Examining the Hydro-Climatic Drivers of Lagoon Breaching and Healing in a Deltaic Barrier
Abstract
:1. Introduction
Regional Setting
2. Methodology
2.1. Hydro-Climatic Data
2.2. Coastal and Lagoon Changes, Breaching Events, and Recovery Period
2.3. Driver Analysis
3. Results
3.1. Hydro-Climatic Conditions
3.2. Lagoon and Coastal Changes
3.3. Lagoon Breaching
3.3.1. High Wave Energy Breaching Event in May 1988 (Event 1)
3.3.2. High River Discharge Breaching Event in May 2011 (Event 5)
3.3.3. High Wave Energy Breaching Event in October 2016 (Event 11)
3.4. Barrier Healing Processes
Healing Processes between April 2015 and April 2017
3.5. Summary of Coastal Morphodynamics
4. Discussion
4.1. Drivers of Lagoon Breaching
4.1.1. Oceanographic Process Dominant
4.1.2. River Process Dominant
4.2. Lagoon Healing
4.3. Differential Evolution of the Deltaic Barrier
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooper, J.A.G.; Green, A.N.; Loureiro, C. Geological constraints on mesoscale coastal barrier behaviour. Glob. Planet. Change 2018, 168, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Davidson-Arnott, R. Introduction to Coastal Processes and Geomorphology, 1st ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Sherwood, C.R.; Andrew, C.R.; Over, J.R.; Kranenburg, C.J.; Warrick, J.A.; Brown, J.A.; Wright, C.W.; Aretxabaleta, A.L.; Zeigler, S.L.; Wernette, P.A.; et al. Sound-Side Inundation and Seaward Erosion of a Barrier Island During Hurricane Landfall. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006934. [Google Scholar] [CrossRef]
- Thieler, R.; Young, R. Quantitative Evaluation of Coastal Geomorphological Changes in South Carolina after Hurricane Hugo. J. Coast. Res. 1991, 8, 187–200. [Google Scholar]
- Sallenger, A.H., Jr. Storm impact scale for barrier islands. J. Coast. Res. 2000, 16, 890–895. [Google Scholar]
- Houser, C.; Hamilton, J.; Meyer-Arendt, K.; Oravetz, J. EOF Analysis of Morphological Response to Hurricane Ivan. Presented at the Coastal Sediments 2007. In Proceedings of the 6th International Symposium on Coastal Engineering and Science of Coastal Sediment Processes, American Society of Civil Engineers, New Orleans, Louisiana, 13–17 May 2007. [Google Scholar]
- Durán, R.; Guillén, J.; Ruiz, A.; Jiménez, J.A.; Sagristà, E. Morphological Changes, Beach Inundation and Overwash Caused by an Extreme Storm on a Low-Lying Embayed Beach Bounded by a Dune System (NW Mediterranean). Geomorphology 2016, 274, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Ashton, A.D.; Lorenzo-Trueba, J. Morphodynamcis of Barrier Response to Sea-Level Rise. In Barrier Dynamics and Response to Changing; Moore, L.J., Murray, A.B., Eds.; Springer: Cham, Switzerland, 2018; pp. 277–304. [Google Scholar] [CrossRef]
- Leatherman, S.P. Migration of Assateague Island, Maryland, by inlet and overwash processes. Geology 1979, 7, 104–107. [Google Scholar] [CrossRef]
- Cowell, P.J.; Stive, M.J.F.; Niedoroda, A.W.; de Vriend, H.J.; Swift, J.P.; Kaminsky, G.M.; Capobianco, M. The Coastal-Tract (Part 1): A conceptual approach to aggregated modelling of low-order coastal change. J. Coast. Res. 2003, 19, 812–827. [Google Scholar]
- Donnelly, C.; Kraus, N.; Larson, M. State of Knowledge on Measurement Modeling of Coastal Overwash. J. Coast. Res. 2006, 22, 965–991. [Google Scholar] [CrossRef]
- Hudock, J.W.; Flaig, P.P.; Wood, L.J. Washover Fans: A Modern Geomorphologic Analysis and Proposed Classification Scheme To Improve Reservoir Models. J. Sediment. Res. 2014, 84, 854–865. [Google Scholar] [CrossRef]
- FitzGerald, D.M. Geomorphic variability and morphologic and sedimentologic controls on tidal inlets. J. Coast. Res. 1996, 23, 47–71. [Google Scholar]
- FitzGerald, D.M.; Fenster, M.S.; Argow, B.A.; Buynevich, I.V. Coastal Impacts Due to Sea-Level Rise. Annu. Rev. Earth Planet. Sci. 2008, 36, 601–647. [Google Scholar] [CrossRef] [Green Version]
- Zăinescu, F.I.; Alfred, V.-S.; Florin, T. The Formation and Closure of the Big Breach of Sacalin Spit Associated with Extreme Shoreline Retreat and Shoreface Erosion. Earth Surf. Process. Landf. 2019, 44, 2268–2284. [Google Scholar] [CrossRef]
- Morton, R.A.; Sallenger, A. Morphological impacts of extreme storms on sandy beaches and barrier. J. Coast. Res. 2003, 19, 560–573. [Google Scholar]
- Pierce, J.W. Tidal Inlets and Washover Fans. J. Geol. 1970, 78, 230–234. [Google Scholar] [CrossRef]
- El-Ashry, M.T.; Wanless, H.R. Birth and early growth of a tidal delta. J. Geol. 1965, 73, 404–406. [Google Scholar] [CrossRef]
- Aubrey, D.G.; Speeer, P.E. Updrift Migration of Tidal Inlets. J. Geol. 1984, 92, 531–545. [Google Scholar] [CrossRef] [Green Version]
- Hapke, C.J.; Brenner, O.; Hehre, R.; Reynolds, B.J. Coastal Change from Hurricane Sandy and the 2012-13 Winter Storm Season: Fire Island, New York (Report No. 1231); United States Geological Survey: Reston, VA, USA, 2013.
- Miselis, J.L.; Andrews, B.D.; Nicholson, R.S.; Defne, Z.; Ganju, N.K.; Navoy, A. Evolution of Mid-Atlantic Coastal and Back-Barrier Estuary Environments in Response to a Hurricane: Implications for Barrier-Estuary Connectivity. Estuaries Coasts 2016, 39, 916–934. [Google Scholar] [CrossRef]
- Rich, A.; Keller, E.A. A hydrologic and geomorphic model of estuary breaching and closure. Geomorphology 2013, 191, 64–74. [Google Scholar] [CrossRef]
- Aagaard, T.; Kroon, A. Decadal behaviour of a washover fan, Skallingen Denmark. Earth Surf. Process 2019, 44, 1755–1768. [Google Scholar] [CrossRef]
- Kombiadou, K.; Costas, S.; Carrasco, R.; Plomaritis, T.A.; Ferreira, O.; Matias, A. Bridging the Gap between Resilience and Geomorphology of Complex Coastal Systems. Earth-Sci. Rev. 2019, 198, 102934. [Google Scholar] [CrossRef]
- Ferreira, O. Prediction of the impact of cluster storms and their importance in coastal evolution, Coastal Engineering 2002. In Proceedings of the 28th International Conference, World Scientific Publishing Company, Cardiff, Wales, 7–12 July 2002. [Google Scholar] [CrossRef]
- Houser, C.; Hamilton, S. Sensitivity of post-hurricane beach and dune recovery to event frequency. Earth Surf. Process. Landforms 2009, 34, 613–628. [Google Scholar] [CrossRef]
- Ospino, S.; Restrepo, J.C.; Otero, L.; Pierini, J.; Alvarez-Silva, O. Saltwater Intrusion into a River with High Fluvial Discharge: A Microtidal Estuary of the Magdalena River, Colombia. J. Coast. Res. 2018, 34, 1273. [Google Scholar] [CrossRef]
- Kjerfve, B. Tides of the Caribbean Sea. J. Geophys. Res. 1981, 86, 4243–4247. [Google Scholar] [CrossRef]
- Von Erffa, A.F. Sedimentation, transport und erosion an der nordkuste kolumbiens zwischen Barranquilla und der Sierra Nevada de Santa Marta. Boletín Investig. Científicas Colombo-Alemán 1973, 7, 155–209. [Google Scholar]
- Gómez, J.F.; Byrne, M.L.; Hamilton, J.; Isla, F. Historical Coastal Evolution and Dune Vegetation in Isla Salamanca National Park, Colombia. J. Coast. Res. 2016, 33, 632. [Google Scholar] [CrossRef]
- Poveda, G. La hidroclimatología de Colombia: Una síntesis desde la escala inter-decadal hasta la escala diurna. Rev. De La Acad. Colomb. De Cienc. Exactas Físicas Nat. 2004, 28, 201–222. [Google Scholar]
- Restrepo, J.D.; Kjerfve, B. Magdalena River: Interannual Variability (1975–1995) and Revised Water Discharge and Sediment Load Estimates. J. Hydrol. 2000, 235, 137–149. [Google Scholar] [CrossRef]
- Hastenrath, S. Diagnostic and Prediction of Anomalous River Discharge in Northern South America. J. Clim. 1990, 3, 1080–1096. [Google Scholar] [CrossRef]
- Appendini, C.M.; Urbano-Latorre, C.P.; Figueroa, B.; Dagua-Paz, C.J.; Torres-Freyermuth, A.; Salles, P. Wave energy potential assessment in the Caribbean Low Level Jet using wave hindcast information. Appl. Energy 2015, 137, 375–384. [Google Scholar] [CrossRef]
- Ortiz-Royero, J.C.; Otero, L.J.; Restrepo, J.C.; Ruiz, J.; Cadena, M. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events. Nat. Hazards Earth Syst. Sci. 2013, 13, 2797–2804. [Google Scholar] [CrossRef] [Green Version]
- Otero, L.J.; Ortiz, J.C.; Ruiz-Merchan, J.K.; Higgins, A.E.; Henriquez, S.A. Storms or Cold Fronts: What is Really Responsible for the Extreme Waves Regime in the Colombian Caribbean Coastal Region? Nat. Hazards Earth Syst. Sci. 2016, 16, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Bernal, G.; Osorio, A.F.; Urrego, L.; Peláez, D.; Molina, E.; Zea, S.; Montoya, R.D.; Villegas, N. Occurrence of energetic extreme oceanic events in the Colombian Caribbean coasts and some approaches to assess their impact on ecosystems. J. Mar. Syst. 2016, 164, 85–100. [Google Scholar] [CrossRef]
- Hsu, S.A. Coastal Meteorology; Academic Press: San Diego, CA, USA, 1988. [Google Scholar]
- Cueto, J.E.; Otero Díaz, L.J.; Ospino-Ortiz, S.R.; Torres-Freyermuth, A. The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions. Nat. Hazards Earth Syst. Sci. 2022, 22, 713–728. [Google Scholar] [CrossRef]
- Ortiz-Royero, J.C.; Cera, S.H.; Gomes, H. Coastal Meteo-marine Parameters of Hurricane Matthew along the Colombian Caribbean Coast: Establishing a Baseline of Knowledge. J. Coast. Res. 2021, 38, 66–76. [Google Scholar] [CrossRef]
- Gómez, J.F.; Kwoll, E.; Walker, I.J.; Shirzaei, M. Vertical Land Motion as a Driver of Coastline Changes on a Deltaic System in the Colombian Caribbean. Geosciences 2021, 11, 300. [Google Scholar] [CrossRef]
- Orejarena-Rondón, A.F.; Sayol, J.-M.; Hernández-Carrasco, I.; Cáceres-Euse, A.; Restrepo, J.C.; Orfila, A. Spatio-temporal variability of mean wave energy flux in the Caribbean Sea. J. Ocean Eng. Mar. Energy 2022, 9, 25–41. [Google Scholar] [CrossRef]
- Robertson, C.; Nelson, T.A.; Boots, B.; Wulder, M.A. STAMP: Spatial–temporal Analysis of Moving Polygons. J. Geogr. Syst. 2007, 9, 207–227. [Google Scholar] [CrossRef]
- Thieler, E.R.; Martin, D.; Ergul, A. The Digital Shoreline Analysis System: Shoreline Change Measurement Software Extension; for ArcView; Woods Hole Coastal and Marine Science Center: Barnstable, MA, USA, 2003; Report No. 03–076.
- Dolan, R.; Hayden, P.; May, P.; May, S. The Reliability of Shoreline Change Measurements from Aerial Photographs. Shore Beach 1980, 48, 42–49. [Google Scholar]
- Moore, L.J. Shoreline Mapping Techniques. J. Coast. Res. 2000, 16, 111–124. [Google Scholar]
- Dean, G.D.; Dalrymple, R.A. Coastal Processes with Engineering Applications, 1st ed.; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Bailey, L.P.; Clare, M.A.; Rosenberger, K.J.; Cartigny, M.J.B.; Talling, P.J.; Paull, C.K.; Gwiazda, R.; Parsons, D.R.; Simmons, S.M.; Xu, J.; et al. Preconditioning by sediment accumulation can produce powerful turbidity currents without major external triggers. Earth Planet. Sci. Lett. 2021, 562, 116845. [Google Scholar] [CrossRef]
- Rao, J.S.; Liu, H. Discordancy Partitioning for Validating Potentially Inconsistent Pharmacogenomic Studies. Sci. Rep. 2017, 7, 15169. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, T.; Trejo-Rangel, M.A.; Salles, P.; Appendini, C.M.; Lopez-Gonzalez, J.; Torres-Freyermuth, A. Storm Characterization and Coastal Hazards in the Yucatan Peninsula. J. Coast. Res. 2013, 65, 790–795. [Google Scholar] [CrossRef]
- Rey, W.; Salles, P.; Torres-Freyermuth, A.; Ruíz-Salcines, P.; Teng, Y.-C.; Appendini, C.M.; Quintero-Ibáñez, J. Spatiotemporal Storm Impact on the Northern Yucatan Coast during Hurricanes and Central American Cold Surge Events. J. Mar. Sci. Eng. 2019, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Matias, A.; Ferreira, O.; Vila-Concejo, A.; Garcia, T.; Dias, J.A. Classification of Washover Dynamics in Barrier Islands. Geomorphology 2008, 97, 655–674. [Google Scholar] [CrossRef]
- Davies-Vollum, K.S.; Zhang, Z.; Agyekumhene, A. Impacts of Lagoon Opening and Implications for Coastal Management: Case Study from Muni-Pomadze Lagoon, Ghana. J. Coast. Conserv. 2019, 23, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Van de Lageweg, W.I.; Bryan, K.R.; Coco, G.; Ruessink, B.G. Observations of shoreline–sandbar coupling on an embayed beach. Mar. Geol. 2013, 344, 101–114. [Google Scholar] [CrossRef]
- McBride, R.A. Spatial and Temporal Distribution of Historical and Active Tidal Inlets: Delmarva Peninsula and New Jersey, USA. In Coastal Sediments 1999, 1505–1521; American Society of Civil Engineers: New York, NY, USA, 1999. [Google Scholar]
- Gomez, J.F. Dune and Coastal Evolution in Isla Salamanca National Park, Colombia. Master’s Thesis, Wilfrid Laurier University, Waterloo, ON, USA, 2015. [Google Scholar]
- Jiménez, J.A.; Sánchez-Arcila, A. A Long-Term (Decadal Scale) Evolution Model for Microtidal Barrier Systems. Coast. Eng. 2004, 51, 749–764. [Google Scholar] [CrossRef]
- Lorenzo-Trueba, J.; Ashton, A.D. Rollover, Drowning, and Discontinuous Retreat: Distinct Modes of Barrier Response to Sea-Level Rise Arising from a Simple Morphodynamic Model. J. Geophys. Res. Earth Surf. 2014, 119, 779–801. [Google Scholar] [CrossRef] [Green Version]
Event No | Lagoon Breached | Date of Detection | Wave Energy (kW/m) | Wave Height (m) | Wind Speed (m/s) | River Discharge (m3/s) | Precip. (mm) | Gradient of Atmospheric Pressure (%) |
---|---|---|---|---|---|---|---|---|
DBM/OVS (%) | DBM/OVS (%) | DBM/OVS (%) | DBM/OVS (%) | DBM/OVS (%) | % Difference with Respect to Average | |||
1 | Atascosa | 1988/06/01 | 25,024 | 2.8 | 7.8 | 6001 | 23 | 0.59 |
55.6 | 86.5 | 57.9 | −10.2 | 0 | 42.2 | |||
2 | Piedras | 2000/06/26 | 19,625 | 2.5 | 6.7 | 9646 | 28 | 0.53 |
12.7 | 24.0 | 2.9 | 56.2 | 0 | 28.0 | |||
3 | Cuatro Bocas | 2004/05/12 | 19,794 | 2.5 | 7.0 | 5847 | 10 | 0.53 |
58.5 | 57.3 | 4.2 | 33.4 | 0 | 28.0 | |||
4 | Cuatro Bocas | 2009/10/01 | 10,440 | 2.0 | 3.2 | 5985 | 35 | 0.41 |
67.7 | 60.0 | −72.3 | −32.7 | 0 | 38.5 | |||
5 | Piedras/ Atascosa | 2011/05/20 | 7165 | 1.6 | 6.6 | 12,740 | 25 | 0.47 |
−12.2 | −4.3 | 53.3 | 83.9 | 0 | 13.5 | |||
6 | Cuatro Bocas | 2015/04/17 | 16,473 | 2.3 | 8.6 | 4942 | 0 | 0.71 |
68.9 | 63.7 | 5.3 | −19.0 | 0 | 100.0 | |||
7 | Cuatro Bocas | 2015/07/30 | 36,051 | 3.2 | 6.3 | 4957 | 15 | 0.57 |
30.6 | 36.2 | 63.6 | −246.0 | 0 | 43.9 | |||
8 | Cuatro Bocas | 2015/11/06 | 7638 | 1.5 | 5.1 | 5580 | 10 | 0.27 |
58.9 | 35.6 | 38.8 | −188.8 | 0 | −6.9 | |||
9 | Atascosa | 2016/02/23 | 20,530 | 2.5 | 9.0 | 2495 | 0 | 0.71 |
46.8 | 22.4 | 12.5 | −54.0 | 0 | 71.5 | |||
10 | Cuatro Bocas | 2016/06/11 | 14,414 | 2.1 | 4.5 | 6334 | 10 | 0.47 |
22.9 | 27.5 | −54.2 | −54.0 | 0 | 14.7 | |||
11 | Atascosa | 2016/10/15 | 76,185 | 4.4 | 6.3 | 7362 | 10 | 0.53 |
15.9 | 28.6 | 68.9 | −50.6 | 20 | 79.1 | |||
12 | Atascosa | 2018/07/15 | 31,092 | 3.0 | 8.1 | 9737 | 11 | 0.53 |
48.0 | 47.1 | 60.9 | 49.5 | 0 | 12.1 | |||
13 | Piedras | 2020/09/10 | 6072 | 1.6 | 3.2 | 9025 | 15 | 0.35 |
−34.7 | −35.6 | −67.8 | 63.4 | 0 | 18.2 |
Healing No. | Lagoon Breached | Date Healing Detected | Duration of Healing (Days) 1 | Maximum Width Detected (m) |
---|---|---|---|---|
1 | Atascosa | 1989-01-11 | 224 | 300 |
2 | Las Piedras | 2001-03-01 | 248 | 80 |
3 | Cuatro Bocas | 2004-07-31 | 80 | 130 |
4 | Cuatro Bocas | 2009-11-26 | 56 | 110 |
5 | Las Piedras & Atascosa | 2012-03-12/ 2011-09-21 | 297/124 | 95/100 |
6 | Cuatro Bocas | 2015-07-13 | 87 | 80 |
7 | Cuatro Bocas | 2015-10-22 | 84 | 170 |
8 | Cuatro Bocas | 2016-05-25 | 201 | 550 |
9 | Atascosa | 2016-03-26 | 32 | 21 |
10 | Cuatro Bocas | 2017-04-06 | 299 | 435 |
11 | Atascosa | 2018-05-03 | 565 | 505 |
12 | Atascosa | 2019-02-25 | 225 | 91 |
13 | Las Piedras | n/a 2 | >117 | 186 |
El Torno 1 | Las Piedras | Atascosa | Cuatro Bocas | |
---|---|---|---|---|
Mean Barrier Width before breaching (m) | NA | 56 | 44 | 48 |
Mean Length of Inlet (m) | 1158 | 181 | 249 | 258 |
Number of Breachings | 1 | 8 | 12 | 13 |
Mean duration of healing (days) | >4780 | 282 | 292 | 135 |
Mean Coastline Changes (m/yr) | −2.3 | −12.8 | −13.9 | −17.0 |
Area 1973 (km2) | 4.11 | 2.42 | 4.97 | 4.70 |
Area 2020 (km2) | 3.91 | 1.68 | 2.97 | 7.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, J.F.; Kwoll, E.; Walker, I.J.; Orejarena, A.F. Examining the Hydro-Climatic Drivers of Lagoon Breaching and Healing in a Deltaic Barrier. Geosciences 2023, 13, 118. https://doi.org/10.3390/geosciences13040118
Gómez JF, Kwoll E, Walker IJ, Orejarena AF. Examining the Hydro-Climatic Drivers of Lagoon Breaching and Healing in a Deltaic Barrier. Geosciences. 2023; 13(4):118. https://doi.org/10.3390/geosciences13040118
Chicago/Turabian StyleGómez, Juan Felipe, Eva Kwoll, Ian J. Walker, and Andrés F. Orejarena. 2023. "Examining the Hydro-Climatic Drivers of Lagoon Breaching and Healing in a Deltaic Barrier" Geosciences 13, no. 4: 118. https://doi.org/10.3390/geosciences13040118
APA StyleGómez, J. F., Kwoll, E., Walker, I. J., & Orejarena, A. F. (2023). Examining the Hydro-Climatic Drivers of Lagoon Breaching and Healing in a Deltaic Barrier. Geosciences, 13(4), 118. https://doi.org/10.3390/geosciences13040118