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Eskişehir 26555, Türkiye

2 Independent Researcher, Ottawa, ON K2B 8E2, Canada
* Correspondence: gokcenuysal@eskisehir.edu.tr

Abstract: The operation of upstream reservoirs in mountainous regions fed by snowmelt is highly
challenging. This is partly due to scarce information given harsh topographic conditions and a lack
of monitoring stations. In this sense, snow observations from remote sensing provide additional
and relevant information about the current conditions of the basin. This information can be used to
improve the model states of a forecast using data assimilation techniques, therefore enhancing the
operation of reservoirs. Typical data assimilation techniques can effectively reduce the uncertainty
of forecast initialization by merging simulations and observations. However, they do not take
into account model, structural, or parametric uncertainty. The uncertainty intrinsic to the model
simulations introduces complexity to the forecast and restricts the daily work of operators. The
novel Multi-Parametric Variational Data Assimilation (MP-VarDA) uses different parameter sets to
create a pool of models that quantify the uncertainty arising from model parametrization. This study
focuses on the sensitivity of the parametric reduction techniques of MP-VarDA coupled in the HBV
hydrological model to create model pools and the impact of the number of parameter sets on the
performance of streamflow and Snow Cover Area (SCA) forecasts. The model pool is created using
Monte Carlo simulation, combined with an Aggregated Distance (AD) Method, to create different
model pool instances. The tests are conducted in the Karasu Basin, located at the uppermost part of
the Euphrates River in Türkiye, where snowmelt is a significant portion of the yearly runoff. The
analyses were conducted for different thresholds based on the observation exceedance probabilities.
According to the results in comparison with deterministic VarDA, probabilistic MP-VarDA improves
the m-CRPS gains of the streamflow forecasts from 57% to 67% and BSS forecast skill gains from 52%
to 68% when streamflow and SCA are assimilated. This improvement rapidly increases for the first
additional model parameter sets but reaches a maximum benefit after 5 parameter sets in the model
pool. The improvement is notable for both methods in SCA forecasts, but the best m-CRPS gain is
obtained for VarDA (31%), while the best forecast skill is detected in MP-VarDA (12%).

Keywords: HBV model; satellite snow data; data assimilation; model uncertainty; Euphrates River

1. Introduction

Snow is a vital component of the hydrological cycle in many mountainous snow-
dominated basins where glaciers and seasonal snowpacks are the water supplier of more
than 1/6 of the Earth’s population [1]. Proper estimation of hydrological response in
these regions is crucial for the effective operation of the upstream reservoirs which func-
tion for hydropower, irrigation, and water supply. To that end, hydrological forecasting
systems have been developed and applied for many decades. However, their represen-
tations are still challenging due to the complexities associated with snow accumulation
and melting processes, the limitation of data availability in rough topography, and harsh
weather conditions.
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In order to improve the performances, hydrological forecasting for snow-dominated
regions in literature copes with different aspects such as accounting for numerical weather
prediction data [2–4], implementing different type of observations [5–10], and applying
varying model approaches [11–15]. Observing snow by in situ measurements is traditional
with ground-based meteorological networks. Still, it is challenging to have spatial variabil-
ity and to access upper zones where snow cover stands for a more extended period [16].
Snow physics and harsh topography force modelers to employ advanced satellite and
remote sensing tools to detect snow, such as Snow Cover Area (SCA) and Snow Water
Equivalent (SWE) [17,18].

Model results in hydrological forecasting are not perfect due to uncertainties such
as model input data, initial conditions, model structure, and parametrization [19–21]. To
overcome these uncertainties, forecasting systems are subjected to several improvements.
For example, forcing uncertainty may be coupled with ensemble numerical weather pre-
dictions [2] or integrating probabilistic approaches [22]. Data assimilation methods are
useful techniques in many disciplines that help model developers decrease uncertainties by
updating the model states and improving initial conditions. Data assimilation approaches
are the most common way (often a prerequisite for forecasting) of adapting the observed
information into the model to improve initial conditions [6,23–26].

Researchers have shown the advantages of including snow data in hydrological mod-
eling studies for calibration and validation of degree-day based conceptual models [27].
Optimization of model parameters during calibration may force the model to compensate
for rainfall-runoff error while sacrificing snow components. Data assimilation could in-
crease the parsimony of the snow states, however, most of the existing implementations of
data assimilation in hydrological forecasting have focused on the assimilation of streamflow.
The model states which cannot be directly measured become more robust but still suffer
from poor snow states and snow forecasts as the external output from the model itself. This
is because the assimilation of snow data (SCA, SWE, or snow depth) is not as straightfor-
ward as compared to streamflow data. However, the integration of remote sensing snow
data and ground snow measurements into data assimilation applications for an operational
system is a relatively new field of research which is receiving growing attention [7,28–32].
This might be even more crucial for data-sparse snow-dominated regions; thus, studying
and practicing data assimilation techniques with snow observations contributes to a better
representation of models.

On the other hand, accounting for the uncertainty of the model structure (due to
parametric and structural uncertainty) is very important since the parameters are gen-
erally calibrated and validated for a particular part of the selected historical period.
Often, model sensitivity analysis provides useful information to detect the degree of
uncertainty [33]. Additionally, this type of uncertainty can be reduced by using multi-
modelling methods [2,34–36].

Data assimilation methods are mainly categorized into: (i) filtering approaches and
(ii) smoothing approaches. The filtering approach (Extended Kalman Filter, Ensemble
Kalman Filter, Particle Filter, etc.) is one of the most widely used way of updating states
since it does not require adjoint modeling and is easy to implement [37]. In the smoothing
approach, updates are done simultaneously over multiple time steps and they can be
advantageous in handling time lags between observations and updated states. Variational
Data Assimilation (VarDA) is a smoothing type of data assimilation implemented together
with Moving Horizon Estimation (MHE) in which an objective function is numerically
solved using optimization algorithms to obtain an optimum between model and observa-
tion uncertainties. It also provides flexible formulation without considering explicit error
covariance matrices [38]. Alvarado et al. [29] introduced an innovative probabilistic ver-
sion of VarDA, so-called Multi-Parametric VarDA (MP-VarDA), and showed that the new
version provides more robust results compared to the conventional deterministic VarDA by
assimilating both streamflow and SCA. The MP-VarDA consists of using multiple model
parametric sets with the same model structure in order to create an ensemble of model runs
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that quantifies model parametric uncertainty. In the MP-VarDA, the noise introduced by the
optimization algorithm is common for all model runs. This enables a unique modification of
the model pool during the assimilation procedure. The ensemble of model runs, equivalent
to the prior estimate in filtering methods, provides an estimate of the model parametric
uncertainty. The model parameter sets are obtained from an Aggregated Distance (AD)
method which maximizes the parametric distance between each model set in an effort to
provide a maximum diversity in the quantification of parametric uncertainty.

This study aims to implement and test this recent method [29] that generates a proba-
bilistic estimate of initial states using a multi-parametric modelling method. This study also
tests the MP-VarDA method for the first time in a data-scarce snow-dominated region and
the performances of the snow outputs are separately analyzed. Apart from that, according
to the authors’ knowledge, the appropriate model pool number selection in MP-VarDA has
not been tested in any study so far. Therefore, the main innovation of this study is to reveal
the sensitivity of the number of models in a model pool using the MP-VarDA method
coupled in the HBV model that is needed to capture model dynamics in data assimilation
and compare it with its deterministic counterpart (VarDA).

Karasu catchment is a pilot basin for many national and international projects, with a
high snowmelt contribution of around 60–70% in annual streamflow volume. Concerning
the importance of snow in mountainous Eastern Türkiye and the limited availability of
data, incorporating different data assimilation techniques with various snow data sources
is crucial in the region’s streamflow predictions. Considering these, the companion paper
discusses the conceptual hydrological model (HBV) with variational and sequential data as-
similation techniques using satellite snow products as a case study in the Upper Euphrates
Basin (Karasu), Türkiye and in the Canales Basin, Spain [28]. However, the uncertain-
ties associated with model parametrization and their consideration in data assimilation
techniques are still research questions for forecasting systems.

This study is also conducted in mountainous Eastern Türkiye for streamflow pre-
dictions over the region concerning the importance of snowmelt and the limited data
availability. The study aims to clarify the effects of different model pool instances (mpi)
in probabilistic variational data assimilation techniques in forecasting streamflow and
snow cover area. The study is also valuable by accounting for snow data in assimilation
configuration for a snow-dominated region. The objectives of the study are to reveal the
value of MP-VarDA, investigate the effect of different model pool instances for capturing
the model uncertainty, and finally compare the probabilistic MP-VarDA performances with
deterministic VarDA.

2. Materials and Methods

A flowchart is presented in Figure 1 to demonstrate the methodology of the study.
The daily rainfall-runoff relationship is established under the HBV model. The model has
21 parameters to mimic the streamflow observed at the outlet of the basin. The details of the
hydrological model are given under Section 2.3. The structural uncertainty is represented
by multiple model instances. To that end, the Monte Carlo simulation creates multiple
model parameter sets (so-called mother model pool) around the previously calibrated and
validated single model parameter set of the HBV model. Since it is not practical to use all
parameterization, AD method was utilized to reduce the number of the model parameter
instances. The reduced parameters are mainly split into two categories: (i) single instance
model parameters and (ii) multiple instance model pool parameters.

The uncertainties of the initial conditions were tackled with the variational data assim-
ilation technique. The benchmark simulation (noDA configuration) enables the detection
of any gain obtained from the data assimilation implementation. The configuration of the
assimilation accounts for perturbations over state forcings and observations. Conventional
deterministic VarDA is also implemented using a single instance model parameter set.
A multiple instance model pool is composed of various sets depending on the number of
the instances such as 3, 5, etc. The HBV model is run within a hindcast period, and the
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comparisons of both techniques, together with the benchmark case, are demonstrated. The
forecasts are produced as a set of ensembles for the MP-VarDA method. This is similar to
data assimilation based hydrological ensemble forecasting done by numerical weather fore-
casts, but here forecast members are generated using multi-parametrization and different
probabilistic initial conditions, which is different than producing ensemble members using
ensemble forcing data into a single hydrologic model and the same initial conditions.
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Figure 1. Flowchart of the study.

The HBV model produces both streamflow and SWE forecast outputs. In this study,
HBV-based SWE values were converted to SCA. The data assimilation implementation also
accounted for the assimilation of both observations (streamflow (Q) and SCA). Therefore,
the outputs (HBV-Q and HBV-SCA) are also compared with the observation (observed
streamflow and satellite SCA) using verification metrics. The study was conducted dur-
ing the 2009–2012 Water Years (WYs), which are the 12 months between 1 October and
30 September in Türkiye.

2.1. Study Area and Hydro-Meteorological Data

The developed methodology was tested in the Karasu River catchment, a major
branch of the Euphrates River in Türkiye. The study area and station network are shown in
Figure 2. The basin with a drainage area of 10,275 km2 has an elevation range from 1125 m
to 3500 m and a hypsometric mean elevation of 1983 m. The main land cover types are
pasture, cultivated, and bare land. Snowmelt streamflow in the mountainous eastern part
of Türkiye is of great importance. It constitutes approximately two-thirds of the volume of
the total yearly streamflow during the spring and early summer months. The streamflow
data were collected at the outlet of the basin (2119 station). Karasu Basin is divided into
10 elevation zones (bands) between 1125–3500 m. A total of 18 climatologic and automated
weather operating stations (AWOS), ranging in elevation between 981 and 2937 m, are
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located in and around the basin (Figure 2). The required input data for the HBV model are
daily total Precipitation (P), daily average Temperature (T), and daily Potential Evaporation
(PE). In this study, input data are provided as zone-based areal values calculated by the
Detrended Kriging distribution method [39].
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The box and whisker plots of the hydro-climatic data (total annual P, average annual
T and the mean annual streamflow) are given in Figure 3. In summary, the overall basin
statistics are observed for the mean total P, and the mean annual temperature and the mean
annual streamflow are 638 mm/year, 5.1 ◦C, 86 m3/s, respectively.
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2.2. Snow Cover Area (SCA) Data

In snowmelt streamflow modeling, it is essential to either use snow data as input to
the model or validate the model output with observations. In this study, snow data were
calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) observations.
The MODIS snow-mapping algorithm is fully automated and is based on the Normalized
Difference Snow Index (NDSI) in a set of thresholds [40]. However, optical satellites like
MODIS are suffering from cloud coverage, especially during the snow season, resulting in
missing areal SCA data for cloudy days. In this study, cloud-free SCA data are provided by
certain filters such as combination, temporal, spatial, and elevation [41]. Therefore, filtering
enables continuous cloud-free observations of MODIS SCA data over the Karasu catchment.

Observed daily SCA data were converted to daily time series for each elevational
zone for the study period. HBV model produces SWE, converts it to SCA, and utilizes the
observed SCA information for the data assimilation part. Figure 4 depicts the variation of
SCA of the whole catchment and streamflow at the outlet of the basin for the 2009–2012 WY
period. During the accumulation period, the streamflow values are low while the major
portion comes during and after the start of the melting season. Besides, remote sensing
snow products (MODIS, IMS, MSG-SEVIRI) provide above 90% accuracy with ground
measurements in the region [41–44].
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2.3. HBV Hydrological Model

HBV model is a bucket-type, semi-distributed conceptual model to employ the hy-
drological processes by dividing a hydrological basin into sub-basins and/or elevation
ranges [45]. The model generally consists of three main routines as: snow, soil moisture
and runoff response. HBV simulates the rainfall-runoff relationship using the degree-
day method in mountainous regions. Our dedicated implementation of the HBV model
is documented in Schwanenberg and Bernhard [46] and refers to Bergström [47] and
Lindström et al. [48]. For this study, the variational data assimilation (VarDA) approach is
based on the Moving Horizon Estimation (MHE) formulation defined in [29]. Therein, the
hydrological model can be described in a time discretization according to:

xk = f
(

xk−1, uk, dk, p
)

(1)

yk = g
(

xk, vk, dk, p
)

(2)

where x, y, and d are the state, output, and external forcing vectors, respectively, u, v
are noise terms, p is the model parameters (see Abbreviation for the definition of each
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parameter) vector, f () and g() are functions representing arbitrary linear or non-linear
components of the model, and k is the time step index.

The model takes daily total P, daily average T and PE as main inputs and produces
modelled outflow. In the HBV model application structure, the basin is divided into ten
elevation zones with equal areas. The accumulated streamflow of these elevation zones
contributes to modeled outflow, which is compared to the measured streamflow at the
outlet streamflow gaging station of the basin (2119 station). The model was chosen to
operate on an open area land use along with daily time steps. The model also produces
SWE as the model state. A simple bilinear function converts the SWE computed by the
model to SCA. Modelled SCA is also compared with observed SCA provided by MODIS
snow product.

The model has 21 parameters, including the Muskingum routing parameter, and was
calibrated using the interior point algorithm Ipopt [49]. The calibration was done for the
water years 2002–2008, resulting in a Nash–Sutcliffe Efficiency (NSE) performance of 0.84.
The calibrated parameters were validated for 2009–2012, which resulted in a NSE of 0.70.

2.4. Deterministic and Multi-Parametric Variational Data Assimilation

A deterministic VarDA approach was conducted for a forecast time Tk = 0 over an
assimilation period k = [−N + 1, 0] of N ≥ 1 time steps by the optimization of an objective
function J(u, v) according to Equation (3) and was subject to Equations (4) and (5):

min
u, v

0

∑
k=−N+1

(wx‖x̂k − xk(u)‖+ wy‖ŷk − yk(u, v)‖+ wu‖uk‖+ wv‖vk‖) (3)

uL ≤ uk ≤ uU (4)

vL ≤ vk ≤ vU (5)

where x̂ and ŷ are observations of the state and the dependent variable vectors, respectively,
wx, wy, wv are weighting coefficients to define the trade-off between different penalties, ‖.‖
is a suitable norm penalizing the deviation between observed and simulated quantities as
well as the amount of noise introduced by the data assimilation procedure. Note that the
optimization setup modifies the noise variables uk and vk to find the minimum value of
the objective function. Furthermore, the noise terms get bounded by inequality constraints
which consider constant lower and upper bounds during the complete assimilation period.

Multi-parametric variational data assimilation, MP-VarDA, is an extended version of de-
terministic Moving Horizon Estimation-based VarDA described above in Equations (3)–(5).
The main difference is that MP-VarDA assimilates information into a pool of M number
of model instances, according to Equation (6), and subject to Equations (7) and (8). In this
study, the probability pm for each model is defined as equally likely. The amount of noise
introduced to the system is equally distributed among all M models.

min
u, v

M

∑
m=1

(pm

0

∑
k=−N+1

(wx‖x̂k − xk,m(u)‖+ wy‖ŷk − yk,m(u, v)‖+ wu‖uk‖+ wv‖vk‖)) (6)

uL ≤ uk ≤ uU (7)

vL ≤ vk ≤ vU (8)

The Monte Carlo simulation technique was used to create multiple model parameters
based on a previously calibrated hydrological model. The idea is that very different param-
eter sets can yield almost equally good fits between simulated and observed streamflow.
The simulations are bounded by a multiplicative factor concerning the calibrated set as
well as a physical limit such that:

−pi,cal ∗ Fvar ≤ pi,m ≤ pi,cal ∗ Fvar (9)
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pi,L ≤ pi,m ≤ pi,U (10)

where pi,cal is the parameter i of the calibrated set, Fvar is a variation factor, and pi,m is the
modified parameter bounded to the lower and upper bounds pi,L and pi,U respectively.
The parameters pi,m were generated using the Monte Carlo method.

The multiple model parameters include a large set, but it is not practical to implement
all of them in MP-VarDA due to its computational expense. Therefore, we aimed at
producing a representative set of models (model pool) from the Monte Carlo simulation.
Here, we use the AD method [29] to reduce the number of parameter sets while still keeping
the maximum amount of parametric uncertainty in the remaining sets. Model pool(s) were
established from the same multiple parameter set (Monte Carlo simulation runs only once
in the entire study), but each pool has varying model instances. The study analyzes the
performance of different model pools in MP-VarDA. The model pool with more instances
always includes a model pool with fewer instances. For example, a model pool having
5 instances includes model pools 3 and 1. This guarantees the inclusion of the same model
uncertainty captured in different larger model pools. On the other hand, the model pool
having only one model instance is considered to be representative of VarDA to compare
with MP-VarDA results and is similarly created from multiple parameter sets.

Since the variational methods use optimization algorithms to minimize an objective
function, the trade-off is done between the amount of noise introduced into the model and
the distance between simulated and observed variables. Unlike a single VarDA, MP-VarDA
optimizes the function using multiple model instances. Streamflow and snow (satellite
SCA) observation data were assimilated using noise terms of states and forcings such as
precipitation and temperature, as indicated in Table 1. The other states (SM, UZ, and LZ) of
the HBV model are also accounted for in the objective function. The probabilistic initial
values are produced by MP-VarDA, and ensemble forecasts are produced with probabilistic
initial states and multi-model structure. The range of noise terms and weight of the obser-
vations are given in Table 1. This configuration is compared with other alternatives and the
optimum weights were assessed based on forecast gains in Alvarado-Montero et al. [28].
The setup assimilates streamflow and snow data; thus, it claims to improve both forecast
outputs. Moreover, we kept the assimilation window in both applications up to 6 months
to capture a larger time lag between forcings and observations.

Table 1. Data assimilation configuration for deterministic VarDA and probabilistic MP-VarDA.

Objective Function Term

Type Variable Weights Range of Noise
Terms Observation Noise

Model outputs Streamflow (Q) 10 w∆Q.(Q̂k −Qk,m)
2

Snow Cover Area (SCA) 1 w∆SCA.( ˆSCAk − SCAk,m)
2

Model inputs Precipitation (%) 1 0.7–1.3 wP.(Pk(1− Pk, f ))
2

Temperature (◦C) 1 −2.0–2.0 wT .(Tk,up)
2

Model states

Soil Moisture (mm) 1 −1.0–1.0 wSM.
(

SMk,up

)2

Upper Zone (mm) 1 −1.0–1.0 wUZ.
(

UZk,up

)2

Lower Zone (mm) 1 −1.0–1.0 wLZ.
(

LZk,up

)2

m is the model index, k is the time step index, wP, wT , wSM, wUZ , wLZ denote weighting factors, ˆ denotes
observation variables, ∆SCA, ∆Q correspond to agreement terms between observed and simulated variables, Pk, f
is a multiplicative update factor for precipitation, Tup is the deviation for updating temperature, and SMup, UZup,
and LZup are deviations for updating the model states of soil moisture, upper zone and lower zone, respectively.

2.5. Aggregated Distance (AD) Method

The produced multiple parameter sets by Monte Carlo simulation should be reduced
to representative members. There are different reduction approaches (fast forward, random
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selection, tree-based, etc.) in the literature. The selected algorithm plays a key role since it
should capture a significant part of parametric uncertainty. AD is a robust method because
it is a distance-based method, so the reduction is subjected to eliminating the parameter set
m with the minimum aggregated distances to the rest of the parameter sets. The probability
of parameter set m is then reassigned to its closest set. This procedure is repeated until
the chosen number of parameter sets R is reached after N − R iterations, where N is the
initial number of parameter sets. R is also selected by the user. In this study, the effects of
selection R are also assessed, and results are compared. The details of the AD method are
described in Alvarado-Montero [50].

2.6. Monte Carlo Configuration and Model Pool Generation

The VarDA configuration is based on a set of calibrated HBV hydrological model
parameters (single model pool). The multiple model parameters pi,m are generated using
the Monte Carlo method based on normal distribution perturbation around the previously
calibrated parameters. To that end, Fvar (Equation (9)) is set to 30% and the number
of the simulations are selected as 1000 under the Monte Carlo method. The parameter
sets (mpi1000) produced by the Monte Carlo method were subjected to the performance
threshold (with model performance above 98% of the calibrated model). Among them,
only 800 sets (mpi800) satisfies this threshold. It is not practical to account 800 mpi in the
MP-VarDA method, thus the parameters (mpi800) are reduced to mpi1, mpi3, mpi5, and
mpi10 using the AD reduction technique. After reduction, each mpi is implemented in a
hindcasting (closed-loop) mode and represents an experiment, as given in Table 2. The
benchmark NoDA and deterministic VarDA stand for mpi1, whereas the others (mpi3,
mpi5, mpi10) represent probabilistic data assimilation under MP-VarDA configuration.

Table 2. Set up of models.

Data Assimilation
Technique

Model Pool
Name

Model
Name

Number of
Model Pool

Instance

- mpi800 - 800

- mpi1 noDA-mpi1 1

VarDA mpi1 detDA-mpi1 1

MP-VarDA
mpi3 probDA-mpi3 3
mpi5 probDA-mpi5 5
mpi10 probDA-mpi10 10

2.7. Performance Metrics

The study tests the close-loop performances of the forecast system. While the de-
terministic method (VarDA) based forecasts are single trajectories, the probabilistic data
assimilation method (MP-VarDA)-based forecasts have multiple members (ensemble). The
number of the ensemble is equal to the number of mpi, i.e., probDA-mpi3 produces three
different forecasts in each time step up to the lead time. Therefore, the performance metrics
in this study are commonly used statistics in ensemble forecast systems and rely on the En-
semble Verification System (EVS) 5.4 developed by the National Oceanic and Atmospheric
Administration, NOAA [51]. The exceedance probabilities are first calculated for Pr = 0.25,
Pr = 0.50, and Pr = 0.75 of the observed data set. Following that, these probabilities were
set as the thresholds, and forecasted streamflow and SCA were separately assessed over
these thresholds.

The Brier Score (BS) in Equation (11) measures the average square error of a probability
forecast. It is equivalent to the mean square error of a deterministic forecast, but the
forecasts, and hence error units, are given in probabilities. For an event that involves not
exceeding some threshold, t, the BS is computed from the forecast probability, FY(t), and
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the corresponding observed outcome, x, whose cumulative probability is 1 if t is exceeded
by the observation and 0 otherwise, as defined by the step function, 1{.}.

BS(t) =
1
n

n

∑
k=1

(
FYk (t)− 1{t ≥ xk}

)2 (11)

The Brier Skill Score (BSS) in Equation (12) measures the performance of one forecast-
ing system relative to another in terms of the Brier Score (BS). The BSS comprises a ratio of
the BS for the forecasting system to be evaluated (the “main forecasting system”), BSMAIN,
over the BS for the reference forecasting system, BSREF. BSS closer to 1 is preferred.

BSS = 1− BSMAIN
BSREF

(12)

On the other hand, data assimilation accuracy was also attained using mean Continu-
ous Ranked Probability Score (m-CRPS), so Continuous Ranked Probability Score (CRPS)
was calculated according to Equation (13). The m-CRPS metric is equivalent to the mean
absolute error when using deterministic forecasts. It provides information on the accuracy
of the forecast.

CRPSL =
1
n

n

∑
k=1

[∫ in f

−in f
(Ft(yk,L)− Γ(yk,L ≥ ŷk))

2dy
]

(13)

where: yk,L represents the value of the forecast k− L with a leadtime L, k is the indicator
of the forecast, n is the number of ensembles, ŷk is the mean of the ensemble forecast, F()
is the cumulative distribution function, and Γ is a function that assumes probability 1 for
values higher or equal to the observation and 0 otherwise.

3. Results
3.1. Monte-Carlo Simulation and Model Pool Instance Results

Only around 800 of the total 1000 model instances that had different parametrization
were selected, considering performance threshold (with model performance above 98% of
the calibrated model). This ensures the reliability of the model sets used in data assimilation
application. Figure 5 demonstrates the distribution of parameters for each mpi (with box
and whisker plots) produced by the Monte Carlo method (both for mpi800 and AD-based
reduced mpi). For example, the spread of mpi800 has the highest variation due to its
capability of multi-modeling ability. However, the idea here is to demonstrate the variation
of the deterministic (mpi1) and reduced probabilistic sets (mpi3, mpi5, and mpi10) in
comparison with mother pool (mpi800). The upper and lower y-axis limits of the graph
are adjusted according to the physical limits of the parameters. Table 3 shows the ranges
of the mother pool set categorized into three groups depending on the visual parameter
comparison in Figure 5. Accordingly, only 4 parameters have low-range and 3 parameters
are within mid-range, while the remaining total 14 parameters are found to provide a good
fit, with the observed streamflow having a wide range.

The Monte Carlo method can capture a more extensive distribution by having larger
parameter sets. Since mpi1 has a single member parameter set, it provides a single value
in the graph (Figure 5). Thus, the parameters of mpi1 do not always match the mean of
the mother pool (mpi800). However, it can be stated that AD-based model pools show
promising distribution, even with fewer model instances: correction factor for evaporation
(ECORR), correction factor for rainfall (RFCF), temperature interval with a mixture of
snow/rain (TTI), degree day factor (CFMAX). Additionally, increasing the number of the
model pool can properly represent a larger spread; see temperature limit for snow (rain or
snow) (TT), recession coefficient (ALPHA), and field capacity (FC).
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Table 3. Ranges of the HBV model parameters * from the Monte Carlo simulation (800 mpi).

Low-Range Mid-Range Wide-Range

ECORR
RFCF
SFCF

K_CON

CFMAX
BETA

K

TT
TTI
CFR

CWH
TM

CFLUX
ETF
FC
LP

ALPHA
K1

PERC
LIC

Eps_CON
* The model parameter abbreviations are explained in the Abbreviation.

Even the small number of AD-based parametrization can rapidly converge to the
mother model pool ranges. For example, this is observed for the parameters of K1, CFMAX,
or BETA, where the 1 mpi value is close to the minimum or maximum value of the mother
pool, while 3 mpi can rapidly capture the mother pool range. Outliers are only detected in
Muskingum routing parameters (k_CON and eps_CON) for the 10 mpi.

3.2. Data Assimilation Hindcast Results

The hindcast period starts from 1 October 2008 and ends on 30 September 2012,
and has daily time steps. The forecast lead time is set to 10 days (0 to 240 h with 24 h
increments). The initial conditions were improved by assimilating both streamflow and
snow data under deterministic and probabilistic variational DA. Improved states were
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utilized as the best initial condition to generate perfect forecasts based on observed forcing
data. This also eliminates forecast uncertainty, which is out of the scope of this study.
Generated model pool parameter sets (mpi1, mpi3, mpi5, and mpi10) were implemented
into data assimilation through the HBV hydrological model in a hindcasting mode. The
configuration intended to produce both streamflow and SCA forecasts. Since VarDA is
deterministic, it produces a single forecast for each time step up to the lead time, whereas
MP-VarDA produces an ensemble set of forecasts considering multiple initial conditions
and model parametrization.

Figure 6 demonstrates the multi-model ensemble forecasts of the probDA-mpi10
experiment as an example case from the 2011 WY by mpi10 parameterization and MP-
VarDA application coupled in HBV. The dash lines indicate the streamflow and SCA
observations. The orange and blue lines are produced streamflow and SCA forecasts that
have 10 members for up to 10-day lead time in daily time step, respectively.
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Figure 6. An example of one-year (2011) hindcasting simulation for MP-VarDA (10 model instances).

The streamflow thresholds (depending on the exceedance probabilities; Pr = 0.25,
Pr = 0.50, Pr = 0.75) from the observations are calculated as 39.5 m3/s, 49.4 m3/s, and
100.4 m3/s, respectively. The SCA thresholds (Pr = 0.25, Pr = 0.50, Pr = 0.75) from satellite
observations are calculated as 0.01%, 6.23%, and 69.47%. Thresholds are lower limits for
the assessments. Therefore, the forecast members above Pr = 0.25, Pr = 0.50, and Pr = 0.75
for streamflows are deemed as “above low flow”, “above median flow”, and “high flow”,
respectively. On the other hand, Pr = 0.25 for SCA encompasses any snow occurrences
by excluding summer months, while Pr = 0.50 threshold stands for the accumulation and
melting periods, and finally Pr = 0.75 only evaluates the high and full snowy seasons.

Figures 7 and 8 compare the forecast performance using m-CRPS and BSS metrics for
VarDA and MP-VarDA experiments, respectively. The performances of the noDA-mpi1
experiment are also shown in the related figures. Since m-CRPS has the same unit as the
observations, it provides useful information about the assessment. The m-CRPS of the
deterministic experiments are identical to the mean absolute error. The ranges for the
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streamflow data have wider bounds, and thus the graphs are given in different y-axis scales
for m-CRPS, while SCA is kept the same. The m-CRPS of a perfect forecast would be zero,
while the BSS for a seamless set of forecasts would be one. Since BSS is always based on a
threshold value, the presentations are only available for exceedance probability thresholds,
while m-CRPS can be calculated for both all data and forecasts above these thresholds.
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The noDA-mpi1 experiment always has the highest error and lowest forecast skill,
except for the BSS of the forecasts above Pr = 0.50 in the probDA-10mpi experiment. The
data assimilation application seems to improve the performance of hydrological forecasting
for both streamflow and snow components. There is a neat order in the data assimilation
experiments for the streamflow, which means that m-CRPS values decrease by increasing
the number of the model pool in MP-VarDA. According to the snow data graphs, deter-
ministic VarDA gives either less or similar m-CRPS values in comparison to probabilistic
MP-VarDA. The order of the error lines is not as representative as in the case of streamflow
graphs. Nevertheless, a notable difference can only be stated in the high SCA forecast
(>Pr = 0.75), where probDA-mpi5 gives the lowest m-CRPS. On the other hand, BSS skill
performance is decreasing over time. The forecast skill of the noDA-mpi1 in streamflow
shows that all data have a negative value, indicating the very poor performance of the
system without data assimilation implementation. The highest skills are detected for the
forecasts above Pr = 0.75 for both streamflow and SCA so that the forecast skills of the
high-flows/SCA are better than other forecast groups (>Pr = 0.25 and >Pr = 0.50). The
worst skill is detected for the forecasts above Pr = 0.50 in SCA. The lower skills are expected
for the forecast above Pr = 0.25.

4. Discussion

The results are analyzed with percent gains of the data assimilation methods to find
the most effective method in the hydrological forecasting system. Figure 9 compares
m-CRPS based error gain (%) for VarDA and MP-VarDA experiments with respect to
noDA-mpi1 benchmark simulation. Higher error gains are detected in the MP-VarDA
against deterministic VarDA, especially for streamflow forecasts. The error gains intuitively
decrease with respect to lead time, but still stay within a considerable level (34% and
50% for detDA-mpi1 and probDA-mpi10 in all data analyses, respectively). Increasing
the number of mpi clearly increases the gains. This situation was observed for all data,
as well as in different forecast groups above the thresholds. Therefore, it can be stated
that MP-VarDA outperforms VarDA for streamflow forecasts in the case of assimilating
streamflow and SCA. There is a limit where increasing model pool instances does not
contribute further. For example, probDA-mpi5 and probDA-mpi10 seem to give similar
results. Compared to streamflow, lower m-CRPS error gains in SCA were detected for both
methods. Additionally, VarDA gives a higher gain for all data and the forecasts greater
than Pr = 0.25 and Pr = 0.50, while MP-VarDA slightly increases the gains of the forecasts
which are greater than Pr = 0.75, especially for probDA-mpi5. This is also detected for
longer lead times. However, it is not straightforward to classify which method or mpi gives
more accurate results in a general sense.

Figure 10 compares the percent forecast BSS-gain of VarDA and MP-VarDA experi-
ments with respect to noDA-mpi1 benchmark simulation. Increasing the mpi in MP-VarDA
also enhances forecast skills gains. The gains in streamflow increase above 100% for
Pr = 0.25 because of the negative (very poor) BSS performance of the noDA-mpi1 simula-
tion. The BSS gains look similar for the streamflow forecasts above the other thresholds
(Pr = 0.50 and Pr = 0.75). The main improvement by MP-VarDA is detected especially for
the SCA forecasts above low and high thresholds (Pr = 0.25 and Pr = 0.75). This is also
due to the uncertainty capture capacity of the probabilistic case where a larger spread is
accounted for in comparison to a single deterministic forecast.

Even though m-CRPS error gains are not increasing as aforementioned, the BSS forecast
skill gains seem to be the same or slightly increased in MP-VarDA compared to VarDA.
Similarly, the highest BSS gains are detected for the SCA forecasts above Pr = 0.25 following
Pr = 0.75. The lowest gain was observed for the SCA forecasts above Pr = 0.50.
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As a summary, the mean gain of the whole lead time period (0 to 240 h) was calculated
together with their standard deviations for m-CRPS and BSS in Tables 4 and 5, respectively.
The mean of the gains for m-CRPS and BSS increase while standard deviations decrease
in streamflow from deterministic to probabilistic data assimilation implementation. The
highest streamflow m-CRPS mean gain from all experiments within all data and the
forecasts above the three thresholds are detected as 67–69% for MP-VarDA, having 5 or
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10 mpi. The highest streamflow BSS mean gain of all experiments for all data and within
the three thresholds are detected as 63–81% for MP-VarDA, having 5 or 10 mpi. In this
study, we kept the variations (Fvar) in the Monte Carlo method at 30%, which gives the
highest performance according to Alvarado et al. [29]. The improvements in streamflow
forecasts are similar in comparison to their results. The main difference is that the number
of mpi is assessed for the first time in this study, and it is found that increasing the number
of mpi significantly improves the model performances until a threshold mpi, especially for
streamflow metrics. Thus, increasing the model pool seems to converge to a limit where
additional gains do not make a significant contribution.

Table 4. Summary of the m-CRPS gains.

DA
Technique

Model
Name

Streamflow Gains (µ ± σ, %) SCA Gains (µ ± σ, %)

All >Pr = 0.25 >Pr = 0.50 >Pr = 0.75 All >Pr = 0.25 >Pr = 0.50 >Pr = 0.75

VarDA detDA-mpi1 57 ± 17 58 ± 18 58 ± 19 60 ± 19 31 ± 6 30 ± 6 36 ± 6 57 ± 6

MP-
VarDA

probDA-mpi3 61 ± 14 62 ± 15 62 ± 16 64 ± 17 27 ± 4 27 ± 4 32 ± 5 58 ± 4
probDA-mpi5 66 ± 12 67 ± 13 67 ± 13 69 ± 14 10 ± 9 9 ± 9 19 ± 9 68 ± 4
probDA-mpi10 67 ± 11 68 ± 12 68 ± 12 69 ± 13 21 ± 5 21 ± 4 25 ± 5 59 ± 5

Table 5. Summary of the BSS gains.

DA
Technique

Model
Name

Streamflow Gains (µ ± σ, %) SCA Gains (µ ± σ, %)

All >Pr = 0.25 >Pr = 0.50 >Pr = 0.75 All >Pr = 0.25 >Pr = 0.50 >Pr = 0.75

VarDA detDA-mpi1 52 ± 9 47 ± 20 72 ± 11 52 ± 9 8 ± 2 4 ± 2 44 ± 6 8 ± 2

MP-
VarDA

probDA-mpi3 60 ± 6 53 ± 8 77 ± 7 60 ± 6 10 ± 1 0 ± 2 47 ± 4 10 ± 1
probDA-mpi5 66 ± 5 63 ± 8 81 ± 6 66 ± 5 12 ± 1 −18 ± 1 40 ± 6 12 ± 1
probDA-mpi10 68 ± 4 62 ± 8 80 ± 6 68 ± 4 9 ± 1 3 ± 3 31 ± 5 9 ± 1

The SCA gains are not appreciated as much as the streamflow, but the models seem
to be more robust since they account for the snow component, which is the main driver
of the hydrological process. The highest SCA m-CRPS mean gain from all experiments
considering all data and the forecasts above the first two thresholds (Pr = 0.25 and Pr = 0.50)
are detected as 31–36% from the deterministic VarDA method (1 mpi). However, the maxi-
mum SCA m-CRPS gain is calculated as 68% for the forecasts above the upper threshold
(Pr = 0.75) in one of the probabilistic experiments (probDA-mpi5). BSS gains of SCA have a
different (i.e., not regular) order compared to streamflow. The highest SCA BSS mean gains
of all experiments are 12%, 4%, and 47% for probDA-mpi5, VarDA, and probDA-mpi3, re-
spectively. Therefore, the improvement in streamflow seems to decrease SCA performances
in MP-VarDA implementation.

Another reason for the variations in SCA performances might be attributed to the
assimilation of snow states where SCA is indirectly calculated in the hydrological model.
On the other hand, the reduction in AD might affect the performance of SCA in data
assimilation application. For example, probDA-mpi5 shows the lowest m-CRPS SCA gain
for all thresholds except for Pr = 0.75 (stands for the high SCA values) and this gain is the
highest among the others. This could be related to the representation of CFMAX parameter
distribution (refer to Figure 5) of mpi5 among the other model pools and the lower capability
of initial state updating of the forecasting during more complex accumulation and melting
seasons (refer to Figure 6 which appears to present lower representation of accumulation
or melting seasons with overestimations). We should also keep in mind that CFMAX is a
sensitive parameter, which means that a little variation of this parameter could result in
large changes especially in SWE, and thus in SCA.

Since a low CFMAX parameter (degree-day factor) causes higher SCA preservation
in the model itself (due to slower melting), the overestimation of SCA can result in lower
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m-CRPS gains in the forecasts above Pr = 0.25 and Pr = 50, but a higher gain for the forecasts
above Pr = 0.75 threshold. Additionally, streamflow is dominated by 21 parameters, while
only a few of them are directly associated with snow components. This makes the estimation
of SWE and indirectly SCA estimation more difficult. On the other hand, BSS gain variation
in SCA indicates the complexity of ensemble spread for SCA in the probabilistic method,
thus yielding variable best forecast skills. It is also important to keep in mind that SCA
still includes uncertainties associated with the temporal and spatial representation of the
snow storage.

5. Conclusions

The data assimilation application is a useful technique for a reliable hydrological
forecasting system. Integration of data assimilation is especially more challenging in snow-
dominated regions due to the complexity of snow processes and limited observations. This
study analyzes the forecast performance of multi-parametric probabilistic data assimilation
(MP-VarDA) coupled in HBV hydrological model. Streamflow and SCA forecasts up to
10 days are generated using a benchmark simulation without data assimilation application,
a deterministic model based on VarDA method, and several probabilistic models based
on MP-VarDA method. Since MP-VarDA requires multi-parameterization, Monte Carlo
simulation was applied to derive multiple sets of model parameters; however, it is not
practical to account for all of them in a real-time forecasting system. In order to make a
fair judgment, here we used the same mother model pool to determine both deterministic
and probabilistic parameters. To capture model uncertainty without increasing the number
of model parameter sets, AD method shows robust representativeness by keeping the
maximum amount of parametric uncertainty in the remaining sets. The utilization of
AD method in MP-VarDA also enables us to integrate probabilistic methods in the real-
time forecasting system more efficiently since probabilistic data assimilation has a higher
computational cost relative to deterministic counterpart. The study also reveals the effects
of different model instances integrated with a probabilistic assimilation approach. The data
assimilation method can incorporate the model pool and improve the hydrological model’s
initial states.

In conclusion, we have summarized certain take-home messages and future recom-
mendations below:

• The results show the supremacy of MP-VarDA against deterministic VarDA, especially
for streamflow forecasts. MP-VarDA reduces the forecast error (m-CRPS) and provides
larger forecast skill (BSS) by having probabilistic initial states and ensemble forecasts
based on the multi-modeling scheme. The method gives more robust results for
different forecast groups above certain threshold values selected from exceedance
probabilities. These results should encourage operators to adopt pools with multiple
model instances to consider model uncertainty in their forecast estimation.

• Considering the data limitation in the upper snow dominated basins, most of the
studies in the literature rely on the conceptual semi-distributed approaches. The study
was also tested with a single rainfall-runoff relationship through the HBV hydrological
model. Our approach takes the advantage of novel assimilation methods and enriching
the method with probabilistic states to set up a more reliable forecasting system. The
method was also tested in a closed-loop mode which mimics the real-time hydrological
forecasting system, and the study demonstrates for forecasters/practitioners that MP-
VarDA method can better capture structural uncertainty and improves initial states
even using a single hydrological modelling environment.

• Assimilating snow with streamflow through hydrological modeling improves both
deterministic and probabilistic data assimilation methods. However, considering the
complexities of snow accumulation and melting processes, we cannot propose a single
best method for SCA forecasts.

• We also revealed the impact of selecting different sizes of model pools in a forecast
system for a snow-dominated area. Increasing the number of the model pool has a clear
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impact up to a certain limit on the performance of streamflow forecasts. On the other
hand, SCA forecasts are mainly dominated by fewer and more sensitive parameter
sets and increments of mpi in MP-VarDA configuration might still increase the forecast
performances by capturing better sampling of snow modelling representation.

• Future studies should assess and compare these results under numerical weather
prediction systems rather than observed meteorological inputs. Even though SCA-
SWE is represented by a bilinear depletion function, the more realistic way could
be established by a hysteresis. Additionally, in case of having satellite-based SWE,
the assimilation can be employed directly by SWE observations so that uncertainties
related to the SCA-SWE transition could be reduced.
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Abbreviation

Parameter
Unit Parameter Name

Abbreviation

ECORR ---- Correction factor for evaporation
RFCF ---- Correction factor for rainfall
SFCF ---- Correction factor for snowfall
TT ◦C Temperature limit for snow (rain or snow)
TTI ◦C Temperature interval with a mixture of snow/rain
CFMAX mm/day ◦C Degree day factor
CFR ---- Refreezing factor
CWH % Water holding capacity
TM ◦C Temperature limit for melting
BETA ---- Exponent in formula for drainage from soil
CFLUX mm/day ◦C Maximum capillary flow from upper box to soil moisture routine
ETF ---- Temperature correction factor
FC mm Field capacity
LP ---- Limit for potential evapotranspration
ALPHA ---- Recession coefficient in Q = (k)(UZ)(alfa+1)

K 1/day Recession coefficient
K1 1/day Recession coefficient for lower box
PERC mm/day Percolation capacity from upper to lower box
LIC ---- Maximum interception storage
k_CON ---- Muskingum routing parameter
eps_CON ---- Muskingum routing parameter
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