Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece
Abstract
:1. Introduction
2. Geological Setting
2.1. Regional Geology
2.2. The Sb Deposit at Rizana
3. Methods
3.1. Field Work and Sampling
3.2. Optical Microscopy
3.3. Scanning Electron Microscopy
3.4. Bulk Geochemical Analysis
3.5. Fluid Inclusion Microthermometry
4. Results
4.1. Host Rock
4.2. Ore Mineralogy at “Tas-Kapou”
4.3. Mineral Chemistry
4.4. Host Rock Geochemistry
4.5. Bulk Ore Geochemistry—Critical Metal Contents
4.6. Fluid Inclusions Study
5. Discussion
6. Conclusions
- The Sb-vein deposit at Rizana is hosted by a NE–SW-trending brittle shear-zone, crosscutting the two-mica gneiss and augen-gneiss of the Vertiskos Unit.
- The ore bodies form veins and discordant lodes, exhibiting massive and brecciated textures.
- The ore assemblage contains stibnite + berthierite + sphalerite + pyrite + chalcopyrite + native antimony, traces of wolframite, arsenopyrite, galena, marcasite, pyrrhotite, realgar, tetrahedrite, native As and native Au, while quartz and minor ankerite and barite are the gangue minerals. Oxidation minerals include valentinite, goethite and claudetite.
- Sericitization and silicification of moderate intensities have affected the two-mica gneiss and formed spatially restricted hydrothermal halos. Noteworthy are the significantly enriched concentrations of As, Mn, W and Zn in the analyzed two-mica gneiss reflecting metal remobilization under oxidation.
- The Miocene Rizana rhyodacite, which outcrops in the study area, is sericitically altered, contains pyrite disseminations and seems to be related to the Sb-mineralization.
- Bulk ore geochemistry revealed low to moderate enrichments in respect to the hydrothermally altered and oxidized two-mica gneiss, mainly related to Au, Cd, Se and Tl.
- The study of the fluid inclusions showed that the mineralization was formed by fluids with low to slightly moderate salinities (6.6–8.1 wt% NaCl equiv) at relatively low homogenization temperatures (217–254 °C, with a maximum at 220 °C).
- The discussed Sb-vein deposits in the Vertiskos Unit are characterized by significant differences. The quartz–stibnite veins at Gerakario refer to a minor and regionally sole example of Sb-mineralization occurring in the periphery of a porphyry system. In contrast, the major Sb-vein deposit at Rizana is well set in a relatively wide brittle shear-zone. Fluids produced after the extensive mixing of hydrothermal fluids with meteoric water were able to accumulate and transfer metals along the brittle shear-zone and deposit the mineralization under low- to intermediate-sulfidation and transitional mesothermal to epithermal conditions.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anderson, C.G. The metallurgy of antimony. Geochemistry 2021, 72, 3–8. [Google Scholar] [CrossRef]
- Schwarz-Schampera, U. Antimony. In Critical Metals Handbook; Gunn, G., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 70–98. [Google Scholar]
- Hofstra, A.H.; Kreiner, D.C. Systems-Deposits-Commodities-Critical Minerals Table for the Earth Mapping Resources Initiative; Open-File Report 2020-1042; U.S. Geological Survey: Reston, VA, USA, 2020; p. 24.
- Dill, H.G.; Pertold, Z.; Kilibarda, R.C. Sediment-hosted and volcanic-hosted Sb vein mineralization in the Potosi region, Central Bolivia. Econ. Geol. 1997, 92, 623–632. [Google Scholar] [CrossRef]
- Dill, H.G.; Melcher, F.; Botz, B. Meso- to epithermal W-bearing Sb vein-type deposits in calcareous rocks in western Thailand; with special reference to their metallogenetic position in SE Asia. Ore Geol. Rev. 2008, 34, 242–262. [Google Scholar] [CrossRef]
- Voudouris, P.; Mavrogonatos, C.; Spry, P.G.; Baker, T.; Melfos, V.; Klemd, R.; Haase, K.; Repstock, A.; Djiba, A.; Bismayer, U.; et al. Porphyry and epithermal deposits in Greece: An overview, new discoveries, and mineralogical constraints on their genesis. Ore Geol. Rev. 2019, 107, 654–691. [Google Scholar] [CrossRef]
- Wang, L.; Qin, K.Z.; Song, G.X.; Li, G.M. A review of intermediate sulfidation epithermal deposits and subclassification. Ore Geol. Rev. 2019, 107, 434–456. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G.; Peytcheva, I.; Dimitrova, D.; Stefanova, E. A Fluid Inclusion and Critical/Rare Metal Study of Epithermal Quartz-Stibnite Veins Associated with the Gerakario Porphyry Deposit, Northern Greece. Appl. Sci. 2022, 12, 909. [Google Scholar] [CrossRef]
- Fu, S.; Hu, R.; Bi, X.; Sullivan, N.A.; Yan, J. Trace element composition of stibnite: Substitution mechanism and implications for the genesis of Sb deposits in southern China. Appl. Geochem. 2020, 118, 104637. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, H.; Yonezu, K.; Imai, A.; Tindell, T. In-situ trace elements and sulfur isotopic analyses of stibnite: Constraints on the genesis of Sb/Sb-polymetallic deposits in southern China. J. Geochem. Explor. 2023, 247, 107177. [Google Scholar] [CrossRef]
- Dill, H.G. Evolution of Sb mineralisation in modern fold belts: A comparison of the Sb mineralisation in the Central Andes (Bolivia) and the Western Carpathians (Slovakia). Miner. Depos. 1998, 33, 359–378. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Giles, D.; Wade, B. Correlating textures and trace elements in ore minerals. Mineral deposit research for a high-tech world. In Proceedings of the 12th Biennial SGA Meeting, Uppsala, Sweden, 12–15 August 2013. [Google Scholar]
- Baker, T. Gold±copper endowment and deposit diversity in the Western Tethyan magmatic belt, southeast Europe: Implications for exploration. Econ. Geol. 2019, 114, 1237–1250. [Google Scholar] [CrossRef]
- Janković, S. Sb-As-TI Mineral Associations in the Mediterranean Region. Inter. Geol. Rev. 1989, 31, 262–273. [Google Scholar] [CrossRef]
- Radosavljević, S.A.; Stojanović, J.N.; Radosavljević-Mihajlović, A.S.; Vuković, N.S. Rujevac Sb-Pb-Zn-As polymetallic deposit, Boranja orefield, Western Serbia: Native arsenic and arsenic mineralization. Mineral. Petrol. 2014, 108, 111–122. [Google Scholar] [CrossRef]
- Palinkaš, S.S.; Hofstra, A.H.; Percival, T.J.; Šoštarkć, S.B.; Palinkaš, L.; Bermanec, V.; Pecskay, Z.; Boev, B. Comparison of the allchar Au-As-Sb-Tl deposit, Republic of Macedonia, with carlin-type gold deposits. In Reviews in Economic Geology: Diversity of Carlin-Style Gold Deposits; Cline, J.S., Ed.; Society of Economic Geologists: Littleton, CO, USA, 2018; pp. 335–363. [Google Scholar]
- Đorđević, T.; Kolitsch, U.; Serafimovski, T.; Tasev, G.; Tepe, N.; Stöger-Pollach, M.; Hofmann, T.; Boev, B. Mineralogy and weathering of realgar-rich tailings at a former As-Sb-Cr mine at Lojane, North Macedonia. Can. Mineral. 2019, 57, 403–423. [Google Scholar] [CrossRef]
- Mederski, S.; Pršek, J.; Majzlan, J.; Kiefer, S.; Dimitrova, D.; Milovský, R.; Koch, C.B.; Kozień, D. Geochemistry and textural evolution of As-Tl-Sb-Hg-rich pyrite from a sediment-hosted As-Sb-Tl-Pb±Hg±Au mineralization in Janjevo, Kosovo. Ore Geol. Rev. 2022, 151, 105221. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.C. Geological, mineralogical and geochemical aspects for critical and rare metals in Greece. Minerals 2012, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 89, 1030–1057. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P. A Review on the Critical and Rare Metals Distribution throughout the Vertiskos Unit, N. Greece. In Proceedings of the1st International Electronic Conference on Mineral Science at Sciforum, Basel, Switzerland, 16–31 July 2018. [Google Scholar]
- McFall, K.A.; Naden, J.; Roberts, S.; Baker, T.; Spratt, J.; McDonald, I. Platinum-group minerals in the Skouries Cu-Au (Pd, Pt, Te) porphyry deposit. Ore Geol. Rev. 2018, 99, 344–364. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Spry, P.G.; Papadopoulou, L.; Chatzipetros, A.; Giouri, K.; Mavrogonatos, C.; Filippidis, A. The geology, geochemistry, and origin of the porphyry Cu-Au-(Mo) system at Vathi, Serbo-Macedonian Massif, Greece. Appl. Sci. 2021, 11, 479. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G.; Peytcheva, I.; Dimitrova, D.; Stefanova, E.; Giouri, K. Rare and Critical Metals in Pyrite, Chalcopyrite, Magnetite, and Titanite from the Vathi Porphyry Cu-Au±Mo Deposit, Northern Greece. Minerals 2021, 11, 630. [Google Scholar] [CrossRef]
- Arvanitidis, N.D. New metallogenetic concepts and sustainability perspectives for non-energy metallic minerals in Central Macedonia, Greece. Bull. Geol. Soc. Greece 2010, 43, 2437–2445. [Google Scholar] [CrossRef] [Green Version]
- Tsirambides, A.; Filippidis, A. Metallic mineral resources of Greece. Cent. Eur. J. Geosci. 2012, 4, 641–650. [Google Scholar] [CrossRef]
- Tsirambides, A.; Filippidis, A. Gold metallogeny of the Serbomacedonian-Rhodope metallogenic belt (SRMB). Bull. Geol. Soc. Greece 2016, 50, 2037–2046. [Google Scholar] [CrossRef] [Green Version]
- Tsirambides, A.; Filippidis, A. Sb-Bi-bearing metallogeny of the Serbomacedonian-Rhodope metallogenic belt (SRMB). Bull. Geol. Soc. Greece 2019, 55, 34–64. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Voudouris, P.; Moritz, R. Detachment-related Sb-As-Au-Ag-Te mineralization in Kallintiri area, northeastern Greece: Mineralogical and geochemical constraints. In Proceedings XX Congress of the Carpathian-Balkan Geological Association; Beqiraj, A., Ionescu, C., Christofides, G., Uta, A., Beqiraj Goga, E., Marku, S., Eds.; Buletini i Shkencave Gjeologjike: Tirana, Albania, 2014; pp. 162–165. [Google Scholar]
- Cassard, D.; Bertrand, G.; Billa, M.; Serrano, J.J.; Tourlière, B.; Angel, J.M.; Gaál, G. ProMine mineral databases: New tools to assess primary and secondary mineral resources in Europe. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe. Mineral Resource Reviews; Weihed, P., Ed.; Springer: Cham, Switzerland, 2015; pp. 9–58. [Google Scholar]
- Paraskevopoulos, G.M. The genesis of the wolframite and stibnite deposits at Lachanas, Central Macedonia. Ann. Geol. Pays Hell. 1958, 9, 227–241. [Google Scholar]
- Dimou, E. Native minerals in rocks and mineralizations of Greece and their significance. Bull. Geol. Soc. Greece 1989, 23, 207–223. [Google Scholar]
- Vasilatos, C.; Barlas, K.; Stamatakis, M.; Tsivilis, S. Wolframite-stibnite mineral assemblages from Rizana Lachanas, Macedonia, Greece and their possible use as flux agent in the manufacturing of clinker. Bull. Geol. Soc. Greece 2001, 34, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Kakali, G.; Tsivilis, S.; Kolovos, K.; Choupa, K.; Perraki, T.; Perraki, M.; Stamatakis, M.; Vasilatos, C. Use of secondary mineralizing raw materials in cement production. The case study of a stibnite ore. Mater. Lett. 2003, 57, 3117–3123. [Google Scholar] [CrossRef]
- Skoupras, E. Study of the Stibnite Ore Mineralization in Rizana, Kilkis. Master’s Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2019. [Google Scholar]
- Himmerkus, F.; Reischmann, T.; Kostopoulos, D. Serbo-Macedonian revisited: A Silurian basement terrane from northern Gondwana in the Internal Hellenides, Greece. Tectonophysics 2009, 473, 20–35. [Google Scholar] [CrossRef]
- Himmerkus, F.; Reischmann, T.; Kostopoulos, D. Triassic rift-related meta-granites in the Internal Hellenides, Greece. Geol. Mag. 2009, 146, 252–265. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kounov, A.; Matenco, L.; Nievergelt, P.; Oberhänsli, R.; Pleuger, J.; Schefer, S.; Schuster, R.; Tomljenović, B.; et al. Tectonic units of the Alpine collision zone between Eastern Alps and western Turkey. Gondwana Res. 2020, 78, 308–374. [Google Scholar] [CrossRef]
- Mposkos, E.; Krohe, A.; Baziotis, I. Deep tectonics in the Eastern Hellenides uncovered: The record of Variscan continental amalgamation, Permo-Triassic rifting, and Early Alpine collision in Pre-Variscan continental crust in the W-Rhodope (Vertiscos-Ograzden Complex, NGreece). Tectonics 2021, 40, e2019TC005557. [Google Scholar] [CrossRef]
- Kilias, A.; Falalakis, G.; Mountrakis, D. Cretaceous-Tertiary structures and kinematics of the Serbomacedonian metamorphic rocks and their relation to the exhumation of the Hellenic hinterland (Macedonia, Greece). Int. J. Earth Sci. 1999, 88, 513–531. [Google Scholar] [CrossRef]
- Melidonis, N.G. Geology and mineralization of Pontokerasia (Kilkis area). Ann. Geol. Pays Hell. 1972, 24, 323–393. (In Greek) [Google Scholar]
- Melidonis, N.G. The Strymoniko-Metamorphosis Arc of Neo-Volcanic Rocks (Central Macedonia); Hellenic Survey of Geology and Mineral Exploration (HSGME): Athens, Greece, 1972; p. 51, (In Greek with German abstract). [Google Scholar]
- Kockel, F.; Mollat, H.; Antoniadis, P.; Ioannidis, K. Geological Map of Greece: Sochos Map Sheet, 1:50.000; IGME: Athens, Greece, 1979. [Google Scholar]
- Mercier, J. Mouvements orogéniques et magmatisme d’age Jurassique Supérieur–Eocrétacé dans les Zones Internes des Hellénides (Macédoine, Gréce). Rev. Géogr. Phys. 1966, 8, 265–278. [Google Scholar]
- Michailidis, K.; Kassoli-Fournaraki, A. Tourmaline concentrations in migmatitic metasedimentary rocks of the Riziana and Kolchiko areas in Macedonia, Northern Greece. Eur. J. Miner. 1994, 6, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Christofides, G.; Koronaios, A.; Liati, A.; Kral, J. The A-type Kerkini granitic complex in north Greece: Geochronology and geodynamic implications. Bull. Geol. Soc. Greece 2007, 40, 700–711. [Google Scholar] [CrossRef] [Green Version]
- Christofides, G.; Koroneos, A.; Pe-Piper, G.; Katirtzoglou, K.; Chatzikirkou, A. Pre-Tertiary A-type magmatism in the Serbomacedonian massif (N.Greece): Kerkini granitic complex. Bull. Geol. Soc. Greece 1999, 33, 131–148. [Google Scholar]
- Panagos, A.G.; Pe, G.G.; Varnavas, S.P. The volcanic rocks of Strymonikon-Metamorphosis, Central Macedonia, Greece. Chem. Erde 1978, 37, 50–61. [Google Scholar]
- Bakker, R.J. Package FLUIDS. Part 4: Thermodynamic modelling and purely empirical equations for H2O-NaCl-KCl solutions. Mineral. Petrol. 2012, 105, 1–29. [Google Scholar] [CrossRef]
- Driesner, T.; Heinrich, C.A. The system H2O-NaCl. Part I: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 degrees C, 1 to 5000 bar, and 0 to 1 X-NaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Driesner, T. The system H2O-NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4902–4919. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.-S. Composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust, 1st ed.; Rudnick, R.L., Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–64. [Google Scholar]
- Monecke, T.; Monecke, J.; Reynolds, T.J.; Tsuruoka, S.; Bennett, M.M.; Skewes, W.B.; Palin, R.M. Quartz solubility in the H2O-NaCl System: A framework for understanding vein formation in porphyry copper deposits. Econ. Geol. 2018, 113, 1007–1046. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Rev. Miner. 1984, 12, 644. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals; Society for Sedimentary Geology: Broken Arrow, OK, USA, 1994; p. 199. [Google Scholar]
- Bodnar, R.J. Introduction to fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I.M., Anderson, A.J., Marshall, D.D., Eds.; Society for Sedimentary Geology: Broken Arrow, OK, USA, 2003; Volume 32, pp. 1–8. [Google Scholar]
- Potter, R.W.; Clynne, M.A.; Brown, D.L. Freezing point depression of aqueous sodium chloride solutions. Econ. Geol. 1978, 73, 284–285. [Google Scholar] [CrossRef]
- Shepherd, T.; Rankin, A.; Alderton, D. A Practical Guide to Fluid Inclusion Studies, 1st ed.; Blackie and Son: Glasgow, UK, 1985; p. 239. [Google Scholar]
- Mavrogonatos, C.; Voudouris, P.; Berndt, J.; Klemme, S.; Zaccarini, F.; Spry, P.G.; Melfos, V.; Tarantola, A.; Keith, M.; Klemd, R.; et al. Trace elements in magnetite from the Pagoni Rachi porphyry prospect, NE Greece: Implications for ore genesis and exploration. Minerals 2019, 9, 725. [Google Scholar] [CrossRef] [Green Version]
- Mavrogonatos, C.; Voudouris, P.; Zaccarini, F.; Klemme, S.; Berndt, J.; Tarantola, A.; Melfos, V.; Spry, P.G. Multi-stage introduction of precious and critical metals in pyrite: A case study from the Konos Hill and Pagoni Rachi porphyry/epithermal prospects, NE Greece. Minerals 2020, 10, 784. [Google Scholar] [CrossRef]
- Voudouris, P.; Repstock, A.; Spry, P.G.; Frenzel, M.; Mavrogonatos, C.; Keith, M.; Tarantola, A.; Melfos, V.; Tombros, S.; Zhai, D.; et al. Physicochemical constraints on indium-, tin-, germanium-, gallium-, gold-, and tellurium-bearing mineralizations in the Pefka and St Philippos polymetallic vein-and breccia-type deposits, Greece. Ore Geol. Rev. 2022, 140, 104348. [Google Scholar] [CrossRef]
- Peristeridou, E.; Melfos, V.; Papadopoulou, L.; Kantiranis, N.; Voudouris, P. Mineralogy and Mineral Chemistry of the REE-Rich Black Sands in Beaches of the Kavala District, Northern Greece. Geosciences 2022, 12, 277. [Google Scholar] [CrossRef]
- Voudouris, P.; Spry, P.G.; Melfos, V.; Alfieris, D. Tellurides and bismuth sulfosalts in gold occurrences of Greece: Mineralogical and genetic considerations. In Gold Deposits in Finland; Kojonen, K.K., Cook, N.J., Ojala, V.J., Eds.; Geological Survey of Finland: Espoo, Finland, 2007; Volume 53, pp. 85–94. [Google Scholar]
- Stergiou, C.L. Critical and Rare Metals in Tertiary Magmatic-Hydrothermal Deposits at the Serbo-Macedonian Metallogenic Province in Greece (Vathi, Gerakario, Laodikino, Kolchiko, Aspra Chomata). Ph.D. Thesis, Faculty of Geology, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2022. [Google Scholar]
- Voudouris, P.; Spry, P.G.; Mavrogonatos, C.; Sakellaris, G.A.; Bristol, S.K.; Melfos, V.; Fornadel, A. Bismuthinite derivatives, lillianite homologues, and bismuth sulfotellurides as indicators of gold mineralization at the Stanos shear-zone related deposit, Chalkidiki, northern Greece. Can. Mineral. 2013, 51, 119–142. [Google Scholar] [CrossRef]
- Bristol, S.K.; Spry, P.G.; Voudouris, P.C.; Melfos, V.; Mathur, R.D.; Fornadel, A.P.; Sakellaris, G.A. Geochemical and geochronological constraints on the formation of shear-zone hosted Cu–Au–Bi–Te mineralization in the Stanos area, Chalkidiki, northern Greece. Ore Geol. Rev. 2015, 66, 266–282. [Google Scholar] [CrossRef]
- Stergiou, C.L.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Spry, P.G. Geology, mineralogy, and geochemistry of the intrusion-related polymetallic quartz veins at Laodikino, Serbo-Macedonian Massif, N. Greece. In Proceedings of the Abstract volume of the SEG100: Celebrating a Century of Discovery, Whistler, Canada, 14–17 September 2021. [Google Scholar]
- Vavelidis, M.; Kilias, A.; Melfos, V.; Schmidt-Mumm, A. New investigations in the Au-Ag-bearing Cu mineralization and its structural control in the Koronouda area, central Macedonia, Northern Greece. In Terranes of Serbia: The Formation of the Geologic Framework of Serbia and the Adjacent Regions: Dedicated to Academic Stevan Karamata; Knežević, V., Krstić, B., Eds.; Faculty of Mining and Geology, University of Belgrade: Belgrade, Serbia; Committee for Geodynamics of the Serbian Academy of Sciences and Arts, Belgrade: Belgrade, Serbia, 1996; pp. 317–322. [Google Scholar]
- Vavelidis, M.; Melfos, V.; Kilias, A. The gold-bearing quartz veins in the metamorphic rocks at the Drakontio area, central Macedonia, northern Greece. In Mineral Deposits: Processes to Processing; Stanley, C.J., Ed.; AA Balkema: Rotterdam, The Netherlands, 1999; pp. 209–212. [Google Scholar]
- Mposkos, E. A new occurrence of argentian pentlandite from the Koronuda ore mineralization, Macedonia, Greece. Neues Jahrb. Mineral. 1983, 5, 193–200. [Google Scholar]
- Melfos, V.; Vavelidis, M.; Arikas, K. A new occurrence of argentopentlandite and gold from the Au-Ag-rich copper mineralisation in the Paliomylos area, Serbomacedonian Massif, Central Macedonia, Greece. Bull. Geol. Soc. Greece 2001, 34, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Demir, Y.; Uysal, İ.; Kandemir, R.; Jauss, A. Geochemistry, fluid inclusion and stable isotope constraints (C and O) of the Sivrikaya Fe-skarn mineralization (Rize, NE Turkey). Ore Geol. Rev. 2017, 91, 153–172. [Google Scholar] [CrossRef]
- Demir, Y.; Dişli, A. Fluid inclusion and stable isotope constraints (C, O, H) on the Dağbaşı Fe–Cu–Zn skarn mineralization (Trabzon, NE Turkey). Ore Geol. Rev. 2020, 116, 103235. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Arribas, A.R.; Gonzalez-Unien, E. Exploration for epithermal gold deposits. In Reviews in Economic Geology: Gold in 2000; Hagemann, S.G., Brown, P.E., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2000; pp. 245–277. [Google Scholar]
- Brugger, J.; Liu, W.; Etschmann, B.; Mei, Y.; Sherman, D.M.; Testemale, D. A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? Chem. Geol. 2016, 447, 219–253. [Google Scholar] [CrossRef]
- Collins, E.M.; Kesler, S.E. High temperature telescoped tungsten-antimony mineralization, Guatemala. Miner. Depos. 1969, 4, 65–71. [Google Scholar] [CrossRef]
- Bailly, L.; Grancea, L.; Kouzmanov, K. Infrared microthermometry and chemistry of wolframite from the Baia Sprie epithermal deposit, Romania. Econ. Geol. 2002, 97, 415–423. [Google Scholar] [CrossRef]
Sample ID | Coordinates (Latitude/Longitude) | Lithological Description |
---|---|---|
RZN01 | 41.051658° 23.229640° | Two-mica gneiss; fresh |
RZN02 | 41.052089° 23.232019° | Two-mica gneiss; sericitized and oxidized |
RZN03a | 41.051785° 23.230086° | Stibnite mineralization |
RZN03b | 41.051589° 23.229828° | Stibnite mineralization |
RZN04 | 41.051901° 23.231996° | Two-mica gneiss; sericitized |
RZN05 | 41.051821° 23.232021° | Two-mica gneiss; silicified with stibnite |
RZN06 | 41.051742° 23.232022° | Two-mica gneiss; sericitized |
RZN07 | 41.051649° 23.231998° | Stibnite mineralization |
RZN08 | 41.053571° 23.232284° | Two-mica gneiss; sericitized and oxidized |
RZN09 | 41.053435° 23.232280° | Quartz–stibnite vein |
RZN10 | 41.051882° 23.230226° | Quartz–stibnite vein |
Mineral | Mineral Formulas |
---|---|
Stibnite | Sb1.87As0.01Cu0.03Fe0.05S3.03–Sb1.93S3.07 |
Pyrite | Fe0.99Co0.01S2.00–Fe0.99S2.01 |
Sphalerite | Zn0.86Fe0.07Cd0.01S1.06–Zn0.92S1.08 |
Chalcopyrite | Cu0.88Fe0.99S2.13–Cu0.88Fe0.95As0.01S2.16 |
Berthierite | Fe1.15Sb1.78As0.11Zn0.02Cu0.02Ag0.01S3.92–Fe1.05Sb1.79As0.11S4.05 |
Valentinite | Sb1.94Zn0.04Fe0.03O2.99–Sb1.97O3.03 |
Two-Mica Gneiss | |||
---|---|---|---|
Sericitized | Silicified with Stibnite | Sericitized and Oxidized | |
RZN04 | RZN05 | RZN08 | |
wt.% | |||
K | 1.6 | 1.2 | 0.05 |
Ti | 0.6 | 0.26 | 1.3 |
ppm | |||
Ba | 234 | 291 | 781 |
Ce | 32 | 37 | 23 |
La | 12 | 17 | 10 |
Nb | 8.4 | 4.4 | 5.1 |
P | 1139 | 1884 | 1160 |
Pb | 18 | 32 | 3.9 |
Rb | 60 | 64 | 3.1 |
Sr | 1638 | 2670 | 867 |
Th | 4.4 | 4.7 | 0.7 |
Y | 12 | 6.1 | 39 |
Zr | 1.6 | 4.8 | 6.5 |
Rizana | Gerakario | |||||||
---|---|---|---|---|---|---|---|---|
Sericitized Two-Mica Gneiss | Silicified Two-Mica Gneiss with Stibnite | Sericitized and Oxidized Two-Mica Gneiss | Stibnite Mineralization | Stibnite Mineralization | ||||
RZN04 | RZN05 | RZN08 | RZN03a | RZN03b | RZN07 | Ger3.1 | Ger05 | |
ppm | ||||||||
Ag | 0.16 | 0.1 | 0.1 | 0.14 | 0.13 | 0.01 | 0.98 | 1.2 |
As | 113 | >10,000 | 1140 | 1108 | 1205 | 1282 | 6.2 | 4.6 |
Au | b.d.l. | 0.004 | b.d.l. | 0.02 | 0.02 | 0.009 | 0.05 | 0.04 |
Bi | 0.08 | 0.17 | 0.2 | b.d.l. | b.d.l. | b.d.l. | 0.02 | 0.03 |
Cd | 0.09 | 0.12 | 0.3 | 0.77 | 0.22 | 0.14 | 0.05 | 0.04 |
Ce | 32 | 37 | 23 | 11 | 6.2 | 20 | 0.09 | 0.12 |
Co | 48 | 63 | 43 | 30 | 33 | 26 | 1.8 | 0.9 |
Cu | 40 | 25 | 61 | 495 | 14 | 7.8 | 27 | 31 |
Ga | 21 | 9.8 | 21 | 0.35 | 1.9 | 3.8 | 0.16 | 0.07 |
Gd | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | <0.05 | <0.05 |
Ge | 0.47 | 0.22 | 0.54 | 0.1 | 0.38 | 1.1 | <0.05 | <0.05 |
Hg | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | <0.005 | <0.005 |
In | 0.08 | 0.07 | 0.12 | b.d.l. | 0.01 | 0.03 | <0.005 | <0.005 |
La | 12 | 17 | 10 | 17 | 9.2 | 11 | 0.4 | 0.4 |
Mn | 1771 | 545 | 2317 | 6 | <5 | 212 | 35 | 20 |
Mo | 0.93 | 1.7 | 5.7 | 0.35 | 0.2 | 0.86 | 0.12 | 0.09 |
Nb | 8.4 | 4.4 | 5.1 | 0.1 | b.d.l. | 0.3 | <0.05 | <0.05 |
Ni | 63 | 75 | 137 | 5.3 | 4.6 | 9.4 | 5.9 | 3.6 |
Nd | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | <0.1 | <0.1 |
Pb | 18 | 32 | 3.9 | 86 | 33 | 42 | 22 | 20 |
Re | 0.006 | 0.01 | 0.007 | 0.007 | 0.008 | 0.003 | <0.001 | <0.001 |
Sb | 198 | 3851 | 1059 | >10,000 | >10,000 | >10,000 | 326,000 | 574,000 |
Se | b.d.l. | b.d.l. | b.d.l. | 2 | b.d.l. | b.d.l. | <0.2 | <0.2 |
Sm | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | <0.03 | <0.03 |
Ta | 0.82 | 0.48 | 0.49 | 0.05 | b.d.l. | b.d.l. | <0.01 | <0.01 |
Te | 0.08 | 0.14 | b.d.l. | 0.1 | b.d.l. | b.d.l. | <0.01 | <0.01 |
Th | 4.4 | 4.7 | 0.7 | 0.6 | 0.2 | 2.3 | <0.2 | <0.2 |
Ti | 6000 | 2600 | 13,200 | b.d.l. | 200 | 800 | <0.005 | <0.005 |
Tl | 0.92 | 7.5 | 1.2 | 14 | 7.5 | 3.8 | 0.81 | 0.86 |
U | 1.7 | 0.9 | 2 | 0.9 | 0.3 | 0.5 | 0.09 | 0.13 |
V | 178 | 72 | 465 | 2 | 12 | 23 | <1 | <1 |
W | 130 | 331 | 125 | 45 | 20 | 43 | <0.05 | <0.05 |
Zn | 122 | 54 | 201 | 15 | 10 | 28 | 6 | b.d.l. |
Ag:Au | null | 25 | null | 7 | 6.5 | 1.1 | 20 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergiou, C.L.; Sakellaris, G.-A.; Melfos, V.; Voudouris, P.; Papadopoulou, L.; Kantiranis, N.; Skoupras, E. Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece. Geosciences 2023, 13, 61. https://doi.org/10.3390/geosciences13020061
Stergiou CL, Sakellaris G-A, Melfos V, Voudouris P, Papadopoulou L, Kantiranis N, Skoupras E. Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece. Geosciences. 2023; 13(2):61. https://doi.org/10.3390/geosciences13020061
Chicago/Turabian StyleStergiou, Christos L., Grigorios-Aarne Sakellaris, Vasilios Melfos, Panagiotis Voudouris, Lambrini Papadopoulou, Nikolaos Kantiranis, and Evaggelos Skoupras. 2023. "Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece" Geosciences 13, no. 2: 61. https://doi.org/10.3390/geosciences13020061
APA StyleStergiou, C. L., Sakellaris, G. -A., Melfos, V., Voudouris, P., Papadopoulou, L., Kantiranis, N., & Skoupras, E. (2023). Mineralogy, Geochemistry and Fluid Inclusion Study of the Stibnite Vein-Type Mineralization at Rizana, Northern Greece. Geosciences, 13(2), 61. https://doi.org/10.3390/geosciences13020061