Failure Mechanism of a Rainfall-Triggered Landslide in Clay Slopes
Abstract
:1. Introduction
2. The 2013 Montescaglioso Landslide
2.1. Features of the Landslide Reactivation
2.2. Geological and Geomorphological Features
3. Geotechnical Parameters of the Soils
4. Hydrological Processes and Landslide Reactivation
5. Three-Dimensional Finite Element Analysis
6. Post-Failure Landslide Activity Monitoring
7. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Elia, B.; Picarelli, L.; Leroueil, S.; Vaunat, J. Geotechnical characterization of slope movements in structurally complex clay soils and stiff jointed clays. Ital. Geotech. J. 1998, 32, 5–32. [Google Scholar]
- Skempton, A.W.; Hutchinson, J. Stability of natural slopesand embankment foundations. In Proceedings of the Soil Mechanics and Foundation Engineering Conference Proceeding/Mexico/Berkshire, TRID, Mexico City, Mexico, 1969; pp. 291–340. [Google Scholar]
- Vaunat, J.; Leroueil, S.; Faure, R. Slope movements: A geotechnical perspective. In Proceedings of the International Congress International Association of Engineering Geology Lisbon, Lisbon, Portugal, 5 September 1994; pp. 1637–1646. [Google Scholar]
- Hutchinson, J.N. Mechanisms producing large displacements in landslides on pre-existing shears. Mem. Geol. Soc. China 1987, 9, 175–200. [Google Scholar]
- Herrada, M.A.; Gutiérrez-Martin, A.; Montanero, J.M. Modeling infiltration rates in a saturated/unsaturated soil under the free draining condition. J. Hydrol. 2014, 515, 10–15. [Google Scholar] [CrossRef]
- Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, A.; Ángel Herrada, M.; Yenes, J.I.; Castedo, R. Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration. Nat. Hazards Earth Syst. Sci. 2019, 19, 721–736. [Google Scholar] [CrossRef]
- Gutiérrez-Martín, A. A GIS-physically-based emergency methodology for predicting rainfall-induced shallow landslide zonation. Geomorphology 2020, 359, 107121. [Google Scholar] [CrossRef]
- D’Ecclesiis, G.; Lorenzo, P. Frane relitte nei depositi della fossa bradanica: La frana di Madonna della Nuova (Montescaglioso, Basilicata). G. Geol. Appl. 2006, 4, 257–262. (In Italian) [Google Scholar]
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Parise, M.; Gueguen, E.; Vennari, C. Mapping surface features produced by an active landslide. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022029. [Google Scholar] [CrossRef]
- Pellicani, R.; Spilotro, G.; Ermini, R.; Sdao, F. The large Montescaglioso landslide of December 2013 after prolonged and severe seasonal climate conditions. In Landslides and Engineered Slopes. Experience, Theory and Practice; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; CRC Press: Boca Raton, FL, USA, 2016; Volume 3, pp. 1591–1597. [Google Scholar]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: The case study of the Montescaglioso landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef]
- Manconi, A.; Casu, F.; Ardizzone, F.; Bonano, M.; Cardinali, M.; De Luca, C.; Gueguen, E.; Marchesini, I.; Parise, M.; Vennari, C.; et al. Rapid mapping of event landslides: The 3 December 2013 Montescaglioso landslide (Italy). NHESS 2014, 14, 1835–1841. [Google Scholar]
- Raspini, F.; Ciampalini, A.; Del Conte, S.; Lombardi, L.; Nocentini, M.; Gigli, G.; Ferretti, A.; Casagli, N. Exploitation of amplitude and phase of satellite SAR images for landslide mapping: The case of Montescaglioso (South Italy). Remote Sens. 2015, 7, 14576–14596. [Google Scholar] [CrossRef]
- Caporossi, P.; Mazzanti, P.; Bozzano, F. Digital Image Correlation (DIC) analysis of the 3 December 2013 Montescaglioso landslide (Basilicata, Southern Italy): Results from a multi-dataset investigation. ISPRS Int. J. Geo-Inf. 2018, 7, 372. [Google Scholar] [CrossRef]
- Lazzari, M.; Piccarreta, M. Landslide disasters triggered by extreme rainfall events: The case of Montescaglioso (Basilicata, Southern Italy). Geosciences 2018, 8, 377. [Google Scholar] [CrossRef]
- Bozzano, F.; Caporossi, P.; Esposito, C.; Martino, S.; Mazzanti, P.; Moretto, S.; Scarascia Mugnozza, G.; Rizzo, A.M. Mechanism of the Montescaglioso landslide (Southern Italy) inferred by geological survey and remote sensing. In Advancing Culture of Living with Landslides: Volume 2 Advances in Landslide Science; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Nian, T.K.; Huang, R.Q.; Wan, S.S.; Chen, G.Q. Three-dimensional strength-reduction finite element analysis of slopes: Geometric effects. Can. Geotech. J. 2012, 49, 499–511. [Google Scholar] [CrossRef]
- Troncone, A.; Conte, E.; Donato, A. Two and three-dimensional numerical analysis of the progressive failure that occurred in an excavation-induced landslide. Eng. Geol. 2014, 183, 265–275. [Google Scholar] [CrossRef]
- De Novellis, V.; Castaldo, R.; Lollino, P.; Manunta, M.; Tizzani, P. Advanced three-dimensional finite element modeling of a slow landslide through the exploitation of DInSAR measurements and in situ surveys. Remote Sens. 2016, 8, 670. [Google Scholar] [CrossRef]
- Lollino, P.; Giordan, D.; Allasia, P.; Fazio, N.L.; Perrotti, M.; Cafaro, F. Assessment of post-failure evolution of a large earthflow through field monitoring and numerical modelling. Landslides 2020, 17, 2013–2026. [Google Scholar] [CrossRef]
- Amanti, M.; Chiessi, V.; Guarino, P.M.; Spizzichino, D.; Troccoli, A.; Vizzini, G.; Fazio, N.L.; Lollino, P.; Parise, M.; Vennari, C. Back-analysis of a large earth-slide in stiff clays induced by intense rainfalls. In Landslides and Engineered Slopes. Experience, Theory and Practice, Proceedings of the 12th International Symposium on Landslides, Naples, Italy, 12–19 June 2016; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Pieri, P.; Tropeano, M.; Sabato, L.; Lazzari, M.; Moretti, M. Quadro stratigrafico dei depositi regressivi della Fossa bradanica (Pleistocene) nell’area compresa fra Venosa e il Mar Ionio. J. Geol. 1998, 60, 318–320. [Google Scholar]
- Ricchetti, G. Alcune osservazioni sulla serie della Fossa Bradanica. Le “Calcareniti di M. Castiglione”. Boll. Soc. Nat. Napoli 1965, 75, 3–11. [Google Scholar]
- Boenzi, F.; Radina, B.; Ricchetti, G.; Valduga, A. Note Illustrative della Carta Geologica d’Italia alla scala 1:100,000 del Foglio 201 “Matera”. Serv. Geol. Ital. 1971, 48. [Google Scholar]
- Bonardi, G. Carta Geologica Dell’Appennino Meridionale, 1:250,000; CNR: Roma, Italy, 1988. [Google Scholar]
- Pieri, P.; Sabato, L.; Tropeano, M. Significato geodinamico dei caratteri deposizionali e strutturali della Fossa bradanica nel Pleistocene. Mem. Soc. Geol. Ital. 1996, 51, 501–515. [Google Scholar]
- Sabato, L. Quadro stratigrafico-deposizionale dei depositi regressivi nell’area di Irsina (Fossa bradanica). Geol. Romana 1996, 32, 219–230. [Google Scholar]
- Tropeano, M.; Sabato, L.; Pieri, P. Filling and cannibalization of a foredeep: Bradanic Trough, southern Italy. Geol. Soc. Lond. Spec. Publ. 2002, 191, 55–79. [Google Scholar] [CrossRef]
- Cotecchia, V. Geotechnical vulnerability and geological evolution of the Middle Adriatic coastal environment. Ital. Geotech. J. 1999, 3, 46–55. [Google Scholar]
- Cafaro, F.; Cotecchia, F. Structure degradation and changes in the mechanical behaviour of a stiff clay due to weathering. Geotechnique 2001, 51, 441–453. [Google Scholar] [CrossRef]
- Lollino, P.; Cotecchia, F.; Zdravkovic, L.; Potts, D.M. Numerical analysis and monitoring of Pappadai dam. Can. Geotech. J. 2005, 42, 1631–1643. [Google Scholar] [CrossRef]
- Lollino, P.; Santaloia, F.; Amorosi, A.; Cotecchia, F. Delayed failure of quarry slopes in stiff clays: The case of the Lucera landslide. Géotechnique 2011, 61, 861–874. [Google Scholar] [CrossRef]
- Di Maio, C.; Vassallo, R. Geotechnical characterization of a landslide in a Blue Clay slope. Landslides 2011, 8, 17–32. [Google Scholar] [CrossRef]
- Geostudio. Seep/W and Slope/W Reference Manual; Geostudio: Calgary, AB, Canada, 2012; Available online: https://www.geoslope.com/learning/support-resources#dnn_BooksHeaderPane (accessed on 2 March 2023).
- Morgenstern, N.R.; Price, V.E. The analysis of the stability of general slip surfaces. Geotechnique 1965, 15, 79–93. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A Physico-empirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- Green, R.E.; Corey, J.C. Calculation of hydraulic conductivity: A further evaluation of some predictive methods. Soil Sci. Soc. Amer. Proc. 1971, 35, 3–8. [Google Scholar] [CrossRef]
- PlaxisBV. PLAXIS-3D. Reference Manual; PlaxisBV: Delft, The Netherlands, 2014; Available online: https://communities.bentley.com/products/geotech-analysis/w/wiki/46137/manuals---plaxis (accessed on 2 March 2023).
- Griffiths, D.V.; Lane, P.A. Slope stability by finite elements. Géotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
Layer | Seepage FEM | LE | ||
---|---|---|---|---|
γsat (kN/m3) | ksat (m/s) | C′ (kPa) | ϕ′r (°) | |
Conglomerates with sand intercalation | 18 | 4 × 10−6 | 0 | 25 |
Weathered clay | 19.5 | 4 × 10−8 | 0 | 13 |
Unweathered clay | 19.5 | 4 × 10−8 | 0 | 13 |
Layer | γsat (kN/m3) | E′ (MPa) | ν | c′ (kPa) | ϕ′ (°) | ksat (m/s) |
---|---|---|---|---|---|---|
Conglomerates | 18 | 500 × 103 | 0.3 | 100 | 28 | 4 × 10−6 |
Intact clay | 19.5 | 150 × 103 | 0.25 | 10 | 20 | 4 × 10−8 |
Shear band | 19.5 | 150 × 103 | 0.25 | 0 | 12 | 4 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lollino, P.; Ugenti, A.; de Lucia, D.; Parise, M.; Vennari, C.; Allasia, P.; Fazio, N.L. Failure Mechanism of a Rainfall-Triggered Landslide in Clay Slopes. Geosciences 2023, 13, 125. https://doi.org/10.3390/geosciences13040125
Lollino P, Ugenti A, de Lucia D, Parise M, Vennari C, Allasia P, Fazio NL. Failure Mechanism of a Rainfall-Triggered Landslide in Clay Slopes. Geosciences. 2023; 13(4):125. https://doi.org/10.3390/geosciences13040125
Chicago/Turabian StyleLollino, Piernicola, Angelo Ugenti, Daniela de Lucia, Mario Parise, Carmen Vennari, Paolo Allasia, and Nunzio Luciano Fazio. 2023. "Failure Mechanism of a Rainfall-Triggered Landslide in Clay Slopes" Geosciences 13, no. 4: 125. https://doi.org/10.3390/geosciences13040125
APA StyleLollino, P., Ugenti, A., de Lucia, D., Parise, M., Vennari, C., Allasia, P., & Fazio, N. L. (2023). Failure Mechanism of a Rainfall-Triggered Landslide in Clay Slopes. Geosciences, 13(4), 125. https://doi.org/10.3390/geosciences13040125