Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drilling, Shipping and Storage
2.2. Line Scanning
2.3. Error Estimate
2.4. Identification of Melt
3. Results
3.1. Line Scan Grey-Scale Data
3.2. Grey-Scale Annual Layer Counting/Age Scale
3.3. Melt
4. Discussion
4.1. Visual Stratigraphy and Grey-Scale
4.2. Benefits of Using Visual Stratigraphy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, E.R.; Gacitúa, G.; Pedro, J.B.; King, A.C.F.; Markle, B.; Potocki, M.; Moser, D.E. Physical properties of shallow ice cores from Antarctic and sub-Antarctic islands. Cryosphere 2021, 15, 1173–1186. [Google Scholar] [CrossRef]
- Moser, D.E.; Jackson, S.; Kjær, H.A.; Markle, B.; Ngoumtsa, E.; Pedro, J.B.; Segato, D.; Spolaor, A.; Tetzner, D.; Vallelonga, P.; et al. An age scale for the first shallow (sub-)Antarctic ice core from Young Island, Northwest Ross Sea. Geosciences 2021, 11, 368. [Google Scholar] [CrossRef]
- Koerner, R.M. Some comments on climatic reconstructions from ice cores drilled in areas of high melt. J. Glaciol. 1997, 43, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.C.; Grinsted, A.; Kekonen, T.; Pohjola, V. Separation of melting and environmental signals in an ice core with seasonal melt. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Alley, R.B.; Shuman, C.A.; Meese, D.A.; Gow, A.J.; Taylor, K.C.; Cuffey, K.M.; Fitzpatrick, J.J.; Grootes, P.M.; Zielinski, G.A.; Ram, M.; et al. Visual-stratigraphic dating of the GISP2 ice core: Basis, reproducibility, and application. J. Geophys. Res. Ocean. 1997, 102, 26367–26381. [Google Scholar] [CrossRef]
- McGWIRE, K.C.; McCONNELL, J.R.; Alley, R.B.; Banta, J.R.; Hargreaves, G.M.; Taylor, K.C. Dating annual layers of a shallow Antarctic ice core with an optical scanner. J. Glaciol. 2008, 54, 831–838. [Google Scholar] [CrossRef] [Green Version]
- Dey, R.; Thamban, M.; Laluraj, C.M.; Mahalinganathan, K.; Redkar, B.L.; Kumar, S.; Matsuoka, K. Application of visual stratigraphy from line-scan images to constrain chronology and melt features of a firn core from coastal Antarctica. J. Glaciol. 2022, 69, 179–190. [Google Scholar] [CrossRef]
- Sjögren, B.; Brandt, O.; Nuth, C.; Isaksson, E.; Pohjola, V.; Kohler, J.; Van De Wal, R.S. Determination of firn density in ice cores using image analysis. J. Glaciol. 2007, 53, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Winstrup, M.; Svensson, A. Stratigraphical dating of ice cores using high resolution profiles. In IOP Conference Series. Earth and Environmental Science; IOP Publishing: Bristol, UK, 2009. [Google Scholar]
- Westhoff, J.; Sinnl, G.; Svensson, A.; Freitag, J.; Kjær, H.A.; Vallelonga, P.; Vinther, B.; Kipfstuhl, S.; Dahl-Jensen, D.; Weikusat, I. Melt in the Greenland EastGRIP ice core reveals Holocene warming events. Clim. Past Discuss. 2021, 2021, 1–36. [Google Scholar]
- Andersen, K.K.; Svensson, A.; Johnsen, S.J.; Rasmussen, S.O.; Bigler, M.; Röthlisberger, R.; Ruth, U.; Siggaard-Andersen, M.L.; Steffensen, J.P.; Dahl-Jensen, D.; et al. The Greenland ice core chronology 2005, 15–42 ka. Part 1: Constructing the time scale. Quat. Sci. Rev. 2006, 25, 3246–3257. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.; Headly, M.; Wahlen, M.; Brook, E.J.; Mayewski, P.A.; Taylor, K.C. CO2 diffusion in polar ice: Observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core. J. Glaciol. 2008, 54, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Koerner, R.M. Ice core evidence for extensive melting of the Greenland ice sheet in the last interglacial. Science 1989, 244, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Orsi, A.J.; Kawamura, K.; Fegyveresi, J.M.; Headly, M.A.; Alley, R.B.; Severinghaus, J.P. Differentiating bubble-free layers from melt layers in ice cores using noble gases. J. Glaciol. 2015, 61, 585–594. [Google Scholar] [CrossRef] [Green Version]
- MacDonell, S.; Fernandoy, F.; Villar, P.; Hammann, A. Stratigraphic Analysis of Firn Cores from an Antarctic Ice Shelf Firn Aquifer. Water 2021, 13, 731. [Google Scholar] [CrossRef]
- Wegner, A.; Fischer, H.; Delmonte, B.; Petit, J.R.; Erhardt, T.; Ruth, U.; Svensson, A.; Vinther, B.; Miller, H. The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core. J. Geophys. Res. Atmos. 2015, 120, 9916–9931. [Google Scholar] [CrossRef] [Green Version]
- Kinnard, C.; Koerner, R.M.; Zdanowicz, C.M.; Fisher, D.A.; Zheng, J.; Sharp, M.J.; Nicholson, L.; Lauriol, B. Stratigraphic analysis of an ice core from the Prince of Wales Icefield, Ellesmere Island, Arctic Canada, using digital image analysis: High-resolution density, past summer warmth reconstruction, and melt effect on ice core solid conductivity. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Hörhold, M.W.; Kipfstuhl, S.; Wilhelms, F.; Freitag, J.; Frenzel, A. The densification of layered polar firn. J. Geophys. Res. Earth Surf. 2011, 116, F01001. [Google Scholar] [CrossRef] [Green Version]
- Bory, A.; Wolff, E.; Mulvaney, R.; Jagoutz, E.; Wegner, A.; Ruth, U.; Elderfield, H. Multiple sources supply eolian mineral dust to the Atlantic sector of coastal Antarctica: Evidence from recent snow layers at the top of Berkner Island ice sheet. Earth Planet. Sci. Lett. 2010, 291, 138–148. [Google Scholar] [CrossRef]
- Albani, S.; Mahowald, N.M.; Delmonte, B.; Maggi, V.; Winckler, G. Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates. Clim. Dyn. 2011, 38, 1731–1755. [Google Scholar] [CrossRef]
- Neff, P.D.; Bertler, N.A. Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica. J. Geophys. Res. Atmos. 2015, 120, 9303–9322. [Google Scholar] [CrossRef] [Green Version]
- Colbeck, S.C. Growth of Faceted Crystals in a Snow Cover; Cold Regions Research and Engineering Lab.: Hanover, NH, USA, 1982. [Google Scholar]
- Joughin, I.; Alley, R.B. Stability of the West Antarctic ice sheet in a warming world. Nat. Geosci. 2011, 4, 506–513. [Google Scholar] [CrossRef]
- Shepherd, A.; Wingham, D.; Rignot, E. Warm ocean is eroding West Antarctic ice sheet. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
Site | Date Drilled | Peaks | Bottom Depth | Bottom Age | Bottom Age [1] |
---|---|---|---|---|---|
Mount Siple | 11/02/17 | 18 | 24.38 ± 0.1 | 1999 ± 1 | 1998 ± 6 |
Mount Siple with melt removed | 11/02/17 | 19 | 24.38 ± 0.1 | 1998 ± 1 | 1998 ± 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, J.W.; Moser, D.E.; Emanuelsson, D.B.; Thomas, E.R. Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica. Geosciences 2023, 13, 85. https://doi.org/10.3390/geosciences13030085
Brown JW, Moser DE, Emanuelsson DB, Thomas ER. Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica. Geosciences. 2023; 13(3):85. https://doi.org/10.3390/geosciences13030085
Chicago/Turabian StyleBrown, Joseph W., Dorothea E. Moser, Daniel B. Emanuelsson, and Elizabeth R. Thomas. 2023. "Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica" Geosciences 13, no. 3: 85. https://doi.org/10.3390/geosciences13030085
APA StyleBrown, J. W., Moser, D. E., Emanuelsson, D. B., & Thomas, E. R. (2023). Visual Stratigraphy-Based Age Scale Developed for the Shallow Mount Siple Firn Core, Antarctica. Geosciences, 13(3), 85. https://doi.org/10.3390/geosciences13030085