholar]
- Sturzenegger, M.; Stead, D.; Gosse, J.; Ward, B.; Froese, C. Reconstruction of the History of the Palliser Rockslide Based On36Cl Terrestrial Cosmogenic Nuclide Dating and Debris Volume Estimations. Landslides 2015, 12, 1097–1106. [Google Scholar] [CrossRef]
- Geertsema, M.; Menounos, B.; Bullard, G.; Carrivick, J.L.; Clague, J.J.; Dai, C.; Donati, D.; Ekstrom, G.; Jackson, J.M.; Lynett, P.; et al. The 28 November 2020 Landslide, Tsunami, and Outburst Flood—A Hazard Cascade Associated With Rapid Deglaciation at Elliot Creek, British Columbia, Canada. Geophys. Res. Lett. 2022, 49, e2021GL096716. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Geertsema, M.; Bendle, J.M.; Menounos, B.; Borgatti, L. Kinematic Analysis of the 2020 Elliot Creek Landslide, British Columbia, Using Remote Sensing Data. Front. Earth Sci. 2022, 10, 916069. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek–Brown Failure Criterion and GSI—2018 Edition. J. Rock Mech. Geotech. Eng. 2019, 11, 445–463. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Practical Estimates of Rock Mass Strength. Int. J. Rock Mech. Min. Sci. 1997, 34, 1165–1186. [Google Scholar] [CrossRef]
- Agliardi, F.; Sapigni, M.; Crosta, G.B. Rock Mass Characterization by High-Resolution Sonic and GSI Borehole Logging. Rock Mech. Rock Eng. 2016, 49, 4303–4318. [Google Scholar] [CrossRef]
- Cai, M.; Kaiser, P.K.; Uno, H.; Tasaka, Y.; Minami, M. Estimation of Rock Mass Deformation Modulus and Strength of Jointed Hard Rock Masses Using the GSI System. Int. J. Rock Mech. Min. Sci. 2004, 41, 3–19. [Google Scholar] [CrossRef]
- Berkowitz, B. Analysis of Fracture Network Connectivity Using Percolation Theory. Math. Geol. 1995, 27, 467–483. [Google Scholar] [CrossRef]
- Roberti, G.; Ward, B.; Vries, B. van W. de; Friele, P.; Perotti, L.; Clague, J.J.; Giardino, M. Precursory Slope Distress Prior to the 2010 Mount Meager Landslide, British Columbia. Landslides 2018, 15, 637–647. [Google Scholar] [CrossRef]
- Rechberger, C.; Fey, C.; Zangerl, C. Structural Characterisation, Internal Deformation, and Kinematics of an Active Deep-Seated Rock Slide in a Valley Glacier Retreat Area. Eng. Geol. 2021, 286, 106048. [Google Scholar] [CrossRef]
- Choi, J.H.; Edwards, P.; Ko, K.; Kim, Y.S. Definition and Classification of Fault Damage Zones: A Review and a New Methodological Approach. Earth-Sci. Rev. 2016, 152, 70–87. [Google Scholar] [CrossRef]
- Kalenchuk, K.S.; Hutchinson, D.J.; Diederichs, M.S. Application of Spatial Prediction Techniques to Defining Three-Dimensional Landslide Shear Surface Geometry. Landslides 2009, 6, 321–333. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A. The Prehistoric Vajont Rockslide: An Updated Geological Model. Geomorphology 2012, 169–170, 165–191. [Google Scholar] [CrossRef]
- Ganerød, G.V.; Grøneng, G.; Rønning, J.S.; Dalsegg, E.; Elvebakk, H.; Tønnesen, J.F.; Kveldsvik, V.; Eiken, T.; Blikra, L.H.; Braathen, A. Geological Model of the Åknes Rockslide, Western Norway. Eng. Geol. 2008, 102, 1–18. [Google Scholar] [CrossRef]
- Borgatti, L.; Guerra, C.; Nesci, O.; Romeo, R.W.; Veneri, F.; Landuzzi, A.; Benedetti, G.; Marchi, G.; Lucente, C.C. The 27 February 2014 San Leo Landslide (Northern Italy). Landslides 2015, 12, 387–394. [Google Scholar] [CrossRef]
- Spreafico, M.C.; Cervi, F.; Francioni, M.; Stead, D.; Borgatti, L. An Investigation into the Development of Toppling at the Edge of Fractured Rock Plateaux Using a Numerical Modelling Approach. Geomorphology 2017, 288, 83–98. [Google Scholar] [CrossRef]
- Jackson, L.E. Landslides and Landscape Evolution in the Rocky Mountains and Adjacent Foothills Area, Southwestern Alberta, Canada. In Catastrophic Landslides; The Geological Society of America: Boulder, CO, USA, 2002; Volume XV, pp. 325–344. [Google Scholar] [CrossRef]
- Borgatti, L.; Tosatti, G. Slope Instability Processes Affecting the Pietra Di Bismantova Geosite (Northern Apennines, Italy). Geoheritage 2010, 2, 155–168. [Google Scholar] [CrossRef]
- Delmonaco, G.; Margottini, C.; Puglisi, C. The Dying Town of Civita Di Bagnoregio and the Killer Landslide. In Proceedings of the Ninth International Symposium on Landslides, Rio de Janeiro, Brazil, 28 June–2 July 2004. [Google Scholar]
- Griffiths, J.S.; Mather, A.E.; Stokes, M. Mapping Landslides at Different Scales. Q. J. Eng. Geol. Hydrogeol. 2015, 48, 29–40. [Google Scholar] [CrossRef]
- Shea, T.; Vries, B. van W. de Structural Analysis and Analogue Modeling of the Kinematics and Dynamics of Rockslide Avalanches. Geosphere 2008, 4, 657. [Google Scholar] [CrossRef]
- Stead, D.; Eberhardt, E. Understanding the Mechanics of Large Landslides. Ital. J. Eng. Geol. Environ. 2013, 6, 85–112. [Google Scholar] [CrossRef]
- Chigira, M.; Hariyama, T.; Yamasaki, S. Development of Deep-Seated Gravitational Slope Deformation on a Shale Dip-Slope: Observations from High-Quality Drill Cores. Tectonophysics 2013, 605, 104–113. [Google Scholar] [CrossRef]
- Stead, D.; Donati, D.; Wolter, A.; Sturzenegger, M. Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned. ISPRS Int. J. Geo-Inf. 2019, 8, 296. [Google Scholar] [CrossRef]
- Dershowitz, W.; Hermanson, J.; Follin, S.; Mauldon, M. Fracture Intensity Measures in 1-D, 2-D, and 3-D at Aspo, Sweden. In Proceedings of the 4th North American Rock Mechanics Symposium, Seattle, WA, USA, 31 July–3 August 2000; pp. 849–853. [Google Scholar]
- Tuckey, Z.; Stead, D. Improvements to Field and Remote Sensing Methods for Mapping Discontinuity Persistence and Intact Rock Bridges in Rock Slopes. Eng. Geol. 2016, 208, 136–153. [Google Scholar] [CrossRef]
- Lupogo, K.; Tuckey, Z.; Stead, D.; Elmo, D. Blast Damage in Rock Slopes: Potential Applications of Discrete Fracture Network Engineering. In Proceedings of the 1st Conference on Discrete Fracture Network Engineering, Vancouver, BC, Canada, 19–22 October 2014. DFNE 2014-151. [Google Scholar]
- Hamdi, P.; Stead, D.; Elmo, D. Damage Characterization during Laboratory Strength Testing: A 3D-Finite-Discrete Element Approach. Comput. Geotech. 2014, 60, 33–46. [Google Scholar] [CrossRef]
- Alzo’ubi; Martin. Cruden A Discrete Element Damage Model for Rock Slopes. In Proceedings of the 1st Canada-US Rock Mechanics Symposium—Rock Mechanics Meeting Society’s Challenges and Demands, Vancouver, BC, Canada, 27–31 May 2007; Volume 1, pp. 503–510. [Google Scholar]
- Adhikary, D.P.; Dyskin, A.V.; Jewell, R.J.; Stewart, D.P. A Study of the Mechanism of Flexural Toppling Failure of Rock Slopes. Rock Mech. Rock Eng. 1997, 30, 75–93. [Google Scholar] [CrossRef]
- Longchamp, C.; Abellan, A.; Jaboyedoff, M.; Manzella, I. 3-D Models and Structural Analysis of Rock Avalanches: The Study of the Deformation Process to Better Understand the Propagation Mechanism. Earth Surf. Dyn. 2016, 4, 743–755. [Google Scholar] [CrossRef]
- He, L.; Coggan, J.; Stead, D.; Francioni, M.; Eyre, M. Modelling Discontinuity Control on the Development of Hell’s Mouth Landslide. Landslides 2021, 19, 277–295. [Google Scholar] [CrossRef]
- Tuckey, Z. An Integrated Field Mapping-Numerical Modelling Approach to Characterising Discontinuity Persistence and Intact Rock Bridges in Large Open Pit Slopes. Master’s. Thesis, Queen’s University, Kingston, ON, Canada, 2012. [Google Scholar]
Activity | Summary of the Analysis | Reference |
---|---|---|
Characterization | Application of GPR for analysis of surface and internal damage in rock slopes | Toshioka et al. [30] |
Characterization | Review of seismic-induced slope damage and landslides using historical data | Hancox et al. [31] |
Modelling | Preliminary investigation of brittle damage and effects on progressive failure at the Randa rockslide site (Switzerland) | Eberhardt et al. [17] |
Characterization, monitoring | Slope damage and displacement analysis of the Campo Vallemaggia landslide (Switzerland) | Bonzanigo et al. [32] |
Characterization | Mapping of slope damage at the La Clapiére landslide (France) and effects on long-term evolution | Bedoui et al. [33] |
Characterization | Investigation of the role of brittle and tectonic damage in slope and landslide kinematics | Brideau et al. [22] |
Modelling | FDEM simulation of excavation-induced slope damage in large open pits and its effects on slope stability and evolution | Vyazmensky et al. [34] |
Characterization | Assessment of damage at the Randa rockslide site (Switzerland) using geophysical methods | Moore et al. [35] |
Monitoring | Application of the downhole acoustic emission technique to investigate slope damage accumulation in slopes | Cheon et al. [36] |
Monitoring | Application of acoustic emission for the investigation of brittle damage accumulation due to frost cracking | Amitrano et al. [37] |
Characterization, monitoring | Investigation of the effects of inherent and slope damage on slope stability through rock mass quality and displacement analysis | Agliardi et al. [38] |
Modelling | Numerical simulation of slope damage development in biplanar and footwall failures | Havaej et al. [39] |
Modelling | Numerical modelling of brittle slope damage at the Vajont Slide (Italy) | Havaej et al. [27] |
Characterization | Identification, mapping, and interpretation of gravity-induced slope damage at the Vajont Slide (Italy) | Paronuzzi and Bolla [26] |
Monitoring | Analysis of rockfall frequency (proxy for slope damage) through repeated laser scanner surveys | Kromer et al. [40] |
Modelling | Analysis of the effects of groundwater pressure and slope damage development in open-pit mines | Vivas et al. [41] |
Characterization | Assessment of the spatial distribution of co-seismic surface slope damage and landslides in historical earthquakes | Parker et al. [42] |
Characterization | Mapping of open cracks in a rock slope using thermal imagery | Teza et al. [43] |
Modelling | Analysis of the effects of spatial distribution of rock bridges in planar sliding failures in rock slopes | Bonilla-Sierra et al. [44] |
Monitoring | Analysis of thermally induced deformation of an exfoliating rock slope using in situ and remote sensing methods | Collins and Stock [45] |
Modelling | Simulation of hydromechanical fatigue and damage at the Campo Vallemaggia landslide (Switzerland) | Preisig et al. [25] |
Modelling | Analysis of progressive failure driven by seismic damage and fatigue | Gischig et al. [18] |
Modelling | Numerical analysis of long-term slope damage accumulation due to rock slope creep | Riva et al. [46] |
Characterization | Automated mapping of brittle slope damage features at a retreating sea cliff | de Vilder et al. [47] |
Characterization, modelling | Remote sensing mapping and numerical simulation of blast-induced damage in open-pit mine slopes | Lupogo [48] |
Monitoring | Analysis of slope damage accumulation at Passo della Morte (Italy) using acoustic emission | Codeglia et al. [49] |
Monitoring | Analysis of correlation between damage and creep deformation rates in open-pit mines | Danielson [50] |
Modelling | Application of varied numerical methods to analyze slope damage development due to sub-level caving at the Kiruna mine (Sweden) | Hamdi et al. [51] |
Modelling | Numerical analysis of long-term slope damage accumulation and progressive failure due to glacial retreat | Riva et al. [52] |
Characterization | Identification of rock bridges along exfoliation joints through the analysis of thermal anomalies | Guerin et al. [53] |
Modelling | FDM analysis of internal damage development at the Passo della Morte landslide (Italy) | Bolla and Paronuzzi [54] |
Modelling | Simulation of brittle slope damage and its effects on the stability of the San Leo landslide (Italy) | Donati et al. [55] |
Monitoring | Mapping of surface cracking at the 10-Mile Slide (Canada) using laser scanning | Donati et al. [29] |
Modelling | Numerical simulation of slope damage at the Downie Slide (Canada), and correlation with inherent damage and basal surface morphology | Donati et al. [56] |
Characterization, modelling | Analysis of inherent and slope damage at Hope Slide (Canada) and modelling of progressive failure due to damage along the incipient rupture surface | Donati et al. [16] |
Characterization | Remote sensing analysis of inherent and slope damage at the Downie Slide (Canada) | Donati et al. [28] |
Characterization, modelling | Investigation of slope damage induced by hydromechanical fatigue at the Checkerboard Creek landslide (Canada) | Piller [57] |
Characterization | Brittle slope damage feature mapping within a rockslide scar | Paronuzzi and Bolla [58] |
Characterization | Slope damage investigation at Civita di Bagnoregio (Italy) using remote sensing methods | Donati et al. [59] |
Characterization, modelling | Analysis of the Marzellkamm rockslide (Austria) through rock mass mapping and numerical simulation | Rechberger and Zangerl [60] |
Modelling | Application of the FDEM technique to investigate brittle damage development and accumulation | Sharif et al. [61] |
Multistage Landslide | Volumes Involved | Time Gap between Events |
---|---|---|
Joffre Peak [126,127] | 1st event: ca. 3 million m3 | 3 days |
2nd event: ca. 3 million m3 | ||
Randa rockslide [12,13] | 1st event: ca. 22 million m3 | 22 days |
2nd event: ca. 7 million m3 | ||
Palliser rockslide [64,128] | 1st event: ca. 40 million m3 | ca. 2300 years |
2nd event: ca. 8 million m3 | ||
Hope Slide [15,16] | 1st event: ca. 47 million m3 | ca. 7000 years |
2nd event: ca. 47 million m3 | ||
Elliot Creek Slide [129,130] 1 | 1st event: ca. 20 million m3 | Unknown (>71 years) |
2nd event: ca. 10 million m3 |
Slope Damage Type | Conceptual Examples | Effects on Slope Stability and Kinematics |
---|---|---|
Type 1 | Incipient rockfall (overhanging) | Slope damage accumulation promotes instability by reducing shear and tensile strength along rupture surface through shearing of asperities and brittle fracturing of in-plane and out-of-plane rock bridges. Limited effect on failure or deformation kinematics. |
Sliding block (non-overhanging) | ||
Type 2 | Fracture propagation forming release surface | Slope damage accumulation causes instability through the formation of a new, fully persistent rupture surface that provides kinematic freedom to the landslide, thereby controlling the failure kinematics. |
Non-daylighting wedge | ||
Hinge (root) zone in flexural toppling | ||
Type 3 | Active–passive transition zone damage | Slope damage formation and accumulation within the landslide body, allowing for the deformation of the slope and the displacement of the landslide. |
Type 4 | Post-failure cracking | Features develop within and at the surface of the landslide body, after and as a result of its deformation, without any effect on the pre-failure behavior of the slope. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, D.; Stead, D.; Borgatti, L. The Importance of Rock Mass Damage in the Kinematics of Landslides. Geosciences 2023, 13, 52. https://doi.org/10.3390/geosciences13020052
Donati D, Stead D, Borgatti L. The Importance of Rock Mass Damage in the Kinematics of Landslides. Geosciences. 2023; 13(2):52. https://doi.org/10.3390/geosciences13020052
Chicago/Turabian StyleDonati, Davide, Doug Stead, and Lisa Borgatti. 2023. "The Importance of Rock Mass Damage in the Kinematics of Landslides" Geosciences 13, no. 2: 52. https://doi.org/10.3390/geosciences13020052
APA StyleDonati, D., Stead, D., & Borgatti, L. (2023). The Importance of Rock Mass Damage in the Kinematics of Landslides. Geosciences, 13(2), 52. https://doi.org/10.3390/geosciences13020052