An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt
Abstract
:1. Introduction
2. Geotectonic Setting
2.1. Structural Setting
2.2. Geological Setting
- (1)
- A pre-rift sequence represented by thick (>1.5 km) Early Jurassic platform “Pantokrator” Limestones. The latter overlies the also thick (>2 km) Early to Mid-Triassic evaporites through the “Foustapidima” Limestones of Ladinian–Rhetian age [45].
- (2)
- A syn-rift sequence (Pliensbachian–Tithonian) deposited during extensional faulting and halokinesis of the Triassic evaporites, which caused the formation of the Ionian basin and its internal syn-rift differentiation into smaller sub-basins characterized by asymmetric half-graben geometry and various carbonates thickness accumulation [19,46]. Toarcian–Tithonian syn-rift pelagic deposits in the half-grabens are correlated to global oceanic anoxic events (T-OAE) [47].
- (3)
- A post-rift sequence (Early Cretaceous–Eocene) deposited after the cessation of extensional faulting (Early Berriasian break-up). It is marked by an unconformity at the base of the “Vigla” Limestones [25]. It consists of deep-marine carbonate facies [48] intercalated with bedded chert and shales. Again, the organic rich layers of this formation are correlated to global OAE (Paquier OAE) [47].
- Aptian–Turonian (Cretaceous) Vigla shales;
- Callovian–Tithonian Upper Posidonia beds;
- Toarcian–Aalenian (Jurassic) Lower Posidonia beds;
- Time equivalent marls at the base of the Ammonitico Rosso (Toarcian);
- Shallow-water organic-rich shales within the Triassic evaporites.
3. Materials and Methods
3.1. Samples
3.2. Methods
3.2.1. Rock-Eval 6 Pyrolysis (RE6)
3.2.2. Gas Chromatography–Mass Spectrometry (GC-MS)
3.2.3. Thermal Maturity Modeling
4. Results
4.1. Source Rock Quality and Potential
4.1.1. Rock-Eval 6 Pyrolysis
4.1.2. Gas Chromatography–Mass Spectrometry
Sample | Depth (m) | S1 | S2 | S3 | Tmax | HI | OI | TOC | VRETmax | %Ro | Ages | Unit | C29 (%) | C32 (%) | C31 (%) | Ts/(Ts + Tm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | 3225 | 0.74 | 37.45 | 0.52 | 439 | 544 | 8 | 6.89 | 0.69 | - | Lower Cret. | Vigla | 49 | 61 | 59 | 30 |
G2 | 3225 | 1.39 | 2.19 | 0.08 | 437 | 384 | 14 | 0.57 | 0.66 | - | Lower Cret. | Vigla | - | - | - | - |
G3 | 3236 | 0.26 | 2.29 | 0.22 | 436 | 363 | 35 | 0.63 | 0.65 | - | Lower Cret. | Vigla | - | - | - | - |
G4 | 3377 | 0.71 | 9.72 | 0.12 | 438 | 498 | 6 | 1.95 | 0.68 | - | Lower Cret. | Vigla | 49 | 61 | 59 | 57 |
G5 | 3378 | 0.57 | 15.16 | 0.52 | 440 | 449 | 15 | 3.38 | 0.71 | - | Lower Cret. | Vigla | - | - | - | - |
G6 | 3379 | 0.54 | 5.79 | 0.41 | 439 | 402 | 28 | 1.44 | 0.69 | - | Lower Cret. | Vigla | - | - | - | - |
G7 | 4068 | - | - | - | - | - | - | - | - | - | Jurassic | Posidonia | 46 | 58 | 57 | 49 |
G8 | 304 | 0.36 | 1.5 | 0.36 | 441 | 283 | 68 | 0.53 | - | 0.41 | Oligocene | Flysch | - | - | - | - |
G9 | 632 | 0 | 0.16 | 0.21 | 432 | 55 | 72 | 0.29 | - | 0.43 | Oligocene | Flysch | - | - | - | - |
G10 | 856 | 0.08 | 1.59 | 0.23 | 435 | 130 | 18 | 1.22 | - | 0.44 | Oligocene | Flysch | - | - | - | - |
G11 | 1092 | 0.02 | 0.3 | 0.13 | 436 | 76 | 33 | 0.39 | - | 0.42 | Oligocene | Flysch | - | - | - | - |
G12 | 1232 | 0.04 | 0.68 | 0.23 | 439 | 72 | 24 | 0.94 | - | 0.45 | Oligocene | Flysch | - | - | - | - |
G13 | 1408 | 0.01 | 0.21 | 0.14 | 436 | 67 | 45 | 0.31 | - | 0.45 | Oligocene | Flysch | - | - | - | - |
G14 | 1624 | 0.47 | 1.77 | 0.13 | 436 | 158 | 11 | 1.12 | - | 0.47 | Oligocene | Flysch | - | - | - | - |
G15 | 1820 | 0.17 | 0.44 | 0.26 | 429 | 137 | 81 | 0.32 | - | 0.48 | Oligocene | Flysch | - | - | - | - |
G16 | 2290 | 0.28 | 1.49 | 0.08 | 445 | 310 | 16 | 0.48 | - | 0.55 | Senonian | Senonian | 35 | 64 | 62 | 32 |
G17 | 2520 | 0.01 | 0.2 | 0.04 | 433 | 52 | 10 | 0.38 | - | 0.61 | Senonian | Senonian | - | - | - | - |
G18 | 3020 | 0.32 | 2.26 | 0.06 | 439 | 347 | 9 | 0.65 | - | 0.61 | Lower Cret. | Vigla | - | - | - | - |
G19 | 3224 | 0.75 | 15.42 | 0.26 | 435 | 425 | 7 | 3.62 | - | - | Lower Cret. | Vigla | 46 | 64 | 63 | 32 |
G20 | 3225 | 1.51 | 58.16 | 0.74 | 444 | 512 | 6 | 11.35 | - | 0.63 | Lower Cret. | Vigla | - | - | - | - |
G21 | 3235 | 1.01 | 4.21 | 0.28 | 437 | 386 | 25 | 1.09 | - | - | Lower Cret. | Vigla | 44 | 64 | 64 | 31 |
G22 | 3236 | 1.31 | 39.1 | 0.49 | 441 | 431 | 5 | 9.07 | - | 0.67 | Lower Cret. | Vigla | 47 | 64 | 63 | 46 |
G23 | 3378 | 0.98 | 17.74 | 0.25 | 443 | 502 | 7 | 3.53 | - | - | Lower Cret. | Vigla | 52 | 64 | 64 | 65 |
G24 | 3379 | 0.58 | 3.79 | 0.33 | 445 | 479 | 41 | 0.79 | - | 0.68 | Lower Cret. | Vigla | - | - | - | - |
G25 | 3540 | 0.79 | 10.49 | 1.01 | 440 | 356 | 34 | 2.94 | - | 0.67 | Lower Cret. | Vigla | - | - | - | - |
G26 | 3916 | 0.99 | 14.03 | 0.21 | 431 | 366 | 5 | 3.83 | - | 0.69 | Lower Cret. | Vigla | - | - | - | - |
G27 | 4204 | 0.87 | 2.16 | 0.06 | 451 | 70 | 1 | 3.06 | - | - | Jurassic | Posidonia | 46 | 65 | 62 | 51 |
G28 | 4229 | 0.1 | 0.11 | 0.18 | 453 | 57 | 94 | 0.19 | - | 0.72 | Lower Jurassic | Pantokra-tor | - | - | - | - |
4.1.3. Thermal Maturity Modeling
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellas, S. International Tender for Hydrocarbons’ E&P, Onshore Western Greece 2014; Technical Report “Arta-Preveza Con-tract Area (Block 1)”; Ministry of Environment, Energy & Climate Change (YPEKA): Athens, Greece, 2014; pp. 1–139.
- Roussos, N.; Marnelis, F. Greece Licensing Round to Focus on Western Sedimentary Basins. Oil Gas J. 1995, 93, 58–62. [Google Scholar]
- Aubouin, J. Contribution à l’ Étude Géologique de La Grèce Septentrionale: Le Confins de l’ Epire et de La Thessalie. Ann. Géologiques Des Pays Helléniques 1959, 9, 1–483. [Google Scholar]
- Xypolias, P.; Koukouvelas, I. Paleostress Magnitude in a Fold-Thrust Belt (External Hellenides, Greece): Evidence from Twinning in Calcareous Rocks. Episodes 2005, 28, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Karakitsios, V.; Rigakis, N. Evolution and Petroleum Potential of Western Greece. J. Pet. Geol. 2007, 30, 197–218. [Google Scholar] [CrossRef]
- Le Goff, J.; Cerepi, A.; Swennen, R.; Loisy, C.; Caron, M.; Muska, K.; el Desouky, H. Contribution to the Understanding of the Ionian Basin Sedimentary Evolution along the Eastern Edge of Apulia during the Late Cretaceous in Albania. Sediment. Geol. 2015, 317, 87–101. [Google Scholar] [CrossRef] [Green Version]
- Seifert, W.K.; Michael Moldowan, J.; Demaison, G.J. Source Correlation of Biodegraded Oils. Org. Geochem. 1984, 6, 633–643. [Google Scholar] [CrossRef]
- Rigakis, N.; Karakitsios, V. The Source Rock Horizons of the Ionian Basin (NW Greece). Mar. Pet. Geol. 1998, 15, 593–617. [Google Scholar] [CrossRef]
- Rigakis, N. Contribution to Stratigraphic Research on Wells and Outcrops of the Alpine Formations in Western Greece, in Relation to the Petroleum Generation Efficiency of Their Organic Matter. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 1999. [Google Scholar]
- Tsikos, H.; Karakitsios, V.; van Breugel, Y.; Walsworth-Bell, B.; Bombardiere, L.; Petrizzo, M.R.; Dams, J.S.S.; Schouten, S.; Erba, E.; Silva, I.P.; et al. Organic-Carbon Deposition in the Cretaceous of the Ionian Basin, NW Greece: The Paquier Event (OAE 1b) Revisited. Geol. Mag. 2004, 141, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Pasadakis, N.; Dagounaki, V.; Chamilaki, E. A Comparative Organic Geochemical Study of Oil Seeps in Western Greece. Energy Sources Part A Recovery Util. Eniviron. Eff. 2016, 38, 362–369. [Google Scholar] [CrossRef]
- Alexandridis, I.; Oikonomopoulos, I.K.; Carvajal-Ortiz, H.; Gentzis, T.; Kalaitzidis, S.; Georgakopoulos, A.N.; Christanis, K. Discovery of a New Source-Rock Interval within the Pantokrator Formation, Ionian Zone, Western Greece: Insights from Sulfur Speciation and Kinetics Analyses. Mar. Pet. Geol. 2022, 145, 105918. [Google Scholar] [CrossRef]
- Kokkalas, S.; Kamberis, E.; Xypolias, P.; Sotiropoulos, S.; Koukouvelas, I. Coexistence of Thin-and Thick-Skinned Tectonics in Zakynthos Area (Western Greece): Insights from Seismic Sections and Regional Seismicity. Tectonophysics 2013, 597–598, 73–84. [Google Scholar] [CrossRef]
- Kamberis, E.; Kokinou, E.; Koci, F.; Lioni, K.; Alves, T.M.; Velaj, T. Triassic Evaporites and the Structural Architecture of the External Hellenides and Albanides (SE Europe): Controls on the Petroleum and Geoenergy Systems of Greece and Albania. Int. J. Earth Sci. 2022, 111, 789–821. [Google Scholar] [CrossRef]
- Marin, M.; Wygrala, B.; Mavridou, E. Hydrocarbon Exploration Risk Assessment in Structurally Complex Areas. Examples from Western Greece. Second. EAGE East. Mediterr. Workshop 2019, 2019, 1–4. [Google Scholar] [CrossRef]
- Sotiropoulos, S.; Lykakis, N.; Oikonomopoulos, I.; Spanos, D.; Stathopoulou, A.; Gagala, L.; Pagoulatos, A. Hydrocarbon Plays in Western Greece: An Overview. In Proceedings of the 83rd EAGE Annual Conference & Exhibition;European Association of Geoscientists & Engineers, Online, 6 June 2022; Volume 2022, pp. 1–5. [Google Scholar]
- Moschou, G.; Makri, V.I.; Bellas, S.; Pasadakis, N. An Integrated Approach for the Thermal Maturity Modelling Re-Assessment of the AY-3 Well, Arta-Preveza Exploration Block, Western Greece. Bull. Geol. Soc. Greece Sp. Publ. 2022, 10, 738–739. [Google Scholar]
- IGRS–IFP. Etude Géologique de l’ Epire (Grèce Nord—Occidentale); Institute of Geology and Subsurface Research and Institut Français du Pétrole: Paris, France, 1966; pp. 1–306.
- Karakitsios, V. The Influence of Preexisting Structure and Halokinesis on Organic Matter Preservation and Thrust System Evolution in the Ionian Basin, Northwest Greece. Am. Assoc. Pet. Geol. Bull. 1995, 79, 960–980. [Google Scholar] [CrossRef]
- Underhill, J.R. Late Cenozoic Deformation of the Hellenide Foreland, Western Greece. Geol. Soc. Am. Bull. 1989, 101, 613–634. [Google Scholar] [CrossRef]
- Doutsos, T.; Pe-Piper, G.; Boronkay, K.; Koukouvelas, I. Kinematics of the Central Hellenides. Tectonics 1993, 12, 936–953. [Google Scholar] [CrossRef]
- Papanikolaou, D. Greece within the Alpine Orogenic System. In Geology of Greece; Springer: Berlin/Heidelberg, Germany, 2015; pp. 15–24. [Google Scholar]
- Zelilidis, A.; Piper, D.J.W.; Vakalas, I.; Avramidis, P.; Getsos, K. Oil and Gas Plays in Albania: Do Equivalent Plays Exist in Greece? J. Pet. Geol. 2003, 26, 29–48. [Google Scholar] [CrossRef]
- Doutsos, T.; Koukouvelas, I.K.; Xypolias, P. A New Orogenic Model for the External Hellenides. Geol. Soc. Lond. Spec. Publ. 2006, 260, 507–520. [Google Scholar] [CrossRef]
- Karakitsios, V. Western Greece and Ionian Sea Petroleum Systems. Am. Assoc. Pet. Geol. Bull. 2013, 97, 1567–1595. [Google Scholar] [CrossRef] [Green Version]
- Tavani, S.; Corradetti, A.; de Matteis, M.; Iannace, A.; Mazzoli, S.; Castelluccio, A.; Spanos, D.; Parente, M. Early-Orogenic Deformation in the Ionian Zone of the Hellenides: Effects of Slab Retreat and Arching on Syn-Orogenic Stress Evolution. J. Struct. Geol. 2019, 124, 168–181. [Google Scholar] [CrossRef]
- Sakkas, V.; Kapetanidis, V.; Kaviris, G.; Spingos, I.; Mavroulis, S.; Diakakis, M.; Alexopoulos, J.D.; Kazantzidou-Firtinidou, D.; Kassaras, I.; Dilalos, S.; et al. Seismological and Ground Deformation Study of the Ionian Islands (W. Greece) during 2014–2018, a Period of Intense Seismic Activity. Appl. Sci. 2022, 12, 2331. [Google Scholar] [CrossRef]
- Kassaras, I.; Papadimitriou, P.; Kapetanidis, V.; Voulgaris, N. Seismic Site Characterization at the Western Cephalonia Island in the Aftermath of the 2014 Earthquake Series. Int. J. Geo. Eng. 2017, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Kostoglou, A.; Karakostas, V.; Bountzis, P.; Papadimitriou, E. Τhe February–March 2019 Seismic Swarm Offshore North Lefkada Island, Greece: Microseismicity Analysis and Geodynamic Implications. Appl. Sci. 2020, 10, 4491. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; van der Meer, D.G.; Zachariasse, W.J.; Meulenkamp, J.E. Deformation of Western Greece during Neogene Clockwise Rotation and Collision with Apulia. Int. J. Earth Sci. 2006, 95, 463–490. [Google Scholar] [CrossRef]
- Pavlopoulos, K.; Kapsimalis, V.; Theodorakopoulou, K.; Panagiotopoulos, I.P. Vertical Displacement Trends in the Aegean Coastal Zone (NE Mediterranean) during the Holocene Assessed by Geo-Archaeological Data. Holocene 2012, 22, 717–728. [Google Scholar] [CrossRef]
- Lazos, I.; Sboras, S.; Chousianitis, K.; Kondopoulou, D.; Pikridas, C.; Bitharis, S.; Pavlides, S. Temporal Evolution of Crustal Rotation in the Aegean Region Based on Primary Geodetically-Derived Results and Palaeomagnetism. Acta Geod. Et Geophys. 2022, 57, 317–334. [Google Scholar] [CrossRef]
- Lazos, I.; Pikridas, C.; Chatzipetros, A.; Pavlides, S. Determination of Local Active Tectonics Regime in Central and Northern Greece, Using Primary Geodetic Data. Appl. Geomat. 2021, 13, 3–17. [Google Scholar] [CrossRef]
- BP (British Petroleum), Co., Ltd. The Geological Results of Petroleum Exploration in Western Greece. Inst. Geol. Subsurf. Res. 1971, 10, 1–73. [Google Scholar]
- Xypolias, P.; Doutsos, T. Kinematics of Rock Flow in a Crustal- Scale Zone: Implication for the Orogenic Evolution of the Southwestern Hellenides. Geol. Mag. 2000, 173, 81–96. [Google Scholar] [CrossRef]
- Velaj, T. The Structural Style and Hydrocarbon Exploration of the Subthrust in the Berati Anticlinal Belt, Albania. J. Pet. Explor. Prod. Technol. 2015, 5, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Monopolis, D.; Bruneton, A. Ionian Sea (Western Greece): Its Structural Outline Deduced from Drilling and Geophysical Data. Tectonophysics 1982, 83, 227–242. [Google Scholar] [CrossRef]
- Nikolaou, K. Contribution to the Knowledge of the Neogene, the Geology and the Ionian and Pre-Apulian Limits in Relation to the Petroleum Geology Observations in Strophades, Zakynthos, and Kephalynia Islands. Ph.D. Thesis, National & Kapodistrian University of Athens, Athens, Greece, 1986. [Google Scholar]
- Sotiropoulos, S.; Kamberis, E.; Triantaphyllou, M.V.; Doutsos, T. Thrust Sequences in the Central Part of the External Hellenides. Geol. Mag. 2003, 140, 661–668. [Google Scholar] [CrossRef]
- Philippson, A. Reisen Und Forschungen in Nordgriechenland. Z. Der Gesselscaft Für Erdkd. 1896, 1, 193–249. [Google Scholar]
- Renz, C. Die Vorneogene Stratigraphie Der Normal-Sedimentären Formationen Griechenlands; Institute of Geological Subsurface Research: Athens, Greece, 1955. [Google Scholar]
- Danelian, T.; de Wever, P.; Vrielynch, B. Datations Nouvelles Fondées Sur Le Faunes de Radiolaires de La Série Jurassique Des Schistes à Posidonies (Zone Ionienne, Epire, Gréce). Rev. De Paleobiol. 1986, 5, 37–41. [Google Scholar]
- Skourtsis-Coroneou, V.; Solakius, N.; Constantinidis, I. Cretaceous Stratigraphy of the Ionian Zone, Hellenides, Western Greece. Cretac. Res. 1995, 16, 539–558. [Google Scholar] [CrossRef]
- Bellas, S. Calcareous Nannofossils of the Tertiary Flysch (Post Eocene to Early Miocene) of the Ionian Zone in Epirus, NW-Greece: Taxonomy and Biostratigraphical Correlations. Berl. Geowissenshaftliche Abh. 1997, 22, 1–173. [Google Scholar]
- Kontakiotis, G.; Moforis, L.; Karakitsios, V.; Antonarakou, A. Sedimentary Facies Analysis, Reservoir Characteristics and Paleogeography Significance of the Early Jurassic to Eocene Carbonates in Epirus (Ionian Zone, Western Greece). J. Mar. Sci. Eng. 2020, 8, 706. [Google Scholar] [CrossRef]
- Bourli, N.; Pantopoulos, G.; Maravelis, A.G.; Zoumpoulis, E.; Iliopoulos, G.; Pomoni-Papaioannou, F.; Kostopoulou, S.; Zelilidis, A. Late Cretaceous to Early Eocene Geological History of the Eastern Ionian Basin, Southwestern Greece: A Sedimentological Approach. Cretac. Res. 2019, 98, 47–71. [Google Scholar] [CrossRef]
- Karakitsios, V.; Tsikos, H.; van Breugel, Y.; Bakopoulos, I.; Koletti, L. Cretaceous Oceanic Anoxic Events in Western Continental Greece. Bull. Geol. Soc. Greece 2004, 36, 846–855. [Google Scholar] [CrossRef] [Green Version]
- Bourli, N. Stratigraphic Processes and Ionian Basin Evolution in Kastos Island from Triassic to Eocene, for Hydrocarbon Fields Development. Correlation with NW Peloponnesus (Araxos Peninsula) Outcrops. Ph.D. Thesis, University of Patras, Patras, Greece, 2021. [Google Scholar]
- Zoumpouli, E.; Maravelis, A.G.; Iliopoulos, G.; Botziolis, C.; Zygouri, V.; Zelilidis, A. Re-Evaluation of the Ionian Basin Evolution during the Late Cretaceous to Eocene (Aetoloakarnania Area, Western Greece). Geosciences 2022, 12, 106. [Google Scholar] [CrossRef]
- Bellas, S.; Frydas, D. Calcareous Nannofossil Stratigraphy of the Transitional Beds, from Carbonates to Flysch, in the Ionian Zone (Eocene/Oligocene of NW-Greece). Terra Nostra (Schr. Der Alfred-Wegener-Stift.) 1996, 96, 21. [Google Scholar]
- Avramidis, P.; Zelilidis, A. The Nature of Deep-Marine Sedimentation and Palaeocurrent Trends as Evidence of Pindos Foreland Basin Fill Conditions. Episodes 2001, 24, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Bellas, S.M.; Mertmann, D.; Manutsoglu, E.; Bartholdy, J.; Frydas, D. New Data Concerning Fossil Assemblages and Facies of a Case Section (Ayii Pantes Formation), Ionian Basin, Epirus, Greece. Facies 1995, 33, 107–120. [Google Scholar] [CrossRef]
- Zelilidis, A.; Maravelis, A.G.; Tserolas, P.; Konstantopoulos, P.A. An Overview of the Petroleum Systems in the Ionian Zone, Onshore NW Greece and Albania. J. Pet. Geol. 2015, 38, 331–348. [Google Scholar] [CrossRef]
- Nikolaou, K. Origin and Migration Mechanism of the Main Hydrocarbon Seeps in Western Greece. Bull. Geol. Soc. Greece 2001, 34, 1213–1219. [Google Scholar] [CrossRef] [Green Version]
- Mavromatidis, A. Review of Hydrocarbon Prospectivity in the Ionian Basin, Western Greece. Energy Sources Part A Recovery Util. Environ. Eff. 2009, 31, 619–632. [Google Scholar] [CrossRef]
- Rallakis, D.; Siavalas, G.; Oskay, G.; Tsimiklis, D.; Christanis, K. Maturity of Dispersed Organic Matter in Bitumenous Formations of the Ionian Zone (Epirus Region, NW Greece). Bull. Geol. Soc. Greece 2013, 47, 880–889. [Google Scholar] [CrossRef] [Green Version]
- Maravelis, A.G.; Koukounya, A.; Tserolas, P.; Pasadakis, N.; Zelilidis, A. Geochemistry of Upper Miocene—Lower Pliocene Source Rocks in the Hellenic Fold and Thrust Belt, Zakynthos Island, Ionian Sea, Western Greece. Mar. Pet. Geol. 2014, 66, 217–230. [Google Scholar] [CrossRef]
- Savoyat, E.; Monopolis, D. Geological Map 1:50000: Agnanda; Institute of Geology and Mineral Exploration (IGME): Thessaloniki, Greece, 1970. [Google Scholar]
- Savoyat, E.; Monopolis, D. Geological Map 1:50000: Thesprotikon; Institute of Geology and Mineral Exploration (IGME): Thessaloniki, Greece, 1970. [Google Scholar]
- Lafargue, E.; Marquis, F.; Pillot, D. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Oil Gas Sci. Technol. 1998, 53, 421–437. [Google Scholar] [CrossRef] [Green Version]
- Behar, F.; Beaumont, V.; Penteado, H.L.d.T. Rock-Eval 6: Performances et Développements. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Espitalie, J.; Marquis, F.; Barsony, I. Geochemical Logging. In Analytical Pyrolysis-Technics and Applications; Voorhees, K.J., Ed.; Butterworth-Heinemann: Boston, MA, USA, 1984; pp. 276–304. ISBN 0408014172. [Google Scholar]
- Hackley, P.C.; Ryder, R.T.; Trippi, M.H.; Alimi, H. Thermal Maturity of Northern Appalachian Basin Devonian Shales: Insights from Sterane and Terpane Biomarkers. Fuel 2013, 106, 455–462. [Google Scholar] [CrossRef]
- Endignoux, L.; Wolf, S. Thermal and Kinematic Evolutionof Thrust Basins: 2D Numerical Model. In Petroleum Tectonics in Mobile Belts; Letouzey, J., Ed.; Institute Francais du Petrole (IFP): Paris, France, 1990; Volume 47, pp. 181–192. [Google Scholar]
- Wygrala, B.P. Integrated Study of an Oil Field in the Southern Po Basin, Northern Italy. Ph.D. Thesis, University of Cologne, Cologne, Germany, 1989. [Google Scholar]
- Butler, R.W.H. Hydrocarbon Maturation, Migration and Tectonic Loading in the Western Alpine Foreland Thrust Belt. Geol. Soc. Lond. Spec. Publ. 2007, 59, 227–244. [Google Scholar] [CrossRef]
- Burnham, A. Evolution of Vitrinite Reflectance Models. Available online: https://www.youtube.com/watch?v=rOYNujm80uU&ab_channel=GeoSophix (accessed on 10 July 2022).
- Schenk, O.; Peters, K.; Burnham, A. Evaluation of Alternatives to Easy%Ro for Calibration of Basin and Petroleum System Models. Eur. Assoc. Geosci. Eng. 2017, 2017, 1–5. [Google Scholar]
- Fytikas, M.D.; Kolios, N.P. Preliminary Heat Flow Map of Greece. In Terrestrial Heat Flow in Europe; Cermak, V., Rybach, L., Eds.; Springer: Berlin/Heidelberg, Germany, 1979; pp. 197–205. ISBN 978-3-642-95359-0. [Google Scholar]
- Chamorro, C.R.; García-Cuesta, J.L.; Mondéjar, M.E.; Pérez-Madrazo, A. Enhanced Geothermal Systems in Europe: An Estimation and Comparison of the Technical and Sustainable Potentials. Energy 2014, 65, 250–263. [Google Scholar] [CrossRef]
- Jarvis, G.T.; McKenzie, D.P. Sedimentary Basin Formation with Finite Extension Rates. Earth Planet Sci. Lett. 1980, 48, 42–52. [Google Scholar] [CrossRef]
- Peters, K.; Cassa, M.R. Applied Source Rock Geochemistry: Chapter 5: Part II. Essential Elements. In The Petroleum System—From Source to Trap; Magoon, L.B., Dow, W.G., Eds.; AAPG Memoir: Tulsa, OK, USA, 1994; Volume 60, pp. 93–120. [Google Scholar]
- Dembicki, H. Three Common Source Rock Evaluation Errors Made by Geologists during Prospect or Play Appraisals. Am. Assoc. Pet. Geol. Bull. 2009, 93, 341–356. [Google Scholar] [CrossRef]
- Langford, F.F.; Blanc-Valleron, M.M. Interpreting Rock-Eval Pyrolysis Data Using Graphs of Pyrolizable Hydrocarbons vs. Total Organic Carbon. Am. Assoc. Pet. Geol. Bull. 1990, 74, 799–804. [Google Scholar] [CrossRef]
- Wust, R.A.J.; Hackley, P.C.; Nassichuk, B.R.; Willment, N.; Brezovski, R. Vitrinite Reflectance versus Pyrolysis Tmax Data: Assessing Thermal Maturity in Shale Plays with Special Reference to the Duvernay Shale Play of the Western Canadian Sedimentary Basin, Alberta, Canada. In Proceedings of the Society of Petroleum Engineers—Asia Pacific Unconventional Resources Conference and Exhibition 2013: Delivering Abundant Energy for a Sustainable Future, Brisbane, Australia, 11–13 November 2013; Volume 1, pp. 347–357. [Google Scholar]
- Seifert, W.K.; Moldowan, J.M. Use of Biological Markers in Petroleum Exploration. Methods Geochem. Geophys. 1986, 24, 261–290. [Google Scholar]
- Peters, K.; Walters, C.; Moldowan, J. Maturity-Related Biomarker Parameters. In The Biomarker Guide; Cambridge University Press: Cambridge, UK, 2004; Volume 2, pp. 608–640. [Google Scholar]
- Mackenzie, A.S.; McKenzie, D. Isomerization and Aromatization of Hydrocarbons in Sedimentary Basins Formed by Extension. Geol. Mag. 1983, 120, 417–470. [Google Scholar] [CrossRef]
- McKirdy, D.; Aldridge, A.K.; Ypma, P.J.M. A Geochemical Comparison of Some Crude Oils from Pre-Ordovician Carbonate Rocks. In Advances in Organic Geochemistry; Bjorøy, M., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1981; pp. 99–107. [Google Scholar]
- Papadakis, G.; Vallianatos, F.; Sammonds, P. Non-Extensive Statistical Physics Applied to Heat Flow and the Earthquake Frequency–Magnitude Distribution in Greece. Phys. A Stat. Mech. Its Appl. 2016, 456, 135–144. [Google Scholar] [CrossRef]
- Pepper, A.S.; Corvi, P.J. Simple Kinetic Models of Petroleum Formation. Part I: Oil and Gas Generation from Kerogen. Mar. Pet. Geol. 1995, 12, 291–319. [Google Scholar] [CrossRef]
- Seifert, W.K.; Moldowan, J.M. The Effect of Thermal Stress on Source-Rock Quality as Measured by Hopane Stereochemistry. Phys. Chem. Earth 1980, 12, 229–237. [Google Scholar] [CrossRef]
- Corrado, S.; Invernizzi, C.; Mazzoli, S. Tectonic Burial and Exhumation in a Foreland Fold and Thrust Belt: The Monte Alpi Case History (Southern Apennines, Italy). Geodin. Acta 2002, 15, 159–177. [Google Scholar] [CrossRef]
- Mackenzie, A.S.; Patience, R.L.; Maxwell, J.R.; Vandenbroucke, M.; Durand, B. Molecular Parameters of Maturation in the Toarcian Shales, Paris Basin, France. Changes in the Configurations of Acyclic Isoprenoid Alkanes, Steranes and Triterpanes. Geochim. Cosmochim. Acta 1980, 44, 1709–1721. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makri, V.I.; Bellas, S.; Moschou, G.; Pasadakis, N. An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt. Geosciences 2023, 13, 76. https://doi.org/10.3390/geosciences13030076
Makri VI, Bellas S, Moschou G, Pasadakis N. An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt. Geosciences. 2023; 13(3):76. https://doi.org/10.3390/geosciences13030076
Chicago/Turabian StyleMakri, Vagia Ioanna, Spyridon Bellas, Georgia Moschou, and Nikos Pasadakis. 2023. "An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt" Geosciences 13, no. 3: 76. https://doi.org/10.3390/geosciences13030076
APA StyleMakri, V. I., Bellas, S., Moschou, G., & Pasadakis, N. (2023). An Integrated Approach for the Thermal Maturity Modeling Re-Assessment of an Exploration Well in the Hellenides Fold and Thrust Belt. Geosciences, 13(3), 76. https://doi.org/10.3390/geosciences13030076