Unraveling the Arctic Sea Ice Change since the Middle of the Twentieth Century
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observations
2.2. Observations CMIP5 and CMIP6 Models and Simulations
3. Results
3.1. The Role of External Forcing in Annual Mean Arctic Sea Ice Changes
3.2. The Role of External Forcing in Seasonal Arctic Sea Ice Variations
3.3. The Role of Internal Climate Variability in Historical Arctic Sea Ice Changes
4. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stroeve, J.; Holland, M.M.; Meier, W.; Scambos, T.; Serreze, M. Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett. 2007, 34, L09501. [Google Scholar] [CrossRef]
- Serreze, M.C.; Holland, M.M.; Stroeve, J. Perspectives on the Arctic’s shrinking sea-ice cover. Science 2007, 315, 1533–1536. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.C.; Parkinson, C.L.; Gersten, R.; Stock, L. Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett. 2008, 35, L01703. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, C.L.; Cavalieri, D.J. Arctic sea ice variability and trends, 1979–2006. J. Geophys. Res. Oceans 2008, 113, C07003. [Google Scholar] [CrossRef] [Green Version]
- Notz, D.; Marotzke, J. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett. 2012, 39, L08502. [Google Scholar] [CrossRef] [Green Version]
- Vihma, T. Effects of Arctic Sea Ice Decline on Weather and Climate: A Review. Surv. Geophys. 2014, 35, 1175–1214. [Google Scholar] [CrossRef] [Green Version]
- Polyakov, I.V.; Alekseev, G.V.; Bekryaev, R.V.; Bhatt, U.S.; Colony, R.; Johnson, M.A.; Karklin, V.P.; Walsh, D.; Yulin, A.V. Long-term ice variability in Arctic marginal seas. J. Clim. 2003, 16, 2078–2085. [Google Scholar] [CrossRef]
- Johannessen, O.M.; Bengtsson, L.; Miles, M.W.; Kuzmina, S.I.; Semenov, V.A.; Alekseev, G.V.; Nagurnyi, A.P.; Zakharov, V.F.; Bobylev, L.P.; Pettersson, L.H.; et al. Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus 2004, 56, 328–341. [Google Scholar] [CrossRef]
- Meier, W.N.; Stroeve, J.; Fetterer, F. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record. Ann. Glaciol. 2007, 46, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Mahoney, A.R.; Barry, R.G.; Smolyanitsky, V.; Fetterer, F. Observed sea ice extent in the Russian Arctic, 1933–2006. J. Geophys. Res. Oceans 2008, 113, C11005. [Google Scholar] [CrossRef] [Green Version]
- Semenov, V.A.; Latif, M. The early twentieth century warming and winter Arctic sea ice. Cryosphere 2012, 6, 1231–1237. [Google Scholar] [CrossRef]
- Gagné, M.-È.; Fyfe, J.C.; Gillett, N.P.; Polyakov, I.V.; Flato, G.M. Aerosol-driven increase in Arctic sea ice over the middle of the twentieth century. Geophys. Res. Lett. 2017, 44, 7338–7346. [Google Scholar] [CrossRef]
- Mueller, B.L.; Gillett, N.P.; Monahan, A.H.; Zwiers, F.W. Attribution of Arctic Sea Ice Decline from 1953 to 2012 to Influences from Natural, Greenhouse Gas, and Anthropogenic Aerosol Forcing. J. Clim. 2018, 31, 7771–7787. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Agnew, T. Human influence on Arctic sea ice detectable from early 1990s onwards. Geophys. Res. Lett. 2008, 35, L21701. [Google Scholar] [CrossRef]
- Francis, J.A.; Chan, W.; Leathers, D.J.; Miller, J.R.; Veron, D.E. Winter Northern Hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys. Res. Lett. 2009, 36, L07503. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E.; Wang, M. Large-scale atmospheric circulation changes are associated with the recent loss of Arctic sea ice. Tellus 2010, 62, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Deser, C.; Tomas, R.A.; Sun, L. The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss. J. Clim. 2015, 28, 2168–2186. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Fedorov, A.; Sévellec, F. The Mechanisms of the Atlantic Meridional Overturning Circulation Slowdown Induced by Arctic Sea Ice Decline. J. Clim. 2019, 32, 977–996. [Google Scholar] [CrossRef]
- Liu, W.; Fedorov, A.V. Global impacts of Arctic sea ice loss mediated by the Atlantic meridional overturning circulation. Geophys. Res. Lett. 2019, 46, 944–952. [Google Scholar] [CrossRef]
- Taylor, P.C.; Boeke, R.C.; Boisvert, L.N.; Feldl, N.; Henry, M.; Huang, Y.; Langen, P.L.; Liu, W.; Pithan, F.; Sejas, S.A.; et al. Process Drivers, Inter-Model Spread, and the Path Forward: A Review of Amplified Arctic Warming. Front. Earth Sci. 2022, 9, 758361. [Google Scholar] [CrossRef]
- Gregory, J.M.; Stott, P.A.; Cresswell, D.J.; Rayner, N.A.; Gordon, C.; Sexton, D.M.H. Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett. 2002, 29, 2175. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Gillett, N.P.; Shiogama, H.; Funke, B.; Hegerl, G.; Knutti, R.; Matthes, K.; Santer, B.D.; Stone, D.; Tebaldi, C. The Detection and Attribution Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geosci. Model Dev. 2016, 9, 3685–3697. [Google Scholar] [CrossRef] [Green Version]
- Walsh, J.E.; Chapman, W.L. 20th-century sea-ice variations from observational data. Ann. Glaciol. 2001, 33, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Hu, A.; Tebaldi, C. Decadal prediction in the Pacific region. J. Clim. 2010, 23, 2959–2973. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Li, J.; Zheng, F.; Feng, J.; Liu, D. Estimating the limit of decadal-scale climate predictability using observational data. Clim. Dyn. 2016, 46, 1563–1580. [Google Scholar] [CrossRef]
- Liu, W.; Hegglin, M.I.; Checa-Garcia, R.; Li, S.; Gillett, N.P.; Lyu, K.; Zhang, X.; Swart, N.C. Stratospheric ozone depletion and tropospheric ozone increases drive Southern Ocean interior warming. Nat. Clim. Chang. 2022, 12, 365–372. [Google Scholar] [CrossRef]
- Dittus, A.J.; Hawkins, E.; Wilcox, L.J.; Sutton, R.T.; Smith, C.J.; Andrews, M.B.; Forster, P.M. Sensitivity of historical climate simulations to uncertain aerosol forcing. Geophys. Res. Lett. 2020, 47, e2019GL085806. [Google Scholar] [CrossRef]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef]
- Zelinka, M.D.; Myers, T.A.; McCoy, D.T.; Po-Chedley, S.; Caldwell, P.M.; Ceppi, P.; Klein, S.A.; Taylor, K.E. Causes of higher climate sensitivity in CMIP6 models. Geophys. Res. Lett. 2020, 47, e2019GL085782. [Google Scholar] [CrossRef] [Green Version]
- Frankcombe, L.M.; von der Heydt, A.; Dijkstra, H.A. North Atlantic multidecadal climate variability: An investigation of dominant time scales and processes. J. Clim. 2010, 23, 3626–3638. [Google Scholar] [CrossRef] [Green Version]
- Drinkwater, K.F.; Miles, M.; Medhaug, I.; Otterå, O.H.; Kristiansen, T.; Sundby, S.; Gao, Y. The Atlantic Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region north of 60°N. J. Mar. Syst. 2014, 133, 117–130. [Google Scholar] [CrossRef]
- Delworth, T.L.; Zeng, F.; Vecchi, G.A.; Yang, X.; Zhang, L.; Zhang, R. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 2016, 9, 509–512. [Google Scholar] [CrossRef]
- Liu, W.; Fedorov, A.V.; Xie, S.-P.; Hu, S. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 2020, 6, eaaz4876. [Google Scholar] [CrossRef]
- Mahajan, S.; Zhang, R.; Delworth, T.L. Impact of the Atlantic Meridional Overturning Circulation (AMOC) on Arctic surface air temperature and sea-ice variability. J. Clim. 2011, 24, 6573–6581. [Google Scholar] [CrossRef] [Green Version]
- Day, J.J.; Hargreaves, J.C.; Annan, J.D.; Abe-Ouchi, A. Sources of multi-decadal variability in Arctic sea ice extent. Environ. Res. Lett. 2012, 7, 034011. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R. Mechanisms for low-frequency variability of summer Arctic sea ice extent. Proc. Natl. Acad. Sci. USA 2015, 112, 4570–4575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Fedorov, A. Interaction between Arctic sea ice and the Atlantic meridional overturning circulation in a warming climate. Clim. Dyn. 2022, 58, 1811–1827. [Google Scholar] [CrossRef]
- Yeager, S.; Karspeck, A.; Danabasoglu, G. Predicted slowdown in the rate of Atlantic sea ice loss. Geophys. Res. Lett. 2015, 42, 10704–10713. [Google Scholar] [CrossRef]
Models | HIST | AER | GHG | NAT | OZONE |
---|---|---|---|---|---|
CMIP5 | |||||
CanESM2 | r[1–5]i1p1 | r[1–5]i1p4 | r[1–5]i1p1 | r[1–5]i1p1 | r[1–5]i1p1 |
CCSM4 | r[1–6]i1p1 | r[1, 4, 6]i1p10 | r[1, 4, 6]i1p10 | r[1, 2, 4, 6]i1p1 | r[1, 4, 6]i1p14 |
FGOALS-g2 | r[1–5]i1p1 | r2i1p1 | r1i1p1 | r[1–3]i1p1 | r1i1p1 |
GFDL-CM3 | r[1–5]i1p1 | r[1, 3, 5]i1p1 | r[1, 3, 5]i1p1 | r[1, 3, 5]i1p1 | |
GFDL-ESM2M | r1i1p1 | r1i1p5 | r1i1p1 | r1i1p1 | |
GISS-E2-H | r[1–6]i1p1 | r[1–5]i1p107 | r[1–5]i1p1 | r[1–5]i1p1 | r[1–5]i1p105 |
GISS-E2-R | r[1–6]i1p1 | r[1–5]i1p107 | r[1–5]i1p1 | r[1–5]i1p1 | r[1–5]i1p105 |
IPSL-CM5A-LR | r[1–6]i1p1 | r1i1p3 | r[1–3]i1p1 | r[1–3]i1p1 | |
CMIP6 | |||||
ACCESS-CM2 | r[1–5]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | |
ACCESS-ESM1.5 | r[1–40]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | |
BCC-CSM2-MR | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | |
CanESM5 | r[1–25]i1p1f1 | r[1–10]i1p1f1 | r[1–10]i1p1f1 | r[1–25]i1p1f1 | r[1–10]i1p1f1 |
CESM2 | r[1–10]i1p1f1 | r[1,3]i1p1f1 | r1i1p1f1 | r[1,3]i1p1f1 | |
CNRM-CM6-1 | r[1–20]i1p1f2 | r[1–10]i1p1f2 | r[1–10]i1p1f2 | r[1–10]i1p1f2 | |
FGOALS-g3 | r[1–6]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | |
GFDL-ESM4 | r[1–3]i1p1f1 | r1i1p1f1 | r1i1p1f1 | r[1–3]i1p1f1 | |
HadGEM3-GC31-LL | r[1–5]i1p1f3 | r[1–5]i1p1f3 | r[1–5]i1p1f3 | r[1–10]i1p1f3 | |
IPSL-CM6A-LR | r[1–33]i1p1f1 | r[1–10]i1p1f1 | r[1–10]i1p1f1 | r[1–10]i1p1f1 | r[1–10]i1p1f1 |
MIROC6 | r[1–50]i1p1f1 | r[1–10]i1p1f1 | r[1–3]i1p1f1 | r[1–50]i1p1f1 | r[1–3]i1p1f1 |
MRI-ESM2.0 | r[1–10]i1p1f1 | r[1–5]i1p1f1 | r[1–5]i1p1f1 | r[1–5]i1p1f1 | r[1, 3, 5]i1p1f1 |
NorESM2-LM | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 | r[1–3]i1p1f1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, N.; Liu, W. Unraveling the Arctic Sea Ice Change since the Middle of the Twentieth Century. Geosciences 2023, 13, 58. https://doi.org/10.3390/geosciences13020058
Kong N, Liu W. Unraveling the Arctic Sea Ice Change since the Middle of the Twentieth Century. Geosciences. 2023; 13(2):58. https://doi.org/10.3390/geosciences13020058
Chicago/Turabian StyleKong, Nathan, and Wei Liu. 2023. "Unraveling the Arctic Sea Ice Change since the Middle of the Twentieth Century" Geosciences 13, no. 2: 58. https://doi.org/10.3390/geosciences13020058
APA StyleKong, N., & Liu, W. (2023). Unraveling the Arctic Sea Ice Change since the Middle of the Twentieth Century. Geosciences, 13(2), 58. https://doi.org/10.3390/geosciences13020058