Analysing the Large-Scale Debris Flow Event in July 2022 in Horlachtal, Austria Using Remote Sensing and Measurement Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Photo Monitoring
3.2. Topographical Data
3.2.1. Data Acquisition
3.2.2. DTM of Difference and Debris Flow Volumes
3.2.3. Error Assessment of the Debris Flow Volumes
3.3. Meteorological Data
3.4. Hydrological Data
4. Results
4.1. Meteorological Analyses
4.2. Discharge Measurements
4.3. Evaluation of Topographical Data
4.3.1. Spatial Patterns
4.3.2. Debris Flow Accumulation Volumes
5. Discussion
5.1. The Dating of the Debris Flow Event
5.2. Spatial Differences of the Debris Flow Events
5.3. Debris Flow Magnitudes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subset Area ID | Mean Error [m] | Mean Absolute Error [m] | RMSE [m] | Standard Deviation [m] |
---|---|---|---|---|
GT03 | −0.008 | 0.083 | 0.111 | 0.111 |
GT04 | 0.005 | 0.061 | 0.08 | 0.079 |
GT05 | 0.002 | 0.129 | 0.171 | 0.171 |
GT06 | −0.036 | 0.196 | 0.257 | 0.255 |
GT07 | −0.025 | 0.23 | 0.28 | 0.278 |
LT08 | −0.008 | 0.072 | 0.097 | 0.096 |
LT09 | 0.033 | 0.113 | 0.199 | 0.196 |
LT10 | −0.0001 | 0.072 | 0.098 | 0.098 |
LT11 | 0.013 | 0.154 | 0.197 | 0.197 |
LT12 | −0.039 | 0.25 | 0.309 | 0.307 |
LT13 | 0.01 | 0.26 | 0.323 | 0.323 |
LT14 | 0.002 | 0.184 | 0.227 | 0.227 |
LT15 | 0.018 | 0.249 | 0.307 | 0.306 |
LT24 | −0.053 | 0.159 | 0.211 | 0.205 |
ZT16 | −0.015 | 0.119 | 0.173 | 0.173 |
ZT17 | −0.006 | 0.074 | 0.099 | 0.099 |
ZT18 | −0.003 | 0.09 | 0.121 | 0.121 |
ZT19 | 0.009 | 0.088 | 0.113 | 0.113 |
ZT20 | −0.002 | 0.075 | 0.106 | 0.106 |
ZT21 | −0.003 | 0.076 | 0.102 | 0.102 |
ZT25 | −0.0001 | 0.044 | 0.055 | 0.055 |
HT22 | 0.001 | 0.096 | 0.124 | 0.124 |
HT23 | 0.001 | 0.132 | 0.169 | 0.169 |
References
- Dowling, C.A.; Santi, P.M. Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011. Nat. Hazards 2014, 71, 203–227. [Google Scholar] [CrossRef]
- Hürlimann, M.; Coviello, V.; Bel, C.; Guo, X.; Berti, M.; Graf, C.; Hübl, J.; Miyata, S.; Smith, J.B.; Yin, H.-Y. Debris-flow monitoring and warning: Review and examples. Earth-Sci. Rev. 2019, 199, 102981. [Google Scholar] [CrossRef]
- Berti, M.; Genevois, R.; LaHusen, R.; Simoni, A.; Tecca, P.R. Debris flow monitoring in the acquabona watershed on the Dolomites (Italian alps). Phys. Chem. Earth Part B 2000, 25, 707–715. [Google Scholar] [CrossRef]
- Marchi, L.; Arattano, M.; Deganutti, A.M. Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 2002, 46, 1–17. [Google Scholar] [CrossRef]
- Comiti, F.; Marchi, L.; Macconi, P.; Arattano, M.; Bertoldi, G.; Borga, M.; Brardinoni, F.; Cavalli, M.; D’Agostino, V.; Penna, D.; et al. A new monitoring station for debris flows in the European Alps: First observations in the Gadria basin. Nat. Hazards 2014, 73, 1175–1198. [Google Scholar] [CrossRef]
- Navratil, O.; Liébault, F.; Bellot, H.; Travaglini, E.; Theule, J.; Chambon, G.; Laigle, D. High-frequency monitoring of debris-flow propagation along the Réal Torrent, Southern French Prealps. Geomorphology 2013, 201, 157–171. [Google Scholar] [CrossRef]
- Hürlimann, M.; Rickenmann, D.; Graf, C. Field and monitoring data of debris-flow events in the Swiss Alps. Can. Geotech. J. 2003, 40, 161–175. [Google Scholar] [CrossRef]
- Walter, F.; Burtin, A.; McArdell, B.W.; Hovius, N.; Weder, B.; Turowski, J.M. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland. Nat. Hazards Earth Syst. Sci. 2017, 17, 939–955. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.; Simoni, A. DFLOWZ: A free program to evaluate the area potentially inundated by a debris flow. Comput. Geosci. 2014, 67, 14–23. [Google Scholar] [CrossRef]
- Baggio, T.; Mergili, M.; D’Agostino, V. Advances in the simulation of debris flow erosion: The case study of the Rio Gere (Italy) event of the 4th August 2017. Geomorphology 2021, 381, 107664. [Google Scholar] [CrossRef]
- Theule, J.I.; Liébault, F.; Loye, A.; Laigle, D.; Jaboyedoff, M. Sediment budget monitoring of debris-flow and bedload transport in the Manival Torrent, SE France. Nat. Hazards Earth Syst. Sci. 2012, 12, 731–749. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, A.; Krautblatter, M. Deciphering controls for debris-flow erosion derived from a LiDAR-recorded extreme event and a calibrated numerical model (Roßbichelbach, Germany). Earth Surf. Proc. Landforms 2019, 44, 1346–1361. [Google Scholar] [CrossRef]
- Bremer, M.; Sass, O. Combining airborne and terrestrial laser scanning for quantifying erosion and deposition by a debris flow event. Geomorphology 2012, 138, 49–60. [Google Scholar] [CrossRef]
- Cavalli, M.; Goldin, B.; Comiti, F.; Brardinoni, F.; Marchi, L. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology 2017, 291, 4–16. [Google Scholar] [CrossRef]
- Ellett, N.G.; Pierce, J.L.; Glenn, N.F. Partitioned by process: Measuring post-fire debris-flow and rill erosion with Structure from Motion photogrammetry. Earth Surf. Proc. Landf. 2019, 44, 3128–3146. [Google Scholar] [CrossRef]
- Adams, M.S.; Fromm, R.; Lechner, V. High-resolution debris flow volume mapping with unmanned aerial systems (UAS) and photogrammetric techniques. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Bull, J.M.; Miller, H.; Gravley, D.M.; Costello, D.; Hikuroa, D.; Dix, J.K. Assessing debris flows using LIDAR differencing: 18 May 2005 Matata event, New Zealand. Geomorphology 2010, 124, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Miura, H. Fusion Analysis of Optical Satellite Images and Digital Elevation Model for Quantifying Volume in Debris Flow Disaster. Remote Sens. 2019, 11, 1096. [Google Scholar] [CrossRef] [Green Version]
- Haiden, T.; Kann, A.; Wittmann, C.; Pistotnik, G.; Bica, B.; Gruber, C. The Integrated Nowcasting through Comprehensive Analysis (INCA) System and Its Validation over the Eastern Alpine Region. Weather. Forecast. 2011, 26, 166–183. [Google Scholar] [CrossRef]
- Berenguer, M.; Sempere-Torres, D.; Hürlimann, M. Debris-flow forecasting at regional scale by combining susceptibility mapping and radar rainfall. Nat. Hazards Earth Syst. Sci. 2015, 15, 587–602. [Google Scholar] [CrossRef] [Green Version]
- Javidan, N.; Kavian, A.; Pourghasemi, H.R.; Conoscenti, C.; Jafarian, Z.; Rodrigo-Comino, J. Evaluation of multi-hazard map produced using MaxEnt machine learning technique. Sci. Rep. 2021, 11, 6496. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Golkarian, A.; Biggs, T.; Keesstra, S.; Mohammadi, F.; Daliakopoulos, I.N. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. J. Environ. Manage. 2019, 236, 466–480. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W.; Rezaie, F.; Rahmati, O.; Davoudi Moghaddam, D.; Tiefenbacher, J.; Panahi, M.; Lee, M.-J.; Kulakowski, D.; Tien Bui, D.; et al. Debris flows modeling using geo-environmental factors: Developing hybridized deep-learning algorithms. Geocarto Int. 2022, 37, 5150–5173. [Google Scholar] [CrossRef]
- Heckmann, T.; Gegg, K.; Gegg, A.; Becht, M. Sample size matters: Investigating the effect of sample size on a logistic regression susceptibility model for debris flows. Nat. Hazards Earth Syst. Sci. 2014, 14, 259–278. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Chen, J.; Zhou, W.; Iqbal, J.; Yao, L. A modified Logit model for assessment and validation of debris-flow susceptibility. Bull. Eng. Geol. Environ. 2019, 78, 4421–4438. [Google Scholar] [CrossRef]
- Hoinkes, G.; Krainer, K.; Tropper, P. Ötztaler Alpen, Stubaier Alpen und Texelgruppe; Gebr. Borntraeger: Stuttgart, Germany, 2021; ISBN 9783443151003. [Google Scholar]
- Geitner, C. Sedimentologische und Vegetationsgeschichtliche Untersuchungen an Fluvialen Sedimenten in den Hochlagen des Horlachtales (Stubaier Alpen/Tirol); Geobuch-Verlag: München, Germany, 1999. [Google Scholar]
- Becht, M. Untersuchungen zur Aktuellen Reliefentwicklung in Alpinen Einzugsgebieten: Mit 40 Tabellen; Geobuch-Verl.: München, Germany, 1995; ISBN 3-925308-69-5. [Google Scholar]
- Rom, J.; Haas, F.; Heckmann, T.; Altmann, M.; Fleischer, F.; Ressl, C.; Betz-Nutz, S.; Becht, M. Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947. Nat. Hazards Earth Syst. Sci. 2023, 23, 601–622. [Google Scholar] [CrossRef]
- Rieger, D. Bewertung der Naturräumlichen Rahmenbedingungen für die Entstehung von Hangmuren: Möglichkeiten zur Modellierung des Murpotentials; mit 21 Tabellen; Geobuch-Verl.: München, Germany, 1999; ISBN 3925308733. [Google Scholar]
- Hagg, W.; Becht, M. Einflüsse von Niederschlag und Substrat auf die Auslösung von Hangmuren in Beispielgebieten der Ostalpen. Z. Geomorphol. N.F. 2000, 123, 79–92. [Google Scholar]
- Becht, M.; Rieger, D. Debris flows on alpine slopes (eastern Alps)/Coulées de débris sur des versants des Alpes Orientales. Morfo 1997, 3, 33–41. [Google Scholar] [CrossRef]
- Rom, J.; Haas, F.; Heckmann, T.; Dremel, F.; Fleischer, F.; Altmann, M.; Stark, M.; Becht, M. Establishing a record of extreme debris flow events in a high Alpine catchment since the end of the Little Ice Age using lichenometric dating. Geogr. Ann. Ser. A Phys. Geogr. 2023, 1–17. [Google Scholar] [CrossRef]
- Wichmann, V. Modellierung Geomorphologischer Prozesse in Einem Alpinen Einzugsgebiet: Abgrenzung und Klassifizierung der Wirkungsräume von Sturzprozessen und Muren mit Einem GIS; Profil-Verl.: München, Germany; Wien, Austria, 2006; ISBN 3-89019-605-5. [Google Scholar]
- Rickenmann, D.; Zimmermann, M. The 1987 debris flows in Switzerland: Documentation and analysis. Geomorphology 1993, 8, 175–189. [Google Scholar] [CrossRef]
- Underwood, S.J.; Schultz, M.D.; Berti, M.; Gregoretti, C.; Simoni, A.; Mote, T.L.; Saylor, A.M. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy. Nat. Hazards Earth Syst. Sci. 2016, 16, 509–528. [Google Scholar] [CrossRef] [Green Version]
- Berti, M.; Bernard, M.; Gregoretti, C.; Simoni, A. Physical Interpretation of Rainfall Thresholds for Runoff-Generated Debris Flows. J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005513. [Google Scholar] [CrossRef]
- Morino, C.; Conway, S.J.; Balme, M.R.; Hillier, J.; Jordan, C.; Saemundsson, Þ.; Argles, T. Debris-flow release processes investigated through the analysis of multi-temporal LiDAR datasets in north-western Iceland. Earth Surf. Proc. Landf. 2019, 44, 144–159. [Google Scholar] [CrossRef] [Green Version]
- Calista, M.; Menna, V.; Mancinelli, V.; Sciarra, N.; Miccadei, E. Rockfall and Debris Flow Hazard Assessment in the SW Escarpment of Montagna del Morrone Ridge (Abruzzo, Central Italy). Water 2020, 12, 1206. [Google Scholar] [CrossRef] [Green Version]
- Tiranti, D.; Crema, S.; Cavalli, M.; Deangeli, C. An Integrated Study to Evaluate Debris Flow Hazard in Alpine Environment. Front. Earth Sci. 2018, 6, 60. [Google Scholar] [CrossRef] [Green Version]
- Heuberger, H. Gletschergeschichtliche Untersuchungen in den Zentralalpen Zwischen Sellrain- und Otztal. Geogr. J. 1967, 133, 522. [Google Scholar] [CrossRef]
- McCoy, S.W.; Coe, J.A.; Kean, J.W.; Tucker, G.E.; Staley, D.M.; Wasklewicz, T.A. Observations of debris flows at chalk cliffs, Colorado, USA: Part 1, in situ measurements of flow dynamics, tracer particle movement and video imagery from the summer of 2009. Ital. J. Eng. Geol. Environ. 2011, 1, 67–75. [Google Scholar]
- Glira, P.; Pfeifer, N.; Briese, C.; Ressl, C. Rigorous Strip Adjustment of Airborne Laserscanning Data based on the ICP Algorithm. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, II-3/W5, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Glira, P.; Pfeifer, N.; Mandlburger, G. Rigorous Strip Adjustment of UAV-based Laserscanning Data Including Time-Dependent Correction of Trajectory Errors. Photogram. Eng. Rem. Sens. 2016, 82, 945–954. [Google Scholar] [CrossRef] [Green Version]
- Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser Scanning data analysis. Comput. Environ. Urban Syst. 2014, 45, 125–136. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Petrini-Monteferri, F.; Wichmann, V.; Georges, C.; Mantovani, D.; Stötter, J. Erweiterung der GIS Software SAGA zur Verarbeitung von Laserscanning-Daten der Autonomen Provinz Bozen-Südtirol. In Angewandte Geoinformatik 2009: Beiträge zum 21. AGIT-Symposium Salzburg; Strobl, J., Blaschke, T., Eds.; Wichmann: Heidelberg, Germany, 2009; pp. 47–52. ISBN 3879074801. [Google Scholar]
- Rom, J.; Haas, F.; Stark, M.; Dremel, F.; Becht, M.; Kopetzky, K.; Schwall, C.; Wimmer, M.; Pfeifer, N.; Mardini, M.; et al. Between Land and Sea: An Airborne LiDAR Field Survey to Detect Ancient Sites in the Chekka Region/Lebanon Using Spatial Analyses. Open Archaeol. 2020, 6, 248–268. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. Method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 586–606. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Kääb, A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.W. Uncertainty in quantitative analyses of topographic change: Error propagation and the role of thresholding. Earth Surf. Proc. Landf. 2019, 44, 1015–1033. [Google Scholar] [CrossRef]
- Ghaemi, E.; Foelsche, U.; Kann, A.; Fuchsberger, J. Evaluation of Integrated Nowcasting through Comprehensive Analysis (INCA) precipitation analysis using a dense rain-gauge network in southeastern Austria. Hydrol. Earth Syst. Sci. 2021, 25, 4335–4356. [Google Scholar] [CrossRef]
- Palamakumbura, R.; Finlayson, A.; Ciurean, R.; Nedumpallile-Vasu, N.; Freeborough, K.; Dashwood, C. Geological and geomorphological influences on a recent debris flow event in the Ice-scoured Mountain Quaternary domain, western Scotland. Proc. Geol. Assoc. 2021, 132, 456–468. [Google Scholar] [CrossRef]
- Carrara, A.; Crosta, G.; Frattini, P. Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 2008, 94, 353–378. [Google Scholar] [CrossRef]
- Jakob, M.; Bovis, M.; Oden, M. The significance of channel recharge rates for estimating debris-flow magnitude and frequency. Earth Surf. Proc. Landf. 2005, 30, 755–766. [Google Scholar] [CrossRef]
- Jakob, M.; Mark, E.; McDougall, S.; Friele, P.; Lau, C.-A.; Bale, S. Regional debris-flow and debris-flood frequency–magnitude relationships. Earth Surf. Proc. Landf. 2020, 45, 2954–2964. [Google Scholar] [CrossRef]
- Sungmin, O.; Foelsche, U. Assessment of spatial uncertainty of heavy rainfall at catchment scale using a dense gauge network. Hydrol. Earth Syst. Sci. 2019, 23, 2863–2875. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Krajewski, W.F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 2010, 31, 107–129. [Google Scholar] [CrossRef]
- Germann, U.; Galli, G.; Boscacci, M.; Bolliger, M. Radar precipitation measurement in a mountainous region. Q. J. R. Meteorol. Soc. 2006, 132, 1669–1692. [Google Scholar] [CrossRef]
- Bertrand, M.; Liébault, F.; Piégay, H. Regional Scale Mapping of Debris-Flow Susceptibility in the Southern French Alps. RGA 2017, 105, 4. [Google Scholar] [CrossRef]
- Marchi, L.; Brunetti, M.T.; Cavalli, M.; Crema, S. Debris-flow volumes in northeastern Italy: Relationship with drainage area and size probability. Earth Surf. Proc. Landf. 2019, 44, 933–943. [Google Scholar] [CrossRef]
- Shen, C.-W.; Lo, W.-C.; Chen, C.-Y. Evaluating Susceptibility of Debris Flow Hazard using Multivariate Statistical Analysis in Hualien County. Disaster Adv. 2012, 5, 743–755. [Google Scholar]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Marchi, L.; D’Agostino, V. Estimation of debris-flow magnitude in the Eastern Italian Alps. Earth Surf. Proc. Landf. 2004, 29, 207–220. [Google Scholar] [CrossRef]
- De Haas, T.; Densmore, A.L. Debris-flow volume quantile prediction from catchment morphometry. Geology 2019, 47, 791–794. [Google Scholar] [CrossRef]
- Franzi, L.; Bianco, G. A statistical method to predict debris flow deposited volumes on a debris fan. Phys. Chem. Earth Part C 2001, 26, 683–688. [Google Scholar] [CrossRef]
- Prochaska, A.B.; Santi, P.M.; Higgins, J.D.; Cannon, S.H. Debris-flow runout predictions based on the average channel slope (ACS). Eng. Geol. 2008, 98, 29–40. [Google Scholar] [CrossRef]
- Hürlimann, M.; Rickenmann, D.; Medina, V.; Bateman, A. Evaluation of approaches to calculate debris-flow parameters for hazard assessment. Eng. Geol. 2008, 102, 152–163. [Google Scholar] [CrossRef]
- Blahut, J.; Horton, P.; Sterlacchini, S.; Jaboyedoff, M. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 2379–2390. [Google Scholar] [CrossRef]
Sub-Catchment | Area [km²] | Elevation Range [m] | Mean Slope [degree] | Number of Debris Flows between 1947 and 2020 * |
---|---|---|---|---|
HT | 15.407 | 1557–3001 | 33.8 | 88 |
GT | 7.386 | 1702–3340 | 35.6 | 172 |
LT | 7.046 | 1826–3340 | 36.5 | 197 |
ZT | 15.06 | 2042–3241 | 33.1 | 304 |
WK | 3.042 | 2050–3087 | 29.6 | 26 |
FT | 6.95 | 1967–3061 | 31.5 | 47 |
Total | 54.891 | 1557–3340 | 33.3 | 834 |
Acquisition Date | Type | Platform | Scanner Model | Mean Point Density [pts/m²] | Pulse Repetition Rate [kHz] |
---|---|---|---|---|---|
22 September 2021 | ALS | Airbus Helicopters H125 Ecureuil | Riegl VUX 1LR | 16.1 | 200 |
3 August 2022 | ALS | Airbus Helicopters H125 Ecureuil | Riegl VUX 1LR | 24.4 | 200 |
Station Name | Operator | Easting [m] | Northing [m] | Altitude [m] | Temporal Resolution [min] |
---|---|---|---|---|---|
Grastal | SEHAG | 651,120 | 5,221,345 | 2000 | 10 |
Horlachalm | TIWAG | 652,550 | 5,224,656 | 1968 | 15 |
Niederthai | TIWAG | 649,354 | 5,220,696 | 1615 | 15 |
Station Name | Operator | Easting [m] | Northing [m] | Altitude [m] | Temporal Resolution [min] | Sub-Catchments Captured |
---|---|---|---|---|---|---|
Finstertal | SEHAG | 652,558 | 5,224,720 | 1975 | 15 | FT |
Larstigtal | SEHAG | 651,725 | 5,223,097 | 1828 | 15 | LT |
Horlach Fassung | TIWAG | 652,550 | 5,224,656 | 1968 | 15 | FT, WK, ZT |
Stuibenfall | TIWAG | 648,176 | 5,221,042 | 1533 | 15 | all * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rom, J.; Haas, F.; Hofmeister, F.; Fleischer, F.; Altmann, M.; Pfeiffer, M.; Heckmann, T.; Becht, M. Analysing the Large-Scale Debris Flow Event in July 2022 in Horlachtal, Austria Using Remote Sensing and Measurement Data. Geosciences 2023, 13, 100. https://doi.org/10.3390/geosciences13040100
Rom J, Haas F, Hofmeister F, Fleischer F, Altmann M, Pfeiffer M, Heckmann T, Becht M. Analysing the Large-Scale Debris Flow Event in July 2022 in Horlachtal, Austria Using Remote Sensing and Measurement Data. Geosciences. 2023; 13(4):100. https://doi.org/10.3390/geosciences13040100
Chicago/Turabian StyleRom, Jakob, Florian Haas, Florentin Hofmeister, Fabian Fleischer, Moritz Altmann, Madlene Pfeiffer, Tobias Heckmann, and Michael Becht. 2023. "Analysing the Large-Scale Debris Flow Event in July 2022 in Horlachtal, Austria Using Remote Sensing and Measurement Data" Geosciences 13, no. 4: 100. https://doi.org/10.3390/geosciences13040100
APA StyleRom, J., Haas, F., Hofmeister, F., Fleischer, F., Altmann, M., Pfeiffer, M., Heckmann, T., & Becht, M. (2023). Analysing the Large-Scale Debris Flow Event in July 2022 in Horlachtal, Austria Using Remote Sensing and Measurement Data. Geosciences, 13(4), 100. https://doi.org/10.3390/geosciences13040100