Quantitative Long-Term Monitoring (1890–2020) of Morphodynamic and Land-Cover Changes of a LIA Lateral Moraine Section
Abstract
:1. Introduction
- To what extent can spatial and temporal changes in morphodynamic areas and land-cover types on a LIA lateral moraine section be quantified by digital monoplotting using historical terrestrial oblique photographs from the second half of the 19th and the first half of the 20th century and subsequent orthophotos based on aerial photographs until 2020?
- How far can long-term mapping improve the knowledge about paraglacial slope adjustment processes and what are besides morphodynamics the driving variables for the land-cover change?
- Could the long time series provide new opportunities for a better understanding of the relationships between climate, morphodynamics, and land-cover development?
2. Study Area
3. Material and Methods
3.1. Photo Material
3.2. Methods of Image Processing and Mapping
3.2.1. Processing of the Terrestrial Photos
3.2.2. Processing of the Aerial Photos
3.3. Mapping of Morphodynamic and Land-Cover Types
3.4. Generating Meteorological Data of the Study Area
3.5. Statistical Analysis of Land Cover Changes
4. Results
4.1. Long-Term Morphodynamic Development
4.2. Long-Term Development of the Land-Cover Types
4.3. Development of Land-Cover Types in Geomorphologically Active and Not Active Areas
4.4. Land-Cover Change in Context with Morphodynamic and Meteorological Data
5. Discussion
5.1. Assessment of Technical Uncertainties and Errors
5.2. Opportunities and Limitations
5.3. Development of the Morphodynamic and Land-Cover Changes
5.3.1. Morphodynamic Area
5.3.2. Land-Cover Types
6. Conclusions
- Using the monoplotting approach, it was possible to extend the temporal scope of a quantitative mapping study based on historical terrestrial oblique photographs within a proglacial area into the second half of the 19th century (1890), covering a total study period of over 130 years (1890–2020). This shows that the different orthophotos (based on terrestrial photos and aerial photographs) can be combined in a productive manner.
- The (initial) gully systems expanded (almost) continuously since 1890 (respectively since the end of the LIA). However, several studies show that the erosion volume (mean annual erosion rate), between the 1950s/1970s and today, on the same slope is decreasing.
- The vegetation covered areas show a clear increase within the AoI from 1890 (respectively since the end of the LIA) to 1953, as mainly scree communities (vegetation cover 5–60%), alpine grassland and dwarf shrubs expand. From 1953 to 2020, vegetation covered areas are clearly reduced as the scree expand again due to erosion processes. Especially in this epoch, rocks within the lateral moraine were also exposed. Land-cover types are clearly less developed in the active gully system than in the geomorphologically non-active areas, as erosion processes deplace or cover corresponding vegetated areas. The development of land-cover types is also significantly influenced by temperature and precipitation changes.
- The approach of this study allows a better analysis of the paraglacial adjustment process, as in particular the early phase of the lateral moraine’s response to the ice loss can be determined and thus the initial gully formation as well as the development of the land-cover types can be detected, which previously remained unclear.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year of Recording | Source/ Purpose and Designation | Photos 1 | Camera Model, Band | Focal Length [mm] | Flying Altitude [m a.s.l.] | Type/Scanning Resolution [μm] | Result | Resolution Orthophoto [m] |
---|---|---|---|---|---|---|---|---|
5 June/31 August and 8 September 1953 2 | BEV/Forest condition estimation, C | 124 | Wild RC5, BW | 210.1 | ca. 3330 | film/15 | Orthophoto | 0.23 |
7 October 1969 | BEV/Austrian Glacier Overall Survey | 23 | Wild RC5/RC8, BW | 152.0 | ca. 3450 | film/15 | Orthophoto | 0.5 |
29 September 1970 | Land Tirol/Overall flight Tyrol | 26 | Wild RC5/RC8 | 210.4 | ca. 8665 | film/12 | Orthophoto | 0.2 |
18 August 1971 | Land Tirol/Overall flight Tyrol | 91 | Wild RC5/RC8, BW | 209.5 | ca. 3080 | film/12 | Orthophoto | 0.2 |
14 September 1982 | BEV/High Flight Tyrol/80 | 34 | Wild RC10, BW | 152.6 | ca. 6090 | film/15 | Orthophoto | 0.5 |
24 September 1983 | BEV/Kaunertal | 7 | Wild RC10, BW | 152.6 | ca. 4840 | film/15 | Orthophoto | 0.4 |
10 October 1990 | BEV/KF 171–173 | 35 | Wild RC10, BW | 152.6 | ca. 5850 | film/15 | Orthophoto | 0.53 |
11 September 1997 | BEV/KF 173 | 25 | Wild RC10, BW | 152.7 | ca. 6010 | film/15 | Orthophoto | 0.55 |
5 September 2003 | BEV/Ötztaler Alpen/Oberinntal | 59 | N/A, RGB | 305.1 | ca. 4800 | film/15 | Orthophoto | 0.35 |
31 July 2010 | Land Tirol/Reutte-Sölden | 413 | N/A, RGBN | --- | ca. 2870 | digital | Orthophoto | 0.2 |
5 October 2015 | Land Tirol/Landeck | 94 | UltraCamX, RGBN | --- | ca. 3250 | digital | Orthophoto | 0.4 |
8 September 2020 3 | Land Tirol/ Landeck | N/A | N/A, N/A | --- | N/A | digital | Orthophoto | 0.2 |
Appendix B
Year of Recording | Photographer | Source | Image Medium | Type | Colour | Width and Height [pixel, cm] | Resolution [dpi] | Image Depth [BIT] |
---|---|---|---|---|---|---|---|---|
1890 | N/A | Archive of the ÖAV (Innsbruck, Austria) | Negative glass plate | Digitised | B&W | 4607 × 307, 19.5 × 13 | 600 | 24 |
1907 | N/A | Archive of the ÖAV (Innsbruck, Austria) | Negative glass plate | Digitised | B&W | 4607 × 307, 19.5 × 13 | 600 | 24 |
~1930 (estimated) | N/A | Martin Frey (Local archivist of the Kaunertal) | N/A | Digitised | B&W | 9213 × 614, 19.5 × 13 | 1200 | 8 |
~1940 (estimated) | N/A | Martin Frey (Local archivist of the Kaunertal) | N/A | Digitised | B&W | 8976 × 614, 19.5 × 13 | 1200 | 8 |
Historical Terrestrial Image | GCP Number | East [m] | North [m] | Height [m] | East Monoplotting [m] | North Monoplotting [m] | Height Monoplotting [m] | Delta 3D [m] |
---|---|---|---|---|---|---|---|---|
1890 | 1 | 632,685.9 | 5,194,046.4 | 2153.5 | 632,683.9 | 5,194,044.5 | 2154.1 | 2.8 |
2 | 633,755.7 | 5,191,665.6 | 3034.7 | - | - | - | - | |
3 | 633,620.1 | 5,191,552.4 | 2981.4 | - | - | - | - | |
4 | 633,228.3 | 5,193,382.3 | 2312.4 | 633,167.3 | 5,193,441.0 | 2303.8 | 85.1 | |
5 | 634,099.5 | 5,192,196.0 | 2682.9 | 634,097.6 | 5,192,210.5 | 2673.2 | 17.5 | |
6 | 632,267.2 | 5,193,552.0 | 2160.9 | 632,266.8 | 5,193,555.0 | 2159.9 | 3.1 | |
7 | 632,554.6 | 5,194,113.3 | 2096.5 | 632,567.4 | 5,194,101.5 | 2097.8 | 17.5 | |
8 | 633,537.9 | 5,191,990.8 | 2606.3 | 633,541.6 | 5,191,992.0 | 2607.1 | 4.0 | |
9 | 632,583.6 | 5,194,081.1 | 2104.3 | 632,588.8 | 5,194,077.0 | 2106.9 | 7.1 | |
10 | 631,871.4 | 5,194,377.8 | 2176.2 | 631,870.9 | 5,194,378.5 | 2175.4 | 1.1 | |
11 | 631,771.5 | 5,194,586.7 | 2221.7 | 632,450.3 | 5,194,062.0 | 2036.3 | 877.7 | |
12 | 633,316.5 | 5,193,349.7 | 2371.0 | 633,286.8 | 5,193,380.5 | 2362.6 | 43.7 | |
13 | 635,653.5 | 5,191,577.7 | 3079.1 | 635,650.3 | 5,191,598.5 | 3062.5 | 26.8 | |
1907 | 1 | 633,903.8 | 5,191,802.8 | 3001.5 | 633,898.3 | 5,191,800.5 | 2996.7 | 7.7 |
2 | 633,788.7 | 5,191,703.1 | 3038.4 | 633,782.3 | 5,191,696.0 | 3033.9 | 10.6 | |
3 | 635,966.8 | 5,192,804.1 | 3319.8 | 635,962.1 | 5,192,808.0 | 3308.6 | 12.8 | |
4 | 636,185.9 | 5,192,836.2 | 3513.2 | 636,171.9 | 5,192,847.5 | 3495.6 | 25.1 | |
5 | 632,880.3 | 5,193,919.6 | 2285.5 | 632,878.6 | 5,193,920.0 | 2283.3 | 2.8 | |
6 | 633,178.7 | 5,193,634.4 | 2351.9 | 633,176.8 | 5,193,635.5 | 2350.6 | 2.6 | |
7 | 632,468.7 | 5,193,780.7 | 2075.9 | 632,471.6 | 5,193,780.0 | 2078.3 | 3.8 | |
8 | 635,078.2 | 5,192,954.0 | 2797.6 | 635,078.6 | 5,192,958.5 | 2795.6 | 5.0 | |
9 | 633,600.1 | 5,192,238.7 | 2516.7 | 633,610.6 | 5,192,234.0 | 2524.3 | 13.8 | |
10 | 634,146.5 | 5,192,466.7 | 2554.4 | 634,156.1 | 5,192,466.0 | 2559.9 | 11.1 | |
11 | 631,784.8 | 5,193,797.0 | 2252.2 | 631,785.0 | 5,193,797.0 | 2252.2 | 0.2 | |
12 | 633,152.3 | 5,193,425.2 | 2309.2 | 633,212.1 | 5,193,408.5 | 2314.2 | 62.3 |
Historical Terrestrial Image | GCP Number | East [m] | North [m] | Height [m] | East Monoplotting [m] | North Monoplotting [m] | Height Monoplotting [m] | Delta 3D [m] |
---|---|---|---|---|---|---|---|---|
~1930 | 1 | 632,555.5 | 5,194,112.2 | 2096.4 | 632,552.9 | 5,194,114.5 | 2095.2 | 3.8 |
2 | 632,594.4 | 5,194,061.4 | 2108.8 | 632,594.6 | 5,194,061.0 | 2108.8 | 0.5 | |
3 | 633,263.0 | 5,193,341.0 | 2327.6 | 633,252.7 | 5,193,351.0 | 2323.6 | 14.9 | |
4 | 632,279.4 | 5,193,591.3 | 2136.4 | 632,279.9 | 5,193,590.0 | 2136.4 | 1.4 | |
5 | 633,775.0 | 5,191,663.0 | 3040.9 | 633,772.8 | 5,191,664.5 | 3039.1 | 3.2 | |
6 | 632,502.6 | 5,193,815.5 | 2074.7 | 632,501.0 | 5,193,815.5 | 2073.4 | 2.1 | |
7 | 632,460.0 | 5,194,170.6 | 2072.8 | 632,460.6 | 5,194,170.5 | 2072.6 | 0.7 | |
8 | 636,614.9 | 5,190,978.5 | 3546.9 | - | - | - | - | |
9 | 632,432.6 | 5,193,770.2 | 2050.1 | 632,432.6 | 5,193,770.0 | 2050.3 | 0.3 | |
10 | 633,259.8 | 5,192,088.3 | 2412.6 | 633,251.1 | 5,192,106.0 | 2399.5 | 23.7 | |
11 | 633,628.1 | 5,191,548.1 | 2986.9 | 633,625.8 | 5,191,557.5 | 2979.1 | 12.4 | |
12 | 633,272.8 | 5,193,521.1 | 2400.0 | 633,272.2 | 5,193,516.5 | 2402.6 | 5.3 | |
13 | 633,820.9 | 5,192,338.5 | 2502.0 | 633,804.7 | 5,192,349.0 | 2491.6 | 22.0 | |
~1940 | 1 | 632,544.0 | 5,193,660.3 | 2126.0 | 632,542.9 | 5,193,664.5 | 2125.4 | 4.4 |
2 | 633,207.9 | 5,193,569.0 | 2363.0 | 633,207.6 | 5,193,567.5 | 2362.8 | 1.6 | |
3 | 636,190.2 | 5,192,839.9 | 3516.1 | 636,189.6 | 5,192,840.0 | 3516.8 | 0.9 | |
4 | 633,563.4 | 5,191,691.1 | 2790.6 | 633,563.2 | 5,191,678.5 | 2799.6 | 15.5 | |
5 | 632,299.4 | 5,193,577.7 | 2142.1 | 632,298.3 | 5,193,576.0 | 2142.4 | 2.1 | |
6 | 633,535.3 | 5,191,986.0 | 2607.7 | 633,533.6 | 5,191,999.0 | 2600.8 | 14.8 | |
7 | 633,665.8 | 5,193,738.3 | 2565.9 | 633,663.6 | 5,193,733.5 | 2567.9 | 5.6 | |
8 | 633,151.3 | 5,193,427.7 | 2309.2 | 633,147.5 | 5,193,432.5 | 2307.7 | 6.3 | |
9 | 633,327.3 | 5,193,333.1 | 2382.1 | 633,325.4 | 5,193,341.0 | 2378.7 | 8.8 | |
10 | 632,325.2 | 5,193,633.5 | 2105.9 | 632,325.8 | 5,193,633.0 | 2106.0 | 0.8 | |
11 | 633,904.9 | 5,191,943.1 | 2873.0 | 633,907.3 | 5,191,941.0 | 2875.3 | 3.9 | |
12 | 632,456.5 | 5,193,736.9 | 2073.9 | 632,456.7 | 5,193,735.0 | 2074.4 | 2.0 |
Appendix C
Domain Configuration | |
Horizontal grid spacing | 18-, 6-, 2-km (D1, D2 and D3) |
Grid dimensions | 190 × 190, 151 × 142, 121 × 139 |
Lateral boundary condition | variable (20CRv3 at 1° × 1°, 3-h) |
Time step | 90, 30, 10 s |
Vertical levels | 50 |
Model top pressure | 10 hPa |
Model physics | |
Microphysics | Morrison [64] |
Cumulus | Kain-Fritsch (none in D3) [65] |
Radiation | RRTMG [66] |
Planetary boundary layer | Yonsei State University [67] |
Atmospheric surface layer | Monin Obukhov [68] |
Land surface | Noah [69] |
Dynamics | |
Top boundary conditions | Rayleigh damping |
Diffusion | Calculated in physical space |
Appendix D
Surface Type/Morphodynamic Area | End of LIA | 1890 | 1907 | ~1930 | ~1940 | 1953 | 1969 | 1970 |
---|---|---|---|---|---|---|---|---|
(Initial) Gully system | 0 | 5.13 | 22.71 | 23.82 | 26.82 | 43.34 | 43.49 | 43.61 |
Geomorphological not active area | 0 | 53.71 | 28.30 | 39.12 | 38.21 | 56.66 | 56.51 | 56.39 |
Sediment accumulation at the glacier margin | 0 | 0 | 18.40 | 23.85 | 34.97 | 0 | 0 | 0 |
Glacier | 100 | 41.16 | 30.59 | 13.21 | 0 | 0 | 0 | 0 |
Surface Type/Morphodynamic Area | 1982 | 1983 | 1990 | 1997 | 2003 | 2010 | 2015 | 2020 |
(Initial) Gully system | 42.23 | 44.05 | 44.62 | 45.24 | 45.77 | 47.04 | 47.43 | 47.70 |
Geomorphological not active area | 57.77 | 59.95 | 55.38 | 54.76 | 54.23 | 52.96 | 52.57 | 52.30 |
Sediment accumulation at the glacier margin | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Glacier | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Land-Cover Type | 1850 | 1890 | 1907 | ~1930 | ~1940 | 1953 | 1970 | 1983 | 1990 | 2003 | 2010 | 2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Glacier | 100.0 | 40.98 | 31.10 | 14.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rock | 0.00 | 0.56 | 1.42 | 2.23 | 4.57 | 8.98 | 10.21 | 11.50 | 9.62 | 14.57 | 12.97 | 12.74 |
Scree slope | 0.00 | 46.52 | 27.79 | 41.76 | 55.09 | 12.19 | 14.88 | 22.54 | 17.46 | 50.95 | 51.15 | 48.14 |
Scree community | 0.00 | 9.63 | 26.34 | 29.45 | 9.27 | 26.61 | 21.79 | 25.53 | 21.28 | 7.42 | 7.01 | 9.87 |
Alpine grassland | 0.00 | 1.70 | 11.25 | 7.36 | 24.45 | 30.50 | 30.05 | 22.30 | 23.49 | 10.19 | 10.64 | 11.07 |
Wetland | 0.00 | 0.00 | 0.20 | 0.12 | 0.00 | 0.42 | 0.45 | 0.12 | 0.00 | 0.77 | 0.27 | 0.27 |
Dwarf shrub | 0.00 | 0.60 | 1.91 | 5.06 | 6.62 | 21.16 | 22.51 | 17.90 | 28.11 | 15.81 | 17.35 | 17.31 |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.07 | 0.00 | 0.01 | 0.25 | 0.53 | 0.53 |
Trees, woodland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.05 | 0.11 | 0.04 | 0.04 | 0.08 | 0.08 |
1890 initially glaciered area | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Land-Cover Type | 1890 | 1907 | ~1930 | ~1940 | 1953 | 1970 | 1983 | 1990 | 2003 | 2010 | 2020 |
Glacier | 100.0 | 75.89 | 34.22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rock | 0.00 | 1.35 | 4.05 | 7.72 | 17.80 | 20.49 | 24.51 | 21.26 | 26.26 | 24.07 | 24.03 |
Scree slope | 0.00 | 20.27 | 60.34 | 82.70 | 14.66 | 15.93 | 23.05 | 19.11 | 57.55 | 56.60 | 50.55 |
Scree community | 0.00 | 1.63 | 1.39 | 2.01 | 27.38 | 27.99 | 31.19 | 30.95 | 8.74 | 5.76 | 11.49 |
Alpine grassland | 0.00 | 0.86 | 0.00 | 7.57 | 23.59 | 18.22 | 11.13 | 17.37 | 3.44 | 5.92 | 6.36 |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dwarf shrub | 0.00 | 0.00 | 0.00 | 0.00 | 16.57 | 17.37 | 10.04 | 11.31 | 4.00 | 7.51 | 7.44 |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.08 | 0.08 |
Trees, woodland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.01 | 0.06 | 0.06 |
1890 initially morphodynamic active area (initial gully system) | |||||||||||
Land-Cover Type | 1890 | 1907 | ~1930 | ~1940 | 1953 | 1970 | 1983 | 1990 | 2003 | 2010 | 2020 |
Glacier | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rock | 0.00 | 0.34 | 0.48 | 0.65 | 0.53 | 1.98 | 10.63 | 3.26 | 16.94 | 12.84 | 12.64 |
Scree slope | 100.0 | 58.84 | 63.42 | 59.37 | 10.62 | 19.24 | 48.83 | 35.21 | 60.54 | 62.35 | 57.19 |
Scree community | 0.00 | 32.06 | 21.04 | 5.80 | 23.85 | 13.52 | 8.69 | 20.34 | 2.57 | 5.18 | 10.11 |
Alpine grassland | 0.00 | 3.85 | 11.89 | 32.41 | 39.23 | 31.98 | 13.89 | 17.33 | 7.39 | 5.98 | 6.57 |
Wetland | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Dwarf shrub | 0.00 | 4.91 | 3.18 | 1.78 | 25.50 | 33.12 | 22.95 | 23.86 | 11.65 | 12.91 | 12.75 |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 0.15 | 0.00 | 0.00 | 0.91 | 0.74 | 0.74 |
Trees, woodland | 0.00 | 0.00 | 0.00 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
1890 initially more stable (not active) area | |||||||||||
Land-Cover Type | 1890 | 1907 | ~1930 | ~1940 | 1953 | 1970 | 1983 | 1990 | 2003 | 2010 | 2020 |
Glacier | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Rock | 1.05 | 1.58 | 1.02 | 2.57 | 3.10 | 3.20 | 1.65 | 1.39 | 5.42 | 4.49 | 4.10 |
Scree slope | 76.70 | 30.36 | 25.35 | 33.54 | 10.48 | 13.67 | 20.02 | 14.42 | 45.01 | 45.96 | 45.47 |
Scree community | 17.95 | 44.72 | 51.75 | 15.17 | 26.27 | 17.86 | 22.84 | 13.97 | 6.90 | 8.16 | 8.61 |
Alpine grassland | 3.18 | 19.92 | 12.54 | 36.56 | 34.95 | 38.89 | 31.81 | 28.85 | 15.57 | 14.71 | 15.13 |
Wetland | 0.00 | 0.37 | 0.22 | 0.00 | 0.79 | 0.85 | 0.22 | 0.00 | 1.42 | 0.49 | 0.49 |
Dwarf shrub | 1.12 | 3.04 | 9.12 | 12.16 | 24.20 | 25.34 | 23.31 | 41.28 | 25.23 | 25.23 | 25.23 |
Shrub | 0.00 | 0.00 | 0.00 | 0.00 | 0.12 | 0.12 | 0.00 | 0.02 | 0.37 | 0.86 | 0.86 |
Trees, woodland | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.08 | 0.15 | 0.07 | 0.07 | 0.11 | 0.11 |
Appendix E
References
- Heckmann, T.; Morche, D. Geomorphology of Proglacial Systems: Landform and Sediment Dynamics in Recently Deglaciated Alpine Landscapes; Springer: Cham, Switzerland, 2019; ISBN 9783319941820. [Google Scholar]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 131–202. [Google Scholar] [CrossRef]
- Deline, P.; Gruber, S.; Delaloye, R.; Fischer, L.; Geertsema, M.; Giardino, M.; Hasler, A.; Kirkbride, M.; Krautblatter, M.; Magnin, F.; et al. Chapter 15—Ice Loss and Slope Stability in High-Mountain Regions. In Snow and Ice-Related Hazards, Risks, and Disasters; Haeberli, W., Whiteman, C., Shroder, J.F., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 521–561. [Google Scholar] [CrossRef]
- Altmann, M.; Piermattei, L.; Haas, F.; Heckmann, T.; Fleischer, F.; Rom, J.; Betz-Nutz, S.; Knoflach, B.; Müller, S.; Ramskogler, K.; et al. Long-Term Changes of Morphodynamics on Little Ice Age Lateral Moraines and the Resulting Sediment Transfer into Mountain Streams in the Upper Kauner Valley, Austria. Water 2020, 12, 3375. [Google Scholar] [CrossRef]
- Betz-Nutz, S.; Heckmann, T.; Haas, F.; Becht, M. Development of the morphodynamics on LIA lateral moraines in ten glacier forefields of the Eastern Alps since the 1950s. Earth Surf. Dynam. Discuss. 2022; in review. [Google Scholar] [CrossRef]
- Altmann, M.; Pfeiffer, M.; Haas, F.; Rom, J.; Fleischer, F.; Heckmann, T.; Piermattei, L.; Wimmer, M.; Braun, L.; Stark, M.; et al. Long-term monitoring (1953–2019) of geomorphologically active sections on LIA lateral moraines under changing meteorological conditions. EGUsphere 2023. [Google Scholar] [CrossRef]
- Ballantyne, C.K. A general model of paraglacial landscape response. Holocene 2002, 12, 371–376. [Google Scholar] [CrossRef]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Curry, A.M.; Cleasby, V.; Zukowskyj, P. Paraglacial response of steep, sediment-mantled slopes to post-‘Little Ice Age’ glacier recession in the central Swiss Alps. J. Quat. Sci. 2006, 21, 211–225. [Google Scholar] [CrossRef]
- Ballantyne, C.K.; Benn, D.I. Paraglacial Slope Adjustment and Resedlmenfation following Recent Glacier Retreat, Fåbergstølsdalen, Norway. Arct. Alp. Res. 1994, 26, 255–269. [Google Scholar] [CrossRef]
- Ballantyne, C.K.; Benn, D.I. Paraglacial slope adjustment during recent deglaciation and its implications for slope evolution in formerly glaciated environments. In Advances in Hillslope Processes; Anderson, M.G., Brooks, S.M., Eds.; Wiley: Chichester, UK, 1996; Volume 2, pp. 1173–1195. [Google Scholar]
- Curry, A.M.; Ballantyne, C.K. Paraglacial modification of glacigenic sediment. Geogr. Ann. Ser. A Phys. Geogr. 1999, 81, 409–419. [Google Scholar] [CrossRef]
- Eichel, J.; Corenblit, D.; Dikau, R. Conditions for feedbacks between geomorphic and vegetation dynamics on lateral moraine slopes: A biogeomorphic feedback window. Earth Surf. Process. Landf. 2016, 41, 406–419. [Google Scholar] [CrossRef]
- Eichel, J.; Draebing, D.; Meyer, N. From active to stable: Paraglacial transition of Alpine lateral moraine slopes. Land Degrad. Dev. 2018, 29, 4158–4172. [Google Scholar] [CrossRef]
- Gurnell, A.M.; Corenblit, D.; García de Jalón, D.; Del González Tánago, M.; Grabowski, R.C.; O’Hare, M.T.; Szewczyk, M. A Conceptual Model of Vegetation-hydrogeomorphology Interactions Within River Corridors. River Res. Appl. 2016, 32, 142–163. [Google Scholar] [CrossRef]
- Haselberger, S.; Ohler, L.-M.; Junker, R.R.; Otto, J.-C.; Glade, T.; Kraushaar, S. Quantification of biogeomorphic interactions between small-scale sediment transport and primary vegetation succession on proglacial slopes of the Gepatschferner, Austria. Earth Surf. Process. Landf. 2021, 46, 1941–1952. [Google Scholar] [CrossRef]
- Knoflach, B.; Ramskogler, K.; Talluto, M.; Hofmeister, F.; Haas, F.; Heckmann, T.; Pfeiffer, M.; Piermattei, L.; Ressl, C.; Wimmer, M.H.; et al. Modelling of Vegetation Dynamics from Satellite Time Series to Determine Proglacial Primary Succession in the Course of Global Warming—A Case Study in the Upper Martell Valley (Eastern Italian Alps). Remote Sens. 2021, 13, 4450. [Google Scholar] [CrossRef]
- Hohensinner, S.; Atzler, U.; Fischer, A.; Schwaizer, G.; Helfricht, K. Tracing the Long-Term Evolution of Land Cover in an Alpine Valley 1820–2015 in the Light of Climate, Glacier and Land Use Changes. Front. Environ. Sci. 2021, 9, 683397. [Google Scholar] [CrossRef]
- Schiefer, E.; Gilbert, R. Reconstructing morphometric change in a proglacial landscape using historical aerial photography and automated DEM generation. Geomorphology 2007, 88, 167–178. [Google Scholar] [CrossRef]
- Piermattei, L.; Heckmann, T.; Betz-Nutz, S.; Altmann, M.; Rom, J.; Fleischer, F.; Stark, M.; Haas, F.; Ressl, C.; Wimmer, M.; et al. Evolution of an Alpine proglacial river during seven decades of deglaciation quantified from photogrammetric and LiDAR digital elevation models. Earth Surf. Dynam. Discuss. 2022. [Google Scholar] [CrossRef]
- Bozzini, C.; Conedera, M.; Krebs, P. A new tool for obtaining cartographic georeferenced data from single oblique photos. In Proceedings of the XXIIIrd International CIPA Symposium, Prague, Czech Republic, 12–16 September 2011. [Google Scholar]
- Bozzini, C.; Conedera, M.; Krebs, P. A New Monoplotting Tool to Extract Georeferenced Vector Data and Orthorectified Raster Data from Oblique Non-Metric Photographs. Int. J. Herit. Digit. Era 2012, 1, 499–518. [Google Scholar] [CrossRef]
- Stockdale, C.-A.; Bozzini, C.; Macdonald, S.-E.; Higgs, E. Extracting ecological information from oblique angle terrestrial landscape photographs: Performance evaluation of the WSL Monoplotting Tool. Appl. Geogr. 2015, 63, 315–325. [Google Scholar] [CrossRef]
- Stockdale, C.A.; McLoughlin, N.; Flannigan, M.; Macdonald, S.E. Could restoration of a landscape to a pre-European historical vegetation condition reduce burn probability? Ecosphere 2019, 10, e02584. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, D.R.; Hopkinson, C. Assessing Fractional Cover in the Alpine Treeline Ecotone Using the WSL Monoplotting Tool and Airborne Lidar. Can. J. Remote Sens. 2017, 43, 504–512. [Google Scholar] [CrossRef]
- McCaffrey, D.; Hopkinson, C. Repeat Oblique Photography Shows Terrain and Fire-Exposure Controls on Century-Scale Canopy Cover Change in the Alpine Treeline Ecotone. Remote Sens. 2020, 12, 1569. [Google Scholar] [CrossRef]
- Gabellieri, N.; Watkins, C. Measuring long-term landscape change using historical photographs and the WSL Monoplotting Tool. Landsc. Hist. 2019, 40, 93–109. [Google Scholar] [CrossRef]
- Bayr, U. Quantifying historical landscape change with repeat photography: An accuracy assessment of geospatial data obtained through monoplotting. Int. J. Geogr. Inf. Sci. 2021, 35, 2026–2046. [Google Scholar] [CrossRef]
- Conedera, M.; Bozzini, C.; Scapozza, C.; Rè, L.; Ryter, U.; Krebs, P. Anwendungspotenzial des WSL-Monoplotting-Tools im Naturgefahrenmanagement. Schweiz. Z. Forstwes. 2013, 164, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Bozzini, C.; Ryter, U.; Bertschinger, T.; Krebs, P. Using the Monoplotting Technique for Documenting and Analyzing Natural Hazard Events. In Natural Hazards—Risk Assessment and Vulnerability Reduction; Carmo, J.S.A.d., Ed.; IntechOpen: London, UK, 2018; pp. 107–123. ISBN 978-1-78984-820-5. [Google Scholar]
- Wiesmann, S.; Steiner, L.; Pozzi, M.; Bozzini, C.; Bauder, A.; Hurni, L. Reconstructing historic glacier states based on terrestrial oblique photographs. In Proceedings of the AutoCarto International Symposium on Automated Cartography, Columbus, OH, USA, 16–18 September 2012. [Google Scholar]
- Scapozza, C.; Lambiel, C.; Bozzini, C.; Mari, S.; Conedera, M. Assessing the rock glacier kinematics on three different timescales: A case study from the southern Swiss Alps. Earth Surf. Process. Landf. 2014, 39, 2056–2069. [Google Scholar] [CrossRef] [Green Version]
- Tollmann, A. Geologie von Österreich: Die Zentralalpen; Deuticke: Wien, Austria, 1977. [Google Scholar]
- Hoinkes, G.; Thöni, M. Evolution of the Ötztal-Stubai, Scarl-Campo and Ulten Basement Units. In Pre-Mesozoic Geology in the Alps; Von Raumer, J.F., Neubauer, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar] [CrossRef]
- Vehling, L. Gravitative Massenbewegungen an alpinen Felshängen: Quantitative Bedeutung in der Sedimentkaskade proglazialer Geosysteme (Kaunertal, Tirol). Doctoral Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany, 2016. [Google Scholar]
- Fliri, F. Klima der Alpen im Raume von Tirol: Monographien zur Landeskunde Tirol, Folge 1; Univ. Verl. Wagner: Innsbruck, Austria, 1975. [Google Scholar]
- Hilger, L. Quantification and Regionalization of Geomorphic Processes Using Spatial Models and High-Resolution Topographic Data: A Sediment Budget of the Upper Kauner Valley, Ötztal Alps. Doctoral Thesis, Catholic University of Eichstätt-Ingolstadt, Eichstätt, Germany, 2017. [Google Scholar]
- Nicolussi, K.; Patzelt, G. Untersuchungen zur holozänen Gletscherentwicklung von Pasterze und Gepatschferner (Ostalpen). Z. Gletsch. Glazialgeol. 2001, 36, 1–88. [Google Scholar]
- Pepin, N.C.; Arnone, E.; Gobiet, A.; Haslinger, K.; Kotlarski, S.; Notarnicola, C.; Palazzi, E.; Seibert, P.; Serafin, S.; Schöner, W.; et al. Climate Changes and Their Elevational Patterns in the Mountains of the World. Rev. Geophys. 2022, 60, e2020RG000730. [Google Scholar] [CrossRef]
- Groß, G.; Patzelt, G. The Austrian Glacier Inventory for the Little Ice Age Maximum (GI LIA) in ArcGIS (shapefile) format. PANGAEA 2015. [Google Scholar] [CrossRef]
- Buckel, J.; Otto, J.-C. The Austrian Glacier Inventory GI 4 (2015) in ArcGis (shapefile) format, supplement to: Buckel, Johannes; Otto, Jan-Christoph; Prasicek, Günther; Keuschnig, Markus (2018): Glacial lakes in Austria—Distribution and formation since the Little Ice Age. Glob. Planet. Chang. 2018, 164, 39–51. [Google Scholar] [CrossRef]
- Copernicus. Hillshade Derived from EU-DEM Version 1.0. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1-0-and-derived-products/hillshade?tab=metadata (accessed on 3 June 2021).
- Flöry, S.; Ressl, C.; Puercher, G.; Pfeifer, N.; Hollaus, M.; Bayr, A.; Karel, W. Development of a 3D Viewer for georeferencing and monoplotting of historical terrestrial images. EGU Gen. Assem. Conf. Abstr. 2020, 22327. [Google Scholar] [CrossRef]
- Kraus, K. Photogrammetrie: Geometrische Informationen aus Photographien und Laserscanneraufnahmen; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Karel, W.; Doneus, M.; Verhoeve, G.; Bries, C.; Ressl, C.; Pfeifer, N. OrientAL—Automatic geo-referencing and otho-rectification of archaeological aerial photographs. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, II-5/W1, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Stark, M.; Rom, J.; Haas, F.; Piermattei, L.; Fleischer, F.; Altmann, M.; Becht, M. Long-term assessment of terrain changes and calculation of erosion rates in an alpine catchment based on SfM-MVS processing of historical aerial images. How camera information and processing strategy affect quantitative analysis. J. Geomorphol. 2022. [Google Scholar] [CrossRef]
- Rom, J.; Haas, F.; Heckmann, T.; Altmann, M.; Fleischer, F.; Ressl, C.; Betz-Nutz, S.; Becht, M. Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947. Nat. Hazards Earth Syst. Sci. 2023, 23, 601–622. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Chicago, IL, USA, 2020; Available online: http://qgis.orgeo.org (accessed on 13 October 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J.; Etten, J.v. Raster: Geographic Analysis and Modeling with Raster Data: R Package Version 2.0-12. 2012. Available online: http://CRAN.R-project.org/package=raster (accessed on 5 September 2022).
- Brunson, J.C. ggalluvial: Layered Grammar for Alluvial Plots. J. Open Source Softw. 2020, 5, 2017. [Google Scholar] [CrossRef]
- Brunson, J.C.; Read, Q.D. ggalluvial: Alluvial Plots in ‘ggplot2’. R Package Version 0.12.3: Ggalluvial (Brunson JC, Read QD (2020). “ggalluvial: Alluvial Plots in ‘ggplot2’.” R Package Version 0.12.3. 2020. Available online: http://corybrunson.github.io/ggalluvial/ (accessed on 10 January 2023).
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Giese, B.S.; Seidel, H.F.; Compo, G.P.; Sardeshmukh, P.D. An ensemble of ocean reanalyses for 1815–2013 with sparse observational input. J. Geophys. Res. Ocean. 2016, 121, 6891–6910. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- Collier, E.; Mölg, T. BAYWRF: A high-resolution present-day climatological atmospheric dataset for Bavaria. Earth Syst. Sci. Data 2020, 12, 3097–3112. [Google Scholar] [CrossRef]
- Collier, E.; Sauter, T.; Mölg, T.; Hardy, D. The Influence of Tropical Cyclones on Circulation, Moisture Transport, and Snow Accumulation at Kilimanjaro During the 2006–2007 Season. J. Geophys. Res. Atmos. 2019, 124, 6919–6928. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present: Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 13 October 2019).
- Cribari-Neto, F.; Zeileis, A. Betaregression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef]
- Smithson, M.; Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 2006, 11, 54–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stäuble, S.; Martin, S.; Reynard, E. Historical mapping for landscape reconstruction. Examples from the Canton of Valais (Switzerland). In Proceedings of the 6th ICA Mountain Cartography Workshop Mountain Mapping and Visualisation, Lenk, Switzerland, 11–15 February 2008; pp. 207–211. [Google Scholar]
- Morrison, H.; Thompson, G.; Tatarskii, V. Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Wea. Rev. 2009, 137, 991–1007. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. Climatol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, 1–8. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Wea. Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary model validation. Mon. Wea. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
Location (Centre) (ETRS89/UTM Zone 32N, EPSG Code: 25832) | 632987, 5193575 |
Elevation (ellipsoidal heights) [m] | 2096–2346 |
Mean aspect [°] | 251.36 (West) |
Size [ha] | 12.1 |
Mean slope gradient (min./max.) [°] | 38.09 (1–82) |
Min. ice-free since | 1940 1/ 1953 2 |
Dead ice influence at the foot of the slope up to max. | 1982 3 |
Estimation of Interior and Exterior Orientation | 1890 | 1907 | ~1930 | ~1940 |
---|---|---|---|---|
σ_0 [px] | 16.1 | 7.2 | 13.8 | 19.7 |
E [m] | 631728.6 (±2.074) | 631728.6 (±0.363) | 631963.2 (±2.969) | 631667.4 (±7.260) |
N [m] | 5194619.9 (±1.620) | 5193858.1 (±0.266) | 5194538.2 (±2.761) | 5194236.8 (±6.239) |
H [m] | 2233.4 (±0.570) | 2265.9 (±0.173) | 2169.7 (±1.013) | 2254.3 (±2.317) |
HGround [m] | 3.2 | 1.0 | 12.3 | 13.7 |
Alpha [°] | −48.146 (±0.056) | −16.866 (±0.043) | −51.964 (±0.055) | −35.351 (±0.078) |
Zeta [°] | 269.081 (±0.053) | 271.069 (±0.045) | 268.187 (±0.054) | 266.540 (±0.087) |
Kappa [°] | −88.929 (±0.203) | −88.268 (±0.110) | −89.364 (±0.107) | −90.610 (±0.144) |
x0 [px] | 2302.5 | 2305.5 | 4606.5 | 4488.0 |
y0 [px] | −1535.5 | −1535.5 | −3071.0 | −3071.0 |
f [px] | 5425.1 (±22.7) | 3129.0 (±7.2) | 101,14.8 (±38.6) | 100,06.9 (±50.3) |
Morphodynamic | Glacier 1 |
(Initial) Gully system | |
Sediment accumulation at the glacier margin | |
Geomorphological not active area | |
Land-cover types | Glacier |
Rock | |
Scree slope (<5%) (e.g., Atocion rupestre, Cardamine resedifolia, Linaria alpina) | |
Scree community (vegetation cover 5–60%) (e.g., Achillea moschata, Tussilago farfara, Saxifraga bryoides) | |
Alpine grassland (e.g., Carex sempervirens, Nardus stricta, Festuca halleri, Lotus corniculatus, Leontodon hispidus, Potentilla aurea) | |
Wetland | |
Dwarf shrub (e.g., Rhododendron ferrugineum, Empetrum hermaphroditum, Salix helvetica) | |
Shrub | |
Trees, woodland |
Scree Slope | Scree Community | Alpine Grassland | Dwarf Shrub | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
est. | se | p | est. | se | p | est. | se | p | est. | se | p | |
Intercept | −9.940 | 4.255 | 0.019 | 7.614 | 3.908 | 0.051 | 2.466 | 3.326 | 0.458 | 0.082 | 2.962 | 0.978 |
age | 0.014 | 0.007 | 0.038 | −0.006 | 0.006 | 0.316 | 0.005 | 0.005 | 0.344 | −0.007 | 0.005 | 0.147 |
gla | −0.009 | 0.015 | 0.560 | 0.004 | 0.015 | 0.794 | −0.071 | 0.013 | <0.001 | −0.047 | 0.016 | 0.003 |
temp | 2.267 | 0.476 | <0.001 | −1.408 | 0.445 | 0.002 | −1.034 | 0.375 | 0.006 | −0.355 | 0.307 | 0.249 |
pre_sum | −0.003 | 0.001 | 0.013 | 0.003 | 0.001 | 0.041 | −0.005 | 0.003 | 0.139 | 0.001 | 0.001 | 0.222 |
pre_win | 0.015 | 0.005 | 0.004 | −0.012 | 0.004 | 0.005 | 0.000 | 0.001 | 0.900 | −0.006 | 0.003 | 0.067 |
inact | −0.026 | 0.017 | 0.123 | −0.021 | 0.016 | 0.206 | 0.000 | 0.019 | 0.981 | 0.046 | 0.022 | 0.033 |
phi | 38.100 | 16.090 | 0.018 | 63.090 | 26.840 | 0.019 | 98.580 | 42.070 | 0.019 | 158.690 | 68.130 | 0.020 |
R² | 0.718 | 0.728 | 0.872 | 0.912 |
Year | Number of GCPs | Minimum [m] | Maximum [m] | Average (Median) Monoplotting Accuracy (RMSE) [m] |
---|---|---|---|---|
1890 | 13 | 1.1 | 877.7 | 17.5 |
1907 | 12 | 0.2 | 62.3 | 9.1 |
~1930 | 13 | 0.3 | 23.7 | 3.5 |
~1940 | 12 | 0.8 | 15.5 | 4.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Altmann, M.; Ramskogler, K.; Mikolka-Flöry, S.; Pfeiffer, M.; Haas, F.; Heckmann, T.; Rom, J.; Fleischer, F.; Himmelstoß, T.; Pfeifer, N.; et al. Quantitative Long-Term Monitoring (1890–2020) of Morphodynamic and Land-Cover Changes of a LIA Lateral Moraine Section. Geosciences 2023, 13, 95. https://doi.org/10.3390/geosciences13040095
Altmann M, Ramskogler K, Mikolka-Flöry S, Pfeiffer M, Haas F, Heckmann T, Rom J, Fleischer F, Himmelstoß T, Pfeifer N, et al. Quantitative Long-Term Monitoring (1890–2020) of Morphodynamic and Land-Cover Changes of a LIA Lateral Moraine Section. Geosciences. 2023; 13(4):95. https://doi.org/10.3390/geosciences13040095
Chicago/Turabian StyleAltmann, Moritz, Katharina Ramskogler, Sebastian Mikolka-Flöry, Madlene Pfeiffer, Florian Haas, Tobias Heckmann, Jakob Rom, Fabian Fleischer, Toni Himmelstoß, Norbert Pfeifer, and et al. 2023. "Quantitative Long-Term Monitoring (1890–2020) of Morphodynamic and Land-Cover Changes of a LIA Lateral Moraine Section" Geosciences 13, no. 4: 95. https://doi.org/10.3390/geosciences13040095
APA StyleAltmann, M., Ramskogler, K., Mikolka-Flöry, S., Pfeiffer, M., Haas, F., Heckmann, T., Rom, J., Fleischer, F., Himmelstoß, T., Pfeifer, N., Ressl, C., Tasser, E., & Becht, M. (2023). Quantitative Long-Term Monitoring (1890–2020) of Morphodynamic and Land-Cover Changes of a LIA Lateral Moraine Section. Geosciences, 13(4), 95. https://doi.org/10.3390/geosciences13040095