The Contributions of Marine Sediment Cores to Volcanic Hazard Assessments: Present Examples and Future Perspectives
Abstract
:1. Marine Sediment Cores and Volcanic Hazard Assessments
1.1. Volcanic Hazard Assessments
1.2. The Spatial and Temporal Scope of Volcanic Deposits in the Marine Sediment Record
2. Marine Sediment Cores as Archives of Volcanic Activity
2.1. Volcanogenic Deposits in Marine Sediment Cores
- Non-visible (crypto) tephra deposits. These are also primary fallout deposits, but where the concentration of shards is too low to make the layer visible to the naked eye. Such deposits can be found many 100′s of km away from their source. The finding such layers can be helped by techniques such as magnetic susceptibility and high-resolution XRF core scanning [16,17], but the most rigorous methodology requires contiguous sampling of the core and processing of the samples to extract any shards [18].
2.2. Determining the Source Volcano for Volcanogenic Deposits in Marine Sediment Cores
2.3. Age Determination of Volcanic Events in Marine Sediment Cores
Dating Technique | Notes | References |
---|---|---|
Radiocarbon | Radiocarbon on foraminifera can date the sediment immediately above or below a volcanic deposit. The use of the technique is limited to sediments younger than about 50,000 years old. Bayesian age modelling of the core allows justifiable interpolation between dated samples. | [23,24,25] |
Biostratigraphy | Prominent changes in marine fauna within an ocean basin often have existing dates (from other methods). These can be used to provide constraints on the ages of volcanogenic deposits. | [25,26] |
Palaeomagnetism | A routine method of the IODP. This is low-cost and can provide initial chronostratigraphic information from which to formulate a sampling strategy for other forms of dating. Palaeomagnetic events are relatively rare and cannot therefore be used in isolation to determine a precise date for a volcanogenic deposit. | [27] |
OSL and ESR | Volcanogenic deposits can be dated directly by OSL (Optically Stimulated Luminescence) using the glass shards or the quartz or feldspar crystals associated with the deposit. Indirect dating of the surrounding sediment is also possible and has a much more established methodology. | [14,15,27,28] |
Tephrochronology | Correlation of ash layers to proximal deposits with known dates through their geochemistry is described briefly in Section 2.2. The reliability of this approach depends ultimately on the integrity of the proximal stratigraphy. | [18,29] |
Tuning | Alignment of a palaeoenvironmental proxy record (such as δ18O) from the sediment core to either a Milankovitch cycle (e.g., the precession cycle) or a dated proxy record from another location such as a speleothem can provide a low-cost way of producing an age model for the core and the tephra layers within it. | [25,27,30] |
Direct radiometric dating | U series (usually U-Th) dating on marine carbonate sediment. Directly dating volcanic material using K-Ar or Ar:Ar techniques in marine cores is also possible when the amount of material preserved in the cores is large enough, the grain size is large enough, and the composition is appropriate (usually from K-bearing phenocrysts such as sanidine). | [27,31] |
2.4. Examples of the Contributions of Marine Sediment Cores to Volcanic Hazard Assessments
2.4.1. Santorini, Greece
2.4.2. Vesuvius, Phleagran Fields and Ischia Island, Italy
2.4.3. Central America and Mexico
3. New Opportunities to Use Marine Sediment Cores to Improve Volcanic Hazard Assessments; an Example from Sumatra, Indonesia
4. Marine Tephra to Inform and Mitigate Global Volcanic Hazards
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coussens, M.; Wall-Palmer, D.; Talling, P.J.; Watt, S.F.L.; Cassidy, M.; Jutzeler, M.; Clare, M.A.; Manga, M.; Gernon, T.G.; Palmer, M.R. The relationship between eruptive activity, flank collapse, and sea level at volcanic islands: A long-term (>1 Ma) record offshore Montserrat, Lesser Antilles. Geochem. Geophys. Geosyst. 2016, 17, 2591–2611. [Google Scholar] [CrossRef]
- Cashman, K.V.; Rust, A.C. Far-travelled ash in past and future eruptions: Combining tephrochronology with volcanic studies. J. Quat. Sci. 2020, 35, 11–22. [Google Scholar] [CrossRef]
- Cassidy, M.; Watt, S.F.; Palmer, M.R.; Trofimovs, J.; Symons, W.; Maclachlan, S.E.; Stinton, A.J. Construction of volcanic records from marine sediment cores: A review and case study (Montserrat, West Indies). Earth Sci. Rev. 2014, 138, 137–155. [Google Scholar] [CrossRef]
- Kutterolf, S.; Schindlbeck, J.C.; Jengen, M.; Freundt, A.; Straub, S.M. Milankovitch frequencies in tephra records at volcanic arcs: The relation of kyr-scale cyclic variations in volcanism to global climate changes. Quat. Sci. Rev. 2018, 204, 1–16. [Google Scholar] [CrossRef]
- Satow, C.; Gudmundsson, A.; Gertisser, R.; Ramsey, C.B.; Bazargan, M.; Pyle, D.M.; Wulf, S.; Miles, A.J.; Hardiman, M. Eruptive activity of the Santorini Volcano controlled by sea-level rise and fall. Nat. Geosci. 2021, 14, 586–592. [Google Scholar] [CrossRef]
- Mahony, S.H.; Barnard, N.H.; Sparks, R.J.; Rougier, J.C. VOLCORE, a global database of visible tephra layers sampled by ocean drilling. Sci. Data 2020, 7, 330. [Google Scholar] [CrossRef]
- Brown, S.K.; Crosweller, H.S.; Sparks, R.S.J.; Cottrell, E.; Delinge, N.I.; Guerrero, N.O.; Hobbs, L.; Kiyosugi, K.; Laughlin, S.C.; Siebert, L.; et al. Characterisation of the Quaternary eruption record: Analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. J. Appl. Volcanol. 2014, 2, 3. [Google Scholar] [CrossRef]
- Lowe, D.J. Tephrochronology and its application: A review. Quat. Geochronol. 2011, 6, 107–153. [Google Scholar] [CrossRef]
- Watt, S.F.L.; Karstens, J.; Berndt, C. Volcanic-Island Lateral Collapses and Their Submarine Deposits. In Volcanic Debris Avalanches; Roverato, M., Dufresne, A., Procter, J., Eds.; Springer: Cham, Switzerland, 2020; pp. 255–279. [Google Scholar] [CrossRef]
- Schindlbeck, J.; Kutterolf, S.; Freundt, A.; Scudder, R.; Pickering, K.; Murray, R. Emplacement processes of submarine volcaniclastic deposits (IODP Site C0011, Nankai Trough). Mar. Geol. 2013, 343, 115–124. [Google Scholar] [CrossRef]
- Freundt, A.; Schindlbeck-Belo, J.C.; Kutterolf, S.; Hopkins, J.L. Tephra layers in the marine environment: A review of properties and emplacement processes. In Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment; Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M., Watt, S.F.L., Eds.; Special Publications; Geological Society: London, UK, 2021. [Google Scholar] [CrossRef]
- Insinga, D.; Molisso, F.; Lubritto, C.; Sacchi, M.; Passariello, I.; Morra, V. The proximal marine record of Somma–Vesuvius volcanic activity in the Naples and Salerno bays, Eastern Tyrrhenian Sea, during the last 3 kyrs. J. Volcanol. Geotherm. Res. 2008, 177, 170–186. [Google Scholar] [CrossRef]
- Wulf, S.; Keller, J.; Satow, C.; Gertisser, R.; Kraml, M.; Grant, K.M.; Appelt, O.; Vakhrameeva, P.; Koutsodendris, A.; Hardiman, M.; et al. Advancing Santorini’s tephrostratigraphy: New glass geochemical data and improved marine-terrestrial tephra correlations for the past ∼360 kyrs. Earth-Sci. Rev. 2019, 200, 102964. [Google Scholar] [CrossRef]
- Bösken, J.J.; Schmidt, C. Direct and indirect luminescence dating of tephra: A review. J. Quat. Sci. 2019, 35, 39–53. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Kim, J.C.; Yoo, D.-G.; Lee, G.-S.; Hong, S.-H. Multi dating approach of long marine core sediments from the south-eastern continental shelf of Korea: Comparison of SAR OSL, TT-OSL and pIRIR dates. Quat. Geochronol. 2022, 73, 101338. [Google Scholar] [CrossRef]
- Balascio, N.; Francus, P.; Bradley, R.S.; Schupack, B.B.; Miller, G.H.; Kvisvik, B.; Bakke, J.; Thordarson, T. Investigating the Use of Scanning X-Ray Fluorescence to Locate Cryptotephra in Minerogenic Lacustrine Sediment: Experimental Results. Micro-XRF Studies of Sediment Cores. In Developments in Paleoenvironmental Research; Croudace, I., Rothwell, R., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 17. [Google Scholar] [CrossRef]
- Kylander, M.E.; Lind, E.M.; Wastegård, S.; Löwemark, L. Recommendations for using XRF core scanning as a tool in tephrochronology. Holocene 2011, 22, 371–375. [Google Scholar] [CrossRef]
- Wallace, K.L.; Bursik, M.I.; Kuehn, S.; Kurbatov, A.V.; Abbott, P.; Bonadonna, C.; Cashman, K.; Davies, S.; Jensen, B.; Lane, C.; et al. Community established best practice recommendations for tephra studies—From collection through analysis. Sci. Data 2022, 9, 447. [Google Scholar] [CrossRef]
- Trofimovs, J.; Amy, L.; Boudon, G.; Deplus, C.; Doyle, E.; Fournier, N.; Hart, M.B.; Komorowski, J.C.; LeFriant, A.; Lock, E.J.; et al. Submarine pyroclastic deposits formed at the Soufrière Hills volcano, Montserrat (1995–2003): What happens when pyroclastic flows enter the ocean? Geology 2006, 34, 549–552. [Google Scholar] [CrossRef]
- Villemant, B.; Le Friant, A.; Caron, B.; Del Manzo, G.; Lafuerza, S.; Emmanuel, L.; Ishizuka, O.; Guyard, H.; Labourdette, N.; Michel, A.; et al. A 1.5 Ma Marine Record of Volcanic Activity and Associated Landslides Offshore Martinique (Lesser Antilles): Sites U1397 and U1399 of IODP 340 Expedition. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Satow, C.; Tomlinson, E.L.; Grant, K.M.; Albert, P.G.; Smith, V.C.; Manning, C.J.; Ottolini, L.; Rohling, E.M.; Lowe, J.J.; Blockley, S.P.E. A new contribution to the Late Quaternary tephrostratigraphy of the Mediterranean: Aegean Sea core LC21. Quat. Sci. Rev. 2015, 117, 96–112. [Google Scholar] [CrossRef]
- Satow, C.; Grant, K.M.; Wulf, S.; Schulz, H.; Mallon, A.; Matthews, I.; Lowe, J. Detection and Characterisation of Eemian Marine Tephra Layers within the Sapropel S5 Sediments of the Aegean and Levantine Seas. Quaternary 2020, 3, 6. [Google Scholar] [CrossRef]
- Zhang, S.; Blockley, S.; Armitage, S.J.; Satow, C.; Manning, C.; Omry, B.; Boaretto, E.; White, D.; Timms, R. Distal tephra reveal new MIS 5e Kos eruptions: Implications for the chronology and volcanic evolution histories in the Eastern Mediterranean region. Quat. Sci. Rev. 2023, 307, 108054. [Google Scholar] [CrossRef]
- Hajdas, I.; Ascough, P.; Garnett, M.H.; Fallon, S.J.; Pearson, C.L.; Quarta, G.; Spalding, K.L.; Yamaguchi, H.; Yoneda, M. Radiocarbon dating. Nat. Rev. Methods Prim. 2021, 1, 62. [Google Scholar] [CrossRef]
- Wall-Palmer, D.; Coussens, M.; Talling, P.J.; Jutzeler, M.; Cassidy, M.; Marchant, I.; Palmer, M.; Watt, F.L.; Smart, C.W.; Fisher, J.K.; et al. Late Pleistocene stratigraphy of IODP Site U1396 and compiled chronology offshore of south and south west Montserrat, Lesser Antilles. Geochem. Geophys. Geosyst. 2014, 15, 3000–3020. [Google Scholar] [CrossRef]
- Matsu’ura, T.; Komatsubara, J.; Ahagon, N. Using Late and Middle Pleistocene tephrostratigraphy and cryptotephrostratigraphy to refine age models of Holes ODP1150A and ODP1151C, NW Pacific Ocean: A cross-check between tephrostratigraphy and biostratigraphy. Quat. Geochronol. 2018, 47, 29–53. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Mei, X.; Zhang, F.; Xu, J.; Liu, C.; Wei, C.; Liu, Q. A review of current and emerging approaches for Quaternary marine sediment dating. Sci. Total Environ. 2021, 780, 146522. [Google Scholar] [CrossRef]
- Kim, J.C.; Chang, T.S.; Yi, S. OSL chronology of the Huksan mud Belt, southeastern Yellow sea, and its paleoenvironmental implications. Quat. Int. 2019, 503, 170–177. [Google Scholar] [CrossRef]
- Salisbury, M.J.; Patton, J.R.; Kent, A.J.R.; Goldfinger, C.; Djadjadihardja, Y.; Udrekh, H. Deep-sea ash layers reveal evidence for large, late Pleistocene and Holocene explosive activity from Sumatra, Indonesia. J. Volcanol. Geotherm. Res. 2012, 231–232, 61–71. [Google Scholar] [CrossRef]
- Grant, K.M.; Rohling, E.J.; Bronk Ramsey, C.; Cheng, H.; Edwards, R.L.; Florindo, F.; Heslop, D.; Marra, F.; Roberts, A.P.; Tamisiea, M.E.; et al. Sea-level variability over five glacial cycles. Nat. Commun. 2014, 5, 5076. [Google Scholar] [CrossRef]
- Ton-That, T.; Singer, B.; Paterne, M. 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: Implications for global climate records. Earth Planet. Sci. Lett. 2001, 184, 645–658. [Google Scholar] [CrossRef]
- Schindlbeck, J.C.; Kutterolf, S.; Straub, S.M.; Andrews, G.D.M.; Wang, K.; Mleneck-Vautravers, M.J. One Million Years tephra record at IODP S ites U 1436 and U 1437: I nsights into explosive volcanism from the J apan and I zu arcs. Isl. Arc 2018, 27, e12244. [Google Scholar] [CrossRef]
- Primerano, P.; Giordano, G.; Costa, A.; de Vita, S.; Di Vito, M.A. Reconstructing fallout features and dispersal of Cretaio Tephra (Ischia Island, Italy) through field data analysis and numerical modelling: Implications for hazard assessment. J. Volcanol. Geotherm. Res. 2021, 415, 107248. [Google Scholar] [CrossRef]
- Alloway, B.V.; Pillans, B.J.; Sandhu, A.S.; Westgate, J. Revision of the marine chronology in the Wanganui Basin, New Zealand, based on the isothermal plateau fission-track dating of tephra horizons. Sediment. Geol. 1993, 82, 299–310. [Google Scholar] [CrossRef]
- Shane, P.; Sikes, E.; Guilderson, T. Tephra beds in deep-sea cores off northern New Zealand: Implications for the history of Taupo Volcanic Zone, Mayor Island and White Island volcanoes. J. Volcanol. Geotherm. Res. 2006, 154, 276–290. [Google Scholar] [CrossRef]
- Constantinescu, R.; Gonzalez-Zuccolotto, K.; Ferrés, D.; Sieron, K.; Siebe, C.; Connor, C.; Capra, L.; Tonini, R. Probabilistic volcanic hazard assessment at an active but under-monitored volcano: Ceboruco, Mexico. J. Appl. Volcanol. 2022, 11, 11. [Google Scholar] [CrossRef]
- Martí, J.; Aspinall, W.P.; Sobradelo, R.; Felpeto, A.; Geyer, A.; Ortiz, R.; Baxter, P.; Cole, P.; Pacheco, J.; Blanco, M.J.; et al. A long-term volcanic hazard event tree for Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J. Volcanol. Geotherm. Res. 2008, 178, 543–552. [Google Scholar] [CrossRef]
- Vougiokalakis, G.; Sparks, R.S.; Druitt, T.; Pyle, D.; Papazachos, C.; Fytikas, M. Volcanic Hazard Assessment at Santorini Volcano: A review and a synthesis in the light of the 2011-2012 Santorini unrest. Bull. Geol. Soc. Greece 2017, 50, 274–283. [Google Scholar] [CrossRef]
- Parks, M.M.; Biggs, J.; England, P.; Mather, T.A.; Nomikou, P.; Palamartchuk, K.; Papanikolaou, X.; Paradissis, D.; Parsons, B.; Pyle, D.M.; et al. Evolution of Santorini Volcano dominated by episodic and rapid fluxes of melt from depth. Nat. Geosci. 2012, 5, 749–754. [Google Scholar] [CrossRef]
- Pyle, D.M. What can we learn from records of past eruptions to better prepare for the future? In Observing the Volcano World; Fearnley, C.J., Bird, D.K., Haynes, K., McGuire, W.J., Jolly, G., Eds.; Advances in Volcanology; Springer: Cham, Switzerland, 2017; pp. 445–462. [Google Scholar] [CrossRef]
- Dominey-Howes, D. Documentary and Geological Records of Tsunamis in the Aegean Sea Region of Greece and their Potential Value to Risk Assessment and Disaster Management. Nat. Hazards 2002, 25, 195–224. [Google Scholar] [CrossRef]
- Kutterolf, S.; Freundt, A.; Druitt, T.H.; McPhie, J.; Nomikou, P.; Pank, K.; Schindlbeck-Belo, J.C.; Hansteen, T.H.; Allen, S.R. The medial offshore record of explosive volcanism along the central to eastern Aegean Volcanic Arc: 2. Tephra ages and volumes, eruption magnitudes and marine sedimentation rate variations. Geochem. Geophys. Geosyst. 2021, 22, e2021GC010011. [Google Scholar] [CrossRef]
- Selva, J.; Acocella, V.; Bisson, M.; Caliro, S.; Costa, A.; Della Seta, M.; De Martino, P.; de Vita, S.; Federico, C.; Giordano, G. Multiple natural hazards at volcanic islands: A review for the Ischia volcano (Italy). J. Appl. Volcanol. 2019, 8, 5. [Google Scholar] [CrossRef]
- Calanchi, N.; Gasparotto, G.; Romagnoli, C. lass chemistry in volcaniclastic sediments of ODP Leg 107, Site 650, sedimentary sequence: Provenance and chronological implications. J. Volcanol. Geotherm. Res. 1994, 60, 59–85. [Google Scholar] [CrossRef]
- Sacchi, M.; Passaro, S.; Molisso, F.; Matano, F.; Steinmann, L.; Spiess, V.; Pepe, F.; Corradio, M.; Caccavale, M.; Tamburrino, S.; et al. The Holocene marine record of unrest, volcanism, and hydrothermal activity of Campi Flegrei and Somma Vesuvius. In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 435–469. [Google Scholar]
- Macedonio, G.; Costa, A.; Folch, A. Ash fallout scenarios at Vesuvius: Numerical simulations and implications for hazard assessment. J. Volcanol. Geotherm. Res. 2008, 178, 366–377. [Google Scholar] [CrossRef]
- Rolandi, G. Volcanic hazard at Vesuvius: An analysis for the revision of the current emergency plan. J. Volcanol. Geotherm. Res. 2010, 189, 347–362. [Google Scholar] [CrossRef]
- Troise, C.; De Natale, G.; Somma, R. Mitigating the highest volcanic risk in the World: A multidisciplinary strategy for the Neapolitan area. In Proceedings of the 24th EGU General Assembly, EGU22, Vienna, Austria, 23–27 May 2022. [Google Scholar] [CrossRef]
- Italian Department of Civil Protection. Update of the National Emergency Plan for Vesuvius. 2019. Available online: www.protezionecivile.gov.it/en/approfondimento/update-national-emergency-plan-vesuvius (accessed on 18 March 2023).
- Guimarães, L.F.; Nieto-Torres, A.; Bonadonna, C.; Frischknecht, C. A New Inclusive Volcanic Risk Ranking, Part 2: Application to Latin America. Front. Earth Sci. 2021, 9, 757742. [Google Scholar] [CrossRef]
- Kutterolf, S.; Freundt, A.; Perez, W. Pacific offshore record of plinian arc volcanism in Central America: 2. Tephra volumes and erupted masses. Geochem. Geophys. Geosyst. 2008, 9, 1–19. [Google Scholar] [CrossRef]
- Schindlbeck, J.C.; Kutterholf, S.; Freundt, A.; Alvarado, G.G.; Wang, K.-L.; Straub, M.; Hemming, S.R.; Frische, M.; Woodhead, J.D. Late Cenozoic tephrostratigraphy offshore the southern Central American Volcanic Arc. 1. Tephra ages and provenance. Geochem. Geophys. Geosyst. 2016, 17, 4641–4668. [Google Scholar] [CrossRef]
- Sieron, K.; Siebe, C. Revised stratigraphy and eruption rates of Ceboruco stratovolcano and surrounding monogenetic vents (Nayarit, Mexico) from historical documents and new radiocarbon dates. J. Volcanol. Geotherm. Res. 2008, 176, 241–264. [Google Scholar] [CrossRef]
- Sieron, K.; Ferres, D.; Siebe, C.; Capra, L.; Constantinescu, R.; Agustín-Flores, J.; González Zuccolotto, K.; Böhnel, H.; Connor, L.; Connor, C.B.; et al. Ceboruco hazard map: Part I—Definition of hazard scenarios based on the eruptive history. J. Appl. Volcanol. 2019, 8, 9. [Google Scholar] [CrossRef]
- Rougier, J.; Sparks, R.S.J.; Cashman, K.V. Regional and global under-recording of large explosive eruptions in the last 1000 years. J. Appl. Volcanol. 2018, 7, 1. [Google Scholar] [CrossRef]
- Mani, L.; Tzachor, A.; Cole, P. Global catastrophic risk from lower magnitude volcanic eruptions. Nat. Comm. 2021, 7, 330. [Google Scholar] [CrossRef]
- Cambridge Centre for Risk Studies, Impacts of Severe Natural Catastrophes on Financial Markets. 2018. Available online: https://www.jbs.cam.ac.uk/wp-content/uploads/2020/08/crs-impacts-of-severe-natural-catastrophes-on-financial-markets.pdf (accessed on 19 April 2023).
- De Maisonneuve, C.B.; Bergal-Kuvikas, O. Timing, magnitude and geochemistry of major Southeast Asian volcanic eruptions: Identifying tephrochronologic markers. J. Quat. Sci. 2019, 35, 272–287. [Google Scholar] [CrossRef]
- Cassidy, M.; Mani, L. Huge volcanic eruptions: Time to prepare. Nature 2022, 608, 469–471. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Svensson, A.; Hvidberg, C.S.; Lohmann, J.; Kristiansen, S.; Dahl-Jensen, D.; Steffensen, J.P.; Rasmussen, S.O.; Cook, E.; Kjær, H.A.; et al. Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka). Clim. Past 2022, 18, 485–506. [Google Scholar] [CrossRef]
- Sigl, M.; Winstrup, M.; McConnell, J.R.; Welten, K.C.; Plunkett, G.; Ludlow, F.; Büntgen, U.; Caffee, M.; Chellman, N.; Dahl-Jensen, D.; et al. Timing and climate forcing of volcanic eruptions for the past 2500 years. Nature 2015, 523, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Timmreck, C.; Toohey, M.; Zanchettin, D.; Brönnimann, S.; Lundstad, E.; Wilson, R. The unidentified eruption of 1809: A climatic cold case. Clim. Past 2021, 17, 1455–1482. [Google Scholar] [CrossRef]
- Burke, A.; Moore, K.A.; Sigl, M.; Nita, D.C.; McConnell, J.R.; Adkins, J.F. Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores. Earth Planet. Sci. Lett. 2019, 521, 113–119. [Google Scholar] [CrossRef]
- Aubry, T.J.; Farquharson, J.I.; Rowell, C.R.; Watt, S.F.L.; Pinel, V.; Beckett, F.; Fasullo, J.; Hopcroft, P.O.; Pyle, D.M.; Schmidt, A.; et al. Impact of climate change on volcanic processes: Current understanding and future challenges. Bull. Volcanol. 2022, 84, 58. [Google Scholar] [CrossRef]
- Marshall, L.R.; Maters, E.C.; Schmidt, A.; Timmreck, C.; Robock, A.; Toohey, M. Volcanic effects on climate: Recent advances and future avenues. Bull. Volcanol. 2022, 84, 54. [Google Scholar] [CrossRef]
- Lavigne, F.; Degeai, J.-C.; Komorowski, J.-C.; Guillet, S.; Robert, V.; Lahitte, P.; Oppenheimer, C.; Stoffel, M.; Vidal, C.M.; Surono; et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani Volcanic Complex, Indonesia. Proc. Natl. Acad. Sci. USA 2013, 110, 16742–16747. [Google Scholar] [CrossRef]
- Oppenheimer, C.; Wacker, L.; Xu, J.; Galván, J.D.; Stoffel, M.; Guillet, S.; Corona, C.; Sigl, M.; Di Cosmo, N.; Hajdas, I.; et al. Multi-proxy dating the ‘Millennium Eruption’ of Changbaishan to late 946 CE. Quat. Sci. Rev. 2017, 158, 164–171. [Google Scholar] [CrossRef]
- Abbott, P.M.; Davies, S.M. Volcanism and the Greenland ice-cores: The tephra record. Earth Sci. Rev. 2012, 115, 173–191. [Google Scholar] [CrossRef]
- Brown, S.K.; Loughlin, S.C.; Sparks, R.; Vye-Brown, C.; Barclay, J.; Calder, E.; Cottrell, E.; Jolly, G.; Komorowski, J.-C.; Mandeville, C.; et al. Global Volcanic Hazard and Risk; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satow, C.; Watt, S.; Cassidy, M.; Pyle, D.; Deng, Y.N. The Contributions of Marine Sediment Cores to Volcanic Hazard Assessments: Present Examples and Future Perspectives. Geosciences 2023, 13, 124. https://doi.org/10.3390/geosciences13040124
Satow C, Watt S, Cassidy M, Pyle D, Deng YN. The Contributions of Marine Sediment Cores to Volcanic Hazard Assessments: Present Examples and Future Perspectives. Geosciences. 2023; 13(4):124. https://doi.org/10.3390/geosciences13040124
Chicago/Turabian StyleSatow, Chris, Sebastian Watt, Mike Cassidy, David Pyle, and Yuqiao Natalie Deng. 2023. "The Contributions of Marine Sediment Cores to Volcanic Hazard Assessments: Present Examples and Future Perspectives" Geosciences 13, no. 4: 124. https://doi.org/10.3390/geosciences13040124
APA StyleSatow, C., Watt, S., Cassidy, M., Pyle, D., & Deng, Y. N. (2023). The Contributions of Marine Sediment Cores to Volcanic Hazard Assessments: Present Examples and Future Perspectives. Geosciences, 13(4), 124. https://doi.org/10.3390/geosciences13040124