The Response of Sandstone Sea Cliffs to Holocene Sea-Level Rise by Means of Remote Sensing and Direct Surveys: The Case Study of Punta Licosa Promontory (Southern Italy)
Abstract
:1. Introduction
2. Geological and Meteo-Marine Settings
3. Materials and Methods
3.1. Geological and Geomorphological Field Surveys and GPS Measurements
3.2. Schmidt Hammer Measurements
3.3. Photogrammetric Surveys and Post-Processing
- Each target was placed on the ground (or sea bottom) by employing ballasts or stakes;
- The spatial arrangement of targets was chosen to cover the entire area of interest, and the configuration sought to be in accordance with Von Gruber spatial arrangement [80];
- They were placed so that their location was visible in the images and easily accessible with a GNSS receiver.
3.4. ARGO Surveys and Post-Processing
- (i)
- A single-beam echo sounder (SBES, Ohmex SonaLite) with 200 kHz acquisition frequency, with a depth range of 0.3–80 m and an accuracy of 0.025 m;
- (ii)
- A sides scan sonar (SSS; Sonar Tritech Side-Scan StarFish 450C) optimised for coastal waters (450 kHz CHIRP transmission) with a slant range between 1 and 100 m each channel and a maximum precision under optimal water conditions of 0.0254 m. During the survey, the SSS range was 30 m and, in the case of the Punta Ogliastro site, two lines with an 80% overlap were carried out.
3.5. Satellite Images and Post-Processing
3.6. Spatial Analysis and Data Elaboration
3.6.1. Morphometric Analysis
- i.
- Morphometric analysis of satellite images;
- ii.
- Morphometric analysis of extension, borders and slope from the high-resolution DTMs and related reclassification into three classes (sub-horizontal surfaces between 0 and 5%; gently sloping surfaces between 5 and 15%; steep slopes greater than 15%);
- iii.
- Morpho-structural analysis of the coastal sector by in situ surveys;
- iv.
- Analysis of the geological data available for the submerged sector of the study area where the rocky seabed is identified [45];
- v.
- vi.
- Definition of the primary process forming the surface.
3.6.2. Analysis of Meteo-Marine Data
3.7. Procedure for the Evaluation of the Retreating Rates
3.8. GIA Models and RSL Data
4. Results
4.1. Characterisation, Geomechanical Proprieties and Morphometric Analysis of the Cliff Rocks (Emerged Area)
4.2. Morphometric Analysis of the Submerged Area and RSL Determination
4.3. Retreat Rates Evaluations
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALB | Airborne Laser Bathymetry |
BOA | Bottom Of Atmosphere |
DBM | Digital Bathymetric Model |
DEM | Digital Elevation Model |
DTM | Digital Terrain Model |
GCP | Ground Control Points |
GIA | Glacio-Hydro-Isostatic Adjustments |
GIS | Geographic Information System |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
GSD | Ground Sample Distance |
LIDAR | Laser Imaging Detection and Ranging |
MHHW | Mean Higher High Water |
MLP | Marine Limiting Point |
MSL | Medium Sea Level |
NIR | Near InfraRed |
NOAA | National Oceanic and Atmospheric Administration |
PPK | Post Processing Kinematic |
RMSE | Root Mean Square Error |
ROV | Remotely Operated Vehicle |
RSL | Relative Sea Level |
SAT | Survey Aerial Target |
SBES | Single-Beam Echo Sounder |
SDB | Satellite-Derived Bathymetry |
SfM | Structure from Motion |
SLIP | Sea-Level Index Point |
SLM | Sea-Level Marker |
SSS | Side Scan Sonar |
UAV | Unmanned Aerial Vehicle |
UCS | Uniaxial Compressive Strength |
USV | Unmanned Surface Vehicle |
References
- Aucelli, P.; Caporizzo, C.; Cinque, A.; Mattei, G.; Pappone, G.; Stefanile, M. New insight on the 1st century bc paleo-sea level and related vertical ground movements along the Baia—Miseno coastal sector (Campi Flegrei, Southern Italy). In Proceedings of the IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage; MetroArchaeo, Florence, Italy, 4–6 December 2019; Volume 2019, pp. 474–477. [Google Scholar]
- Aucelli, P.P.C.; Mattei, G.; Caporizzo, C.; Cinque, A.; Amato, L.; Stefanile, M.; Pappone, G. Multi-proxy analysis of relative sea-level and paleoshoreline changes during the last 2300 years in the Campi Flegrei caldera, Southern Italy. Quat. Int. 2021, 602, 110–130. [Google Scholar] [CrossRef]
- Caporizzo, C.; Gracia, F.J.; Aucelli, P.P.C.; Barbero, L.; Martín-Puertas, C.; Lagóstena, L.; Ruiz, J.A.; Alonso, C.; Mattei, G.; Galán-Ruffoni, I.; et al. Late-Holocene evolution of the Northern Bay of Cádiz from geomorphological, stratigraphic and archaeological data. Quat. Int. 2021, 602, 92–109. [Google Scholar] [CrossRef]
- Tursi, M.F.; Anfuso, G.; Matano, F.; Mattei, G.; Aucelli, P.P.C. A Methodological Tool to Assess Erosion Susceptibility of High Coastal Sectors: Case Studies from Campania Region (Southern Italy). Water 2023, 15, 121. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Stephenson, W.J.; Naylor, L.A. Introduction to the rock coasts of the world. Geol. Soc. Lond. Mem. 2014, 40, 1–5. [Google Scholar] [CrossRef]
- Budetta, P.; Santo, A.; Vivenzio, F. Landslide Hazard Mapping along the Coastline of the Cilento Region (Italy) by Means of a GIS-Based Parameter Rating Approach. Geomorphology 2008, 94, 340–352. [Google Scholar] [CrossRef]
- Kanyaya, J.I.; Trenhaile, A.S. Tidal Wetting and Drying on Shore Platforms: An Experimental Assessment. Geomorphology 2005, 70, 129–146. [Google Scholar] [CrossRef]
- Rovere, A.; Raymo, M.E.; Vacchi, M.; Lorscheid, T.; Stocchi, P.; Gomez-Pujol, L.; Harris, D.L.; Casella, E.; O’Leary, M.J.; Hearty, P.J. The Analysis of Last Interglacial (MIS 5e) Relative Sea-Level Indicators: Reconstructing Sea-Level in a Warmer World. Earth Sci. Rev. 2016, 159, 404–427. [Google Scholar] [CrossRef]
- Mattei, G.; Aucelli, P.P.C.; Caporizzo, C.; Rizzo, A.; Pappone, G. New geomorphological and historical elements on morpho-evolutive trends and relative sea-level changes of Naples coast in the last 6000 years. Water 2020, 12, 2651. [Google Scholar] [CrossRef]
- Aucelli, P.P.; Mattei, G.; Caporizzo, C.; Di Luccio, D.; Tursi, M.F.; Pappone, G. Coastal vs Volcanic Processes: Procida Island as a Case of Complex Morpho-Evolutive Response. Mar. Geol. 2022, 448, 106814. [Google Scholar] [CrossRef]
- Evelpidou, N.; Pirazzoli, P.; Vassilopoulos, A.; Spada, G.; Ruggieri, G.; Tomasin, A. Late Holocene Sea Level Reconstructions Based on Observations of Roman Fish Tanks, Tyrrhenian Coast of Italy. Geoarchaeology 2012, 27, 259–277. [Google Scholar] [CrossRef]
- Lambeck, K.; Rouby, H.; Purcell, A.; Sun, Y.; Sambridge, M. Sea Level and Global Ice Volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 2014, 111, 15296–15303. [Google Scholar] [CrossRef] [PubMed]
- Vacchi, M.; Marriner, N.; Morhange, C.; Spada, G.; Fontana, A.; Rovere, A. Multiproxy Assessment of Holocene Relative Sea-Level Changes in the Western Mediterranean: Sea-Level Variability and Improvements in the Definition of the Isostatic Signal. Earth Sci. Rev. 2016, 155, 172–197. [Google Scholar] [CrossRef]
- Stocchi, P.; Spada, G. Influence of Glacial Isostatic Adjustment upon Current Sea Level Variations in the Mediterranean. Tectonophysics 2009, 474, 56–68. [Google Scholar] [CrossRef]
- Davidson-Arnott, R.G. Rates of Erosion of till in the Nearshore Zone. Earth Surf. Process. Landf. 1986, 11, 53–58. [Google Scholar] [CrossRef]
- Sunamura, T. Geomorphology of Rocky Coasts; Wiley: New York, NY, USA, 1992. [Google Scholar]
- Trenhaile, A.S. Rock Coasts, with Particular Emphasis on Shore Platforms. Geomorphology 2002, 48, 7–22. [Google Scholar] [CrossRef]
- Bird, E. Coastal Cliffs: Morphology and Management; Springer: Berlin, Germany, 2016. [Google Scholar]
- Trenhaile, A.S. The Geomorphology of Rock Coasts; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Trenhaile, A.S. Predicting the Response of Hard and Soft Rock Coasts to Changes in Sea Level and Wave Height. Clim. Chang. 2011, 109, 599–615. [Google Scholar] [CrossRef]
- Kennedy, D.M.; Dickson, M.E. Lithological Control on the Elevation of Shore Platforms in a Microtidal Setting. Earth Surf. Process. Landf. 2006, 31, 1575–1584. [Google Scholar] [CrossRef]
- Trenhaile, A.S.; Porter, N.J. Can Shore Platforms Be Produced Solely by Weathering Processes? Mar. Geol. 2007, 241, 79–92. [Google Scholar] [CrossRef]
- Trenhaile, A.S.; Kanyaya, J.I. The Role of Wave Erosion on Sloping and Horizontal Shore Platforms in Macro-and Mesotidal Environments. J. Coast. Res. 2007, 23, 298–309. [Google Scholar] [CrossRef]
- Murray-Wallace, C.V.; Woodroffe, C.D. Quaternary Sea-Level Changes: A Global Perspective; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Amato, V.; Aucelli, P.P.C.; Mattei, G.; Pennetta, M.; Rizzo, A.; Rosskopf, C.M.; Schiattarella, M. A geodatabase of Late Pleistocene-Holocene palaeo sea-level markers in the Gulf of Naples. Alp. Mediterr. Quat. 2018, 31, 5–9. [Google Scholar]
- Savini, A.; Bracchi, V.A.; Cammarosano, A.; Pennetta, M.; Russo, F. Terraced Landforms Onshore and Offshore the Cilento Promontory (South-Eastern Tyrrhenian Margin) and Their Significance as Quaternary Records of Sea Level Changes. Water 2021, 13, 566. [Google Scholar] [CrossRef]
- Micallef, A.; Krastel, S.; Savini, A. Introduction. In Submarine Geomorphology; Micallef, A., Krastel, S., Savini, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Casalbore, D.; Falese, F.; Martorelli, E.; Romagnoli, C.; Chiocci, F.L. Submarine Depositional Terraces in the Tyrrhenian Sea as a Proxy for Paleo-Sea Level Reconstruction: Problems and Perspective. Quat. Int. 2017, 439, 169–180. [Google Scholar] [CrossRef]
- Caporizzo, C.; Aucelli, P.P.C.; Di Martino, G.; Mattei, G.; Tonielli, R.; Pappone, G. Geomorphometric analysis of the natural and anthropogenic seascape of Naples (Italy): A high-resolution morpho-bathymetric survey. Trans. GIS 2021, 25, 2571–2595. [Google Scholar] [CrossRef]
- Aucelli, P.; Cinque, A.; Mattei, G.; Pappone, G. Historical Sea Level Changes and Effects on the Coasts of Sorrento Peninsula (Gulf of Naples): New Constrains from Recent Geoarchaeological Investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 463, 112–125. [Google Scholar] [CrossRef]
- Caputo, T.; Marino, E.; Matano, F.; Somma, R.; Troise, C.; De Natale, G. Terrestrial Laser Scanning (TLS) Data for the Analysis of Coastal Tuff Cliff Retreat: Application to Coroglio Cliff, Naples, Italy. Ann. Geophys. 2018, 61, SE110. [Google Scholar] [CrossRef]
- Esposito, G.; Salvini, R.; Matano, F.; Sacchi, M.; Troise, C. Evaluation of Geomorphic Changes and Retreat Rates of a Coastal Pyroclastic Cliff in the Campi Flegrei Volcanic District, Southern Italy. J. Coast. Conserv. 2018, 22, 957–972. [Google Scholar] [CrossRef]
- Aucelli, P.P.C.; Gagliardi, E.; Mattei, G.; Napolitano, F.; Pappone, G.; Pennetta, M.; Tursi, M.F. Morphological responses to relative sea-level changes along Procida coast (Gulf of Naples, Italy) during the last 6.5 Ky. In Proceedings of the 2020 IEEE International Workshop on Metrology for the Sea (MetroSea), Napoli, Italy, 5–7 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 175–179. [Google Scholar]
- Budillon, F.; Amodio, S.; Contestabile, P.; Alberico, I.; Innangi, S.; Molisso, F. The Present-Day Nearshore Submerged Depositional Terraces off the Campania Coast: An Analysis of Their Morpho-Bathymetric Variability. In Proceedings of the 2020 IEEE International Workshop on Metrology for the Sea (MetroSea), Napoli, Italy, 5–7 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 132–138. [Google Scholar]
- Budillon, F.; Amodio, S.; Alberico, I.; Contestabile, P.; Vacchi, M.; Innangi, S.; Molisso, F. Present-Day Infralittoral Prograding Wedges (IPWs) in Central-Eastern Tyrrhenian Sea: Critical Issues and Challenges to Their Use as Geomorphological Indicators of Sea Level. Mar. Geol. 2022, 450, 106821. [Google Scholar] [CrossRef]
- Lirer, L.; Pescatore, T.; Scandone, P. Livello Di Piroclastiti Nei Depositi Continentali Post-Tirreniani Del Litorale Sud-Tirrenico. Atti Accad. Gioenia Sci. Nat. Catania 1967, 18, 85–115. [Google Scholar]
- Brancaccio, L.; Cinque, A.; Russo, F.; Belluomini, G.; Branca, M.; Delitala, L. Segnalazione e Datazione Di Depositi Marini Tirreniani Sulla Costa Campana. Boll. Soc. Geol. It 1990, 109, 259–265. [Google Scholar]
- Antonioli, F.; Cinque, A.; Ferranti, L.; Romano, P. Emerged and Submerged Quaternary Marine Terraces of Palinuro Cape (Southern Italy). Mem. Descr. Della Carta Geol. D’italia 1994, 52, 237–260. [Google Scholar]
- Iannace, A.; Romano, P.; Santangelo, N.; Santo, A.; Tuccimei, P. The OIS 5c along Licosa Cape Promontory (Campania Region, Southern Italy): Morphostratigraphy and U/Th Dating. Zeit. Geomorph. N. F. 2001, 45, 307–332. [Google Scholar] [CrossRef]
- Esposito, C.; Filocamo, F.; Marciano, R.; Romano, P.; Santangelo, N.; Scarciglia, F.; Tuccimei, P. Late Quaternary Shorelines in Southern Cilento (Mt. Bulgheria): Morphostratigraphy and Chronology. Il Quaternario 2003, 16, 3–14. [Google Scholar]
- Ferranti, L.; Antonioli, F.; Mauz, B.; Amorosi, A.; Dai Pra, G.; Mastronuzzi, G.; Monaco, C.; Orru, P.; Pappalardo, M.; Radtke, U.; et al. Markers of the last interglacial sea level high stand along the coast of Italy: Tectonic implications. Quat. Int. 2006, 145–145, 30–54. [Google Scholar] [CrossRef]
- Bini, M.; Zanchetta, G.; Drysdale, R.N.; Giaccio, B.; Stocchi, P.; Vacchi, M.; Hellstrom, J.C.; Couchoud, I.; Monaco, L.; Ratti, A.; et al. An End to the Last Interglacial Highstand before 120 Ka: Relative Sea-Level Evidence from Infreschi Cave (Southern Italy). Quat. Sci. Rev. 2020, 250, 106658. [Google Scholar] [CrossRef]
- Tursi, M.F.; Mattei, G.; Caporizzo, C.; Del Pizzo, S.; Amodio, A.M.; Rosskopf, C.M.; Aucelli, P.P. Late Quaternary Sea-Level Variations and Geomorphic Coastal Responses in Southern Italy: The Punta Licosa Case Study (Campania Region). In Proceedings of the 10th International Conference on Geomorphology, Coimbra, Portugal, 12–16 September 2022. [Google Scholar] [CrossRef]
- Guida, D.; Valente, A. Terrestrial and Marine Landforms along the Cilento Coastland (Southern Italy): A Framework for Landslide Hazard Assessment and Environmental Conservation. Water 2019, 11, 2618. [Google Scholar] [CrossRef]
- Martelli, L.; Nardi, G.; Cammarosano, A.; Cavuoto, G.; Aiello, G.; D’Argenio, B.; Marsella, E. Note Illustrative Della Carta Geologica d’Italia (scala 1:50.000), Foglio 502 “Agropoli”. Servizio Geologico d’Italia, ISPRA. 2016. Available online: http://www.isprambiente.gov.it/Media/carg/campania.html (accessed on 20 July 2020).
- Critelli, S. Petrologia Delle Areniti Della Formazione Di San Mauro (Eocene Superiore-Oligocene Superiore, Bacino Del Cilento), Appennino Meridionale. Mem. Soc. Geol. It. 1987, 38, 601–619. [Google Scholar]
- Critelli, S.; Le Pera, E. Litostratigrafia e Composizione Della Formazione Di Pollica (Gruppo Del Cilento, Appennino Meridionale). Boll. Soc. Geol. It. 1990, 109, 511–536. [Google Scholar]
- Cinque, A.; Romano, P.; Rosskopf, C.M.; Santangelo, N.; Santo, A. Morfologie Costiere e Depositi Quaternari Tra Agropoli e Ogliastro Marina (Cilento-Italia Meridionale). Il Quaternario 1994, 7, 3–16. [Google Scholar]
- Naples Tidal station. Available online: https://www.mareografico.it (accessed on 5 March 2022).
- Cianelli, D.; Uttieri, M.; Buonocore, B.; Falco, P.; Zambardino, G.; Zambianchi, E. Dynamics of a very special Mediterranean coastal area: The Gulf of Naples. In Mediterranean Ecosystems: Dynamics, Management and Conservation; Williams, G.S., Ed.; Nova Science Publisher’s, Inc.: New York, NY, USA, 2012; pp. 129–150. [Google Scholar]
- Mattei, G.; Di Luccio, D.; Benassai, G.; Anfuso, G.; Budillon, G.; Aucelli, P.P.C. Characteristics and coastal effects of a destructive marine storm in the Gulf of Naples (southern Italy). Nat. Hazards Earth Syst. Sci. 2021, 21, 3809–3825. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS), Bathymetric Surveys. Available online: https://www.usgs.gov/centers/ohio-kentucky-indiana-water-science-center/science/bathymetric-surveys#:~:text=Bathymetric%20surveys%20allow%20us%20to,the%20Ecomapper%20Autonomous%20Underwater%20Vehicle (accessed on 10 September 2022).
- Blondel, P. A review of acoustic techniques for habitat mapping. Hydroacoustics 2008, 11, 29–38. [Google Scholar]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications; Springer: London, UK, 2016. [Google Scholar]
- Chen, C.; Zheng, H.; Tian, W.; Wang, Z.; Li, H. Detection Method for Single-Beam Echo Sounder Based on Equivalent Measurement. J. Phys. Conf. Ser. 2021, 1739, 012021. [Google Scholar] [CrossRef]
- Amoroso, P.P.; Parente, C. The Importance of Sound Velocity Determination for Bathymetric Survey. Acta Imeko 2021, 10, 46–53. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, C.; Chen, Y.; Zhang, Y. Application of multi-beam bathymetry system in shallow water area. J. Phys. Conf. Ser. 2023, 2428, 012042. [Google Scholar] [CrossRef]
- Brown, J.; Noll, G. Multibeam Sonar Data Acquisition Systems: A Simplified Conceptual Model, National Oceanic and Atmospheric Administration; Technical Memorandum NOS CS 3; NOAA: Silver Spring, MD, USA, 2003.
- Von Deimling, J.S.; Weinrebe, W.; Tóth, Z.; Fossing, H.; Endler, R.; Rehder, G.; Spieß, V. A low frequency multibeam assessment: Spatial mapping of shallow gas by enhanced penetration and angular response anomaly. Mar. Pet. Geol. 2013, 44, 217–222. [Google Scholar] [CrossRef]
- Huges Clarke, J.E. The impact of acoustic imaging geometry on the fidelity of seabed bathymetric models. Geosciences 2018, 8, 109. [Google Scholar] [CrossRef]
- Lekkerkerk, H.J. State of the Art in Multibeam Echosounders|Hydro International. 2020. Available online: Hydro-international.com (accessed on 20 July 2022).
- Maleika, W. Development of a method for the estimation of multibeam echosounder measurement accuracy. Prz. Elektrotechniczny 2012, 2, 4. [Google Scholar]
- National Ocean and Atmospheric Administration (NOAA), How Does Backscatter Help Us Understand the Sea Floor? National Ocean Service. Available online: https://oceanservice.noaa.gov/facts/backscatter.html#:~:text=The%20sea%20floor%20depth%2C%20or,and%20received%20by%20the%20sonar (accessed on 25 March 2023).
- Brown, C.J.; Blondel, P. Developments in the application of multibeam sonar backscatter for seafloor habitat mapping. Appl. Acoust. 2009, 70, 1242–1247. [Google Scholar] [CrossRef]
- Giordano, F.; Mattei, G.; Parente, C.; Peluso, F.; Santamaria, R. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters. Sensors 2015, 16, 41. [Google Scholar] [CrossRef]
- Mattei, G.; Troisi, S.; Aucelli, P.P.C.; Pappone, G.; Peluso, F.; Stefanile, M. Sensing the Submerged Landscape of Nisida Roman Harbour in the Gulf of Naples from Integrated Measurements on a USV. Water 2018, 10, 1686. [Google Scholar] [CrossRef]
- Ashphaq, M.; Srivastava, P.K.; Mitra, D. Review of Near-Shore Satellite Derived Bathymetry: Classification and Account of Five Decades of Coastal Bathymetry Research. J. Ocean Eng. Sci. 2021, 6, 340–359. [Google Scholar] [CrossRef]
- Chénier, R.; Faucher, M.A.; Ahola, R. Satellite-derived bathymetry for im-proving Canadian Hydrographic Service charts. Int. J. Geo-Inf. 2018, 7, 306. [Google Scholar] [CrossRef]
- Casal, G.; Harris, P.; Monteys, X.; Hedley, J.; Cahalane, C.; McCarthy, T. Understanding satellite-derived bathymetry using Sentinel 2 imagery and spatial prediction models. GIsci Remote Sens. 2020, 57, 271–286. [Google Scholar] [CrossRef]
- Mavraeidopoulos, A.K.; Pallikaris, A.; Oikonomou, E. Satellite Derived Bathymetry (SDB) and Safety of Navigation. Int. Hydrogr. Rev. 2017, 17, 7–19. [Google Scholar]
- Polcyn, F.C.; Brown, W.L.; Sattinger, I.J. The Measurement of Water Depth by Remote Sensing Techniques. Michigan Univ. Ann. Arbor. Inst. Sci. Technol. 1970. [Google Scholar]
- Pacheco, A.; Horta, J.; Loureiro, C.; Ferreira, Ó. Retrieval of Nearshore Bathymetry from Landsat 8 Images: A Tool for Coastal Monitoring in Shallow Waters. Remote Sens. Environ. 2015, 159, 102–116. [Google Scholar] [CrossRef]
- Vrdoljak, L.; Kilić Pamuković, J. Assessment of Atmospheric Correction Processors and Spectral Bands for Satellite-Derived Bathymetry Using Sentinel-2 Data in the Middle Adriatic. Hydrology 2022, 9, 215. [Google Scholar] [CrossRef]
- Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Dardanelli, G.; Brčić, D.; Szostak, B.; Halicki, A.; Stateczny, M.; Widźgowski, S. Integration Data Model of the Bathymetric Monitoring System for Shallow Waterbodies Using UAV and USV Platforms. Remote Sens. 2022, 14, 4075. [Google Scholar] [CrossRef]
- Alcaras, E.; Parente, C.; Vallario, A. From Electronic Navigational Chart Data to Sea-Bottom Models: Kriging Approaches for the Bay of Pozzuoli. Acta IMEKO 2021, 10, 36–45. [Google Scholar] [CrossRef]
- Aydin, A.; Basu, A. The Schmidt Hammer in Rock Material Characterization. Eng. Geol. 2005, 81, 1–14. [Google Scholar] [CrossRef]
- ISRM. Suggested methods for determining hardness and abrasiveness of rocks. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 89–97. [Google Scholar] [CrossRef]
- Pérez-Alberti, A.; Trenhaile, A.S. An Initial Evaluation of Drone-based Monitoring of Boulder Beaches in Galicia, North-western Spain. Earth Surf. Process. Landf. 2015, 40, 105–111. [Google Scholar] [CrossRef]
- Gómez-Pazo, A.; Pérez-Alberti, A.; Trenhaile, A. Recording Inter-annual Changes on a Boulder Beach in Galicia, NW Spain Using an Unmanned Aerial Vehicle. Earth Surf. Process. Landf. 2019, 44, 1004–1014. [Google Scholar] [CrossRef]
- Thompson, M.M.; Eller, R.C.; Radlinski, W.A.; Speert, J.L. (Eds.) Manual of Photogrammetry; American Society of Photogrammetry: Falls Church, VA, USA, 1966; Volume 1, p. 61. [Google Scholar]
- Metashape, A. Agisoft Metashape User Manual, Professional Edition; Version 1.7; LLC Agisoft: St. Petersburg, Russia, 2020. [Google Scholar]
- Over, J.S.R.; Ritchie, A.C.; Kranenburg, C.J.; Brown, J.A.; Buscombe, D.D.; Noble, T.; Sherwood, C.R.; Warrick, J.A.; Wernette, P.A. Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6—Structure from motion workflow documentation (No. 2021–1039). US Geol. Surv. 2021; Open-File Report 2021–1039, 46p. [Google Scholar] [CrossRef]
- Agrafiotis, P.; Karantzalos, K.; Georgopoulos, A.; Skarlatos, D. Correcting image refraction: Towards accu-rate aerial image-based bathymetry mapping in shallow waters. Remote Sens. 2020, 12, 322. [Google Scholar] [CrossRef]
- Mattei, G.; Troisi, S.; Aucelli, P.P.C.; Pappone, G.; Peluso, F.; Stefanile, M. Multiscale Reconstruction of Natural and Archaeological Underwater Landscape by Optical and Acoustic Sensors. In Proceedings of the 2018 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), Bari, Italy, 8–10 October 2018; pp. 46–49. [Google Scholar] [CrossRef]
- Mattei, G.; Aucelli, P.P.C.; Caporizzo, C.; Peluso, F.; Pappone, G.; Troisi, S. Innovative Technologies for Coastal Paleo-Landscape Reconstruction and Paleo-Sea Level Measuring. In Proceedings of the International Workshop on R3 in Geomatics: Research, Results and Review, Naples, Italy, 10 October 2019; Springer: Berlin, Germany, 2019; Volume 146, pp. 244–255. [Google Scholar] [CrossRef]
- Pappone, G.; Aucelli, P.P.C.; Mattei, G.; Peluso, F.; Stefanile, M.; Carola, A. A Detailed Reconstruction of the Roman Landscape and the Submerged Archaeological Structure at “Castel dell’Ovo islet” (Naples, Southern Italy). Geosciences 2019, 9, 170. [Google Scholar] [CrossRef]
- Mattei, G.; Giordano, F. Integrated geophysical research of Bourbonic shipwrecks sunk in the Gulf of Naples in 1799. J. Archaeol. Sci. Rep. 2015, 1, 64–72. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/ (accessed on 24 July 2022).
- European Space Agency (ESA). Sentinel-2 Multispectral Satellite Images—Level-2A Algorithm Overview. Available online: https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 4 July 2022).
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of Water Depth with High-resolution Satellite Imagery over Variable Bottom Types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar] [CrossRef]
- Figliomeni, F.G.; Parente, C. Bathymetry from Satellite Images: A Proposal for Adapting the Band Ratio Approach to IKONOS Data. Appl. Geomat. 2022, 1–17. [Google Scholar] [CrossRef]
- Navionics, Navionics Chart Viewer. Available online: https://webapp.navionics.com (accessed on 20 July 2022).
- Geoportale Nazionale. Available online: http://www.pcn.minambiente.it/mattm/servizio-distribuzione-dati-pst/ (accessed on 10 December 2022).
- Bencivenga, M.; Nardone, G.; Ruggiero, F.; Calore, D. The Italian Data Buoy Network (RON). Adv. Fluid Mech. 2012, 74, 305. [Google Scholar]
- Di Luccio, D.; Benassai, G.; Budillon, G.; Mucerino, L.; Montella, R.; Pugliese Carratelli, E. Wave Run-up Prediction and Observation in a Micro-Tidal Beach. Nat. Hazards Earth Syst. Sci. 2018, 18, 2841–2857. [Google Scholar] [CrossRef]
- Saville, T. The Effect of Fetch Width on Wave Generation; US Beach Erosion Board: Denver, CO, USA, 1954. [Google Scholar]
- Seymour, R.J. Estimating Wave Generation on Restricted Fetches. J. Waterw. Port Coast. Ocean Eng. 1977, 103, 251–264. [Google Scholar] [CrossRef]
- Furlani, S.; Antonioli, F.; Gambin, T.; Gauci, R.; Ninfo, A.; Zavagno, E.; Micallef, A.; Cucchi, F. Marine Notches in the Maltese Islands (Central Mediterranean Sea). Quat. Int. 2017, 439, 158–168. [Google Scholar] [CrossRef]
- Mattei, G.; Caporizzo, C.; Corrado, G.; Vacchi, M.; Stocchi, P.; Pappone, G.; Schiattarella, M.; Aucelli, P.P. On the Influence of Vertical Ground Movements on Late-Quaternary Sea-Level Records. A Comprehensive Assessment along the Mid-Tyrrhenian Coast of Italy (Mediterranean Sea). Quat. Sci. Rev. 2022, 279, 107384. [Google Scholar] [CrossRef]
- Spada, G.; Stocchi, P. SELEN: A Fortran 90 Program for Solving the “Sea-Level Equation”. Comput. Geosci. 2007, 33, 538–562. [Google Scholar] [CrossRef]
- Peltier, W.R. Global Glacial Isostasy and the Surface of the Ice-Age Earth: The ICE-5G(VM2) model and GRACE. Ann. Rev. Earth Planet Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Peltier, W.R.; Argus, D.F.; Drummond, R. Space geodesy constrains ice-age terminal deglaciation: The global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 2015, 120, 450–487. [Google Scholar] [CrossRef]
- De Boer, B.; Stocchi, P.; Van De Wal, R.S.W. A Fully Coupled 3-D Ice-Sheet–Sea-Level Model: Algorithm and Applications. Geosci. Model Dev. 2014, 7, 2141–2156. [Google Scholar] [CrossRef]
- Gómez-Pazo, A.; Pérez-Alberti, A. The Use of UAVs for the Characterization and Analysis of Rocky Coasts. Drones 2021, 5, 23. [Google Scholar] [CrossRef]
- Recorbet, F.; Rochette, P.; Braucher, R.; Bourles, D.; Benedetti, L.; Hantz, D.; Finkel, R.C. Evidence for active retreat of a coastal cliff between 3.5 and 12 ka in Cassis (South East France). Geomorphology 2010, 115, 1–10. [Google Scholar] [CrossRef]
- Regard, V.; Dewez, T.; Bourlès, D.L.; Anderson, R.S.; Duperret, A.; Costa, S.; Leanni, L.; Lasseur, E.; Pedoja, K.; Maillet, G.M. Late Holocene seacliff retreat recorded by 10Be profiles across a coastal platform: Theory and example from the English Channel. Quat. Geochronol. 2012, 11, 87–97. [Google Scholar] [CrossRef]
Place | Number of GCPs | Date | Number of Calibrated Images | GSD Resolution |
---|---|---|---|---|
Punta Ogliastro 1 | 12 | 12 October 2021 | 348 | 3.40 cm/px |
Punta Licosa | 14 | 27 April 2022 | 478 | 2.50 cm/px |
Punta Ogliastro 2 | 16 | 15 June 2022 | 640 | 2.60 cm/px |
Site | Number of Measurements | Mean Uniaxial Compressive Strength (MPA) |
---|---|---|
San Marco Di Castellabate | 20 | 6–7 |
Punta Licosa | 20 | 58–60 |
Punta Scala | 20 | 60–62 |
Torre di Mezzo | 20 | 58–60 |
Punta Ogliastro | 20 | 68–70 |
Point ID | Date | Latitude (WGS84) | Longitude (WGS84) | Height (m) |
---|---|---|---|---|
P1 | 14 December 2021 | 40°16′26.61″ N | 14°56′27.14″ E | 1.93 |
P2 | 14 December 2021 | 40°16′24.85″ N | 14°56′28.18″ E | 7.60 |
P3 | 14 December 2021 | 40°16′19.38″ N | 14°56′19.65″ E | 9.49 |
P4 | 14 December 2021 | 40°15′28.37″ N | 14°56′10.87″ E | 14.08 |
P5 | 16 November 2021 | 40°15′13.98″ N | 14°54′24.75″ E | 3.15 |
P6 | 16 November 2021 | 40°15′11.68″ N | 14°54′19.5″ E | 2.44 |
P7 | 16 November 2021 | 40°15′10.58″ N | 14°54′17.34″ E | 1.72 |
P8 | 16 November 2021 | 40°15′8.74″ N | 14°54′18.0″ E | 2.88 |
P9 | 16 November 2021 | 40°19′6.13″ N | 14°54′18.71″ E | 0.35 |
P10 | 16 November 2021 | 40°15′5.28″ N | 14°54′20.69″ E | 2.51 |
P11 | 16 November 2021 | 40°15′1.44″ N | 14°54′24.12″ E | 0.22 |
P12 | 16 November 2021 | 40°15′0.27″ N | 14°54′24.21″ E | 2.84 |
P13 | 16 November 2021 | 40°14′ 56.36″ N | 14°54′26.04″ E | 4.25 |
P14 | 16 November 2021 | 40°14′51.38″ N | 14°54′26.5″ E | 4.25 |
P15 | 16 November 2021 | 40°14′47.24″ N | 14°54′28.33″ E | 3.94 |
P16 | 16 November 2021 | 40°14′44.6″ N | 14°54′29.14″ E | 1.85 |
P17 | 16 November 2021 | 40°14′42.02″ N | 14°54′30.39″ E | 4.05 |
P18 | 14 December 2021 | 40°14′36.47″ N | 14°54′32.55″ E | 3.57 |
P19 | 14 December 2021 | 40°14′35.82″ N | 14°54′40.1″ E | 3.46 |
P20 | 14 December 2021 | 40°14′35.07″ N | 14°54′41.74″ E | 3.03 |
P21 | 14 December 2021 | 40°14′29.92″ N | 14°54′46.91″ E | 2.90 |
P22 | 14 December 2021 | 40°14′15.52″ N | 14°54′59.46″ E | 3.92 |
P23 | 14 December 2021 | 40°14′14.58″ N | 14°55′1.29″ E | 4.53 |
P24 | 14 December 2021 | 40°13′55.84″ N | 14°55′ 33.89″ E | 4.98 |
P25 | 14 December 2021 | 40°13′54.67″ N | 14°55′ 40.52″ E | 4.65 |
P26 | 14 December 2021 | 40°13′54.49″ N | 14°55′40.36″ E | 0.25 |
P27 | 14 December 2021 | 40°13′45.32″ N | 14°56′2.3″ E | 3.46 |
P28 | 12 October 2021 | 40°13′44.72″ N | 14°56′4.67″ E | 0.26 |
P29 | 12 October 2021 | 40°13′44.21″ N | 14°56′5.23″ E | 3.65 |
P30 | 12 October 2021 | 40°13′42.73″ N | 14°56′10.97″ E | 4.23 |
P31 | 12 October 2021 | 40°13′42.69″ N | 14°56′11.88″ E | 4.00 |
P32 | 12 October 2021 | 40°13′47.09″ N | 14°56′12.11″ E | 4.92 |
P33 | 12 October 2021 | 40°13′48.27″ N | 14°56′13.18″ E | 0.55 |
SECTOR | RRs max | RRs min | RRs med |
---|---|---|---|
PL1 | 0.032 m/y | 0.015 m/y | 0.023 ± 0.009 m/y |
PL2 | 0.104 m/y | 0.040 m/y | 0.072 ± 0.032 m/y |
PL3 | 0.041 m/y | 0.027 m/y | 0.034 ± 0.007 m/y |
PL4 | 0.020 m/y | 0.008 m/y | 0.014 ± 0.006 m/y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tursi, M.F.; Amodio, A.M.; Caporizzo, C.; Del Pizzo, S.; Figliomeni, F.G.; Mattei, G.; Parente, C.; Rosskopf, C.M.; Aucelli, P.P.C. The Response of Sandstone Sea Cliffs to Holocene Sea-Level Rise by Means of Remote Sensing and Direct Surveys: The Case Study of Punta Licosa Promontory (Southern Italy). Geosciences 2023, 13, 120. https://doi.org/10.3390/geosciences13040120
Tursi MF, Amodio AM, Caporizzo C, Del Pizzo S, Figliomeni FG, Mattei G, Parente C, Rosskopf CM, Aucelli PPC. The Response of Sandstone Sea Cliffs to Holocene Sea-Level Rise by Means of Remote Sensing and Direct Surveys: The Case Study of Punta Licosa Promontory (Southern Italy). Geosciences. 2023; 13(4):120. https://doi.org/10.3390/geosciences13040120
Chicago/Turabian StyleTursi, Maria Francesca, Antonio Minervino Amodio, Claudia Caporizzo, Silvio Del Pizzo, Francesco Giuseppe Figliomeni, Gaia Mattei, Claudio Parente, Carmen M. Rosskopf, and Pietro P. C. Aucelli. 2023. "The Response of Sandstone Sea Cliffs to Holocene Sea-Level Rise by Means of Remote Sensing and Direct Surveys: The Case Study of Punta Licosa Promontory (Southern Italy)" Geosciences 13, no. 4: 120. https://doi.org/10.3390/geosciences13040120
APA StyleTursi, M. F., Amodio, A. M., Caporizzo, C., Del Pizzo, S., Figliomeni, F. G., Mattei, G., Parente, C., Rosskopf, C. M., & Aucelli, P. P. C. (2023). The Response of Sandstone Sea Cliffs to Holocene Sea-Level Rise by Means of Remote Sensing and Direct Surveys: The Case Study of Punta Licosa Promontory (Southern Italy). Geosciences, 13(4), 120. https://doi.org/10.3390/geosciences13040120