Detrital Zircon Geochronology of the Volyn-Orsha Sedimentary Basin in Western Ukraine: Implications for the Meso-Neoproterozoic History of Baltica and Possible Link to Amazonia and the Grenvillian—Sveconorwegian—Sunsas Orogenic Belts
Abstract
:1. Introduction
2. The Volyn-Orsha Sedimentary Basin
3. Polissya Group in Ukraine
4. Sample
5. Methods
6. Results
7. Discussion
7.1. Provenance of the Volyn-Orsha Basin Sediments
7.2. Possible Link to Amazonia
7.3. Possible Triggers for Basin Initiation
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cawood, P.A.; Nemchin, A.A. Source regions for Laurentian margin sediments: Constraints from U/Pb dating of detrital zircon in the Newfoundland Appalachians. Geol. Soc. Am. Bull. 2001, 113, 1234–1246. [Google Scholar] [CrossRef]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital Zircon Analysis of the Sedimentary Record. Rev. Mineral. Geochem. 2003, 53, 277–303. [Google Scholar] [CrossRef]
- Cawood, P.A.; Hawkesworth, C.J.; Dhuime, B. Detrital zircon record and tectonic setting. Geology 2012, 40, 875–878. [Google Scholar] [CrossRef]
- Barham, M.; Kirkland, C.L.; Handoko, A.D. Understanding ancient tectonic settings through detrital zircon analysis. Earth Planet. Sci. Lett. 2022, 583, 117425. [Google Scholar] [CrossRef]
- Condie, K.C.; Belousova, E.; Griffin, W.L.; Sircombe, K.N. Granitoid events in space and time: Constraints from igneous and detrital zircon age spectra. Gondwana Res. 2009, 15, 228–242. [Google Scholar] [CrossRef]
- Hawkesworth, C.; Dhuime, B.; Pietranik, A.; Cawood, P.; Kemp, T.; Storey, C. The generation and evolution of the continental crust. J. Geol. Soc. 2010, 167, 229–248. [Google Scholar] [CrossRef]
- Voice, P.J.; Kowalewski, M.; Eriksson, K.A. Quantifying the timing and rate of crustal evolution: Global compilation of radiometrically dated detrital zircon grains. J. Geol. 2011, 119, 109–126. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Hawkesworth, C.; Dhuime, B.; Billström, K.; Claesson, S.; Storey, C. 207Pb/206Pb ages and Hf isotope composition of zircons from sedimentary rocks of the Ukrainian shield: Crustal growth of the south-western part of East European craton from Archaean to Neoproterozoic. Precambrian Res. 2015, 260, 39–54. [Google Scholar] [CrossRef]
- Andersen, T.; Kristoffersen, M.; Elburg, M.A. How far can we trust provenance and crustal evolution information from detrital zircons? A South African case study. Gondwana Res. 2016, 34, 129–148. [Google Scholar] [CrossRef]
- Joshi, K.B.; Banerji, U.S.; Dubey, C.P.; Oliveira, E.P. Detrital zircons in crustal evolution: A perspective from the Indian subcontinent. Lithosphere 2022, 2022, 3099822. [Google Scholar] [CrossRef]
- Bogdanova, S.V.; Bingen, B.; Gorbatschev, R.; Kheraskova, T.N.; Kozlov, V.I.; Puchkov, V.N.; Volozh, Y.A. The East European Craton (Baltica) before and during the assembly of Rodinia. Precambrian Res. 2008, 160, 23–45. [Google Scholar] [CrossRef]
- McLelland, J.M.; Selleck, B.W. Late- to post-tectonic setting of some major Proterozoic anorthosite—Mangerite—Charnockite—granite (AMCG) suites. Can. Mineral. 2010, 48, 729–750. [Google Scholar] [CrossRef]
- Gorbatschev, R. The Transscandinavian Igneous Belt—Introduction and background. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution; Högdahl, K., Andersson, U.B., Eklund, O., Eds.; Geological Survey Finland, Special Paper; Geological Survey of Finland: Espoo, Finland, 2004; Volume 37, pp. 9–15. [Google Scholar]
- Andersson, U.B.; Sjöström, H.; Högdahl, K.; Eklund, O. The Transscandinavian Igneous Belt, evolutionary models. In The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of Its Character and Evolution; Högdahl, K., Andersson, U.B., Eklund, O., Eds.; Geological Survey Finland, Special Paper; Geological Survey of Finland: Espoo, Finland, 2004; Volume 37, pp. 104–112. [Google Scholar]
- Slagstad, T.; Roberts, N.M.W.; Markens, R.; Røhr, T.; Schiellerup, H. A non-collisional, accretionary Sveconorwegian orogen. Terra Nova 2013, 25, 30–37. [Google Scholar] [CrossRef]
- Bingen, B.; Viola, G.; Möller, C.; Vander Auwera, J.; Laurent, L.; Yi, K. The Sveconorwegian orogeny. Gondwana Res. 2021, 90, 273–313. [Google Scholar] [CrossRef]
- Nikishin, A.M.; Ziegler, P.A.; Stephenson, R.A.; Cloetingh, S.A.P.L.; Furne, A.V.; Fokin, P.A.; Ershov, A.V.; Bolotov, S.N.; Korotaev, M.V.; Alekseev, A.S.; et al. Late Precambrian to Triassic history of the East European Craton: Dynamics of sedimentary basin evolution. Tectonophysics 1996, 268, 23–63. [Google Scholar] [CrossRef]
- Kheraskova, T.N.; Volozh, Y.A.; Vorontsov, A.K.; Pevzner, L.A.; Sychkin, N.I. 2002. Sedimentation conditions at the Central East European platform in the Riphean and Early Vendian. Lithol. Miner. Resour. 2002, 37, 68–81. [Google Scholar] [CrossRef]
- Nagornyi, M.A. Tectonics of the Volyn-Middle Russian System of Basins; Nauka i Tekhnika Publisher: Belarus, Minsk, 1990; 105p. (In Russian) [Google Scholar]
- Bogdanova, S.V.; Pashkevich, I.K.; Gorbatschev, R.; Orlyuk, M.I. Riphean rifting and major Palaeoproterozoic crustal boundaries in the basement of the East European Craton: Geology and geophysics. Tectonophysics 1996, 268, 1–21. [Google Scholar] [CrossRef]
- Baluev, A.S. Geodynamics of the Riphean stage in the evolution of the northern passive margin of the East European Craton. Geotectonics 2006, 40, 183–196. [Google Scholar] [CrossRef]
- Velikanov, V.A.; Aseeva, E.A.; Fedonkin, M.A. The Vendian of Ukraine; Naukova Dumka Publisher: Kyiv, Ukraine, 1983; 164p. (In Russian) [Google Scholar]
- Keller, B.M. The Upper Proterozoic of the Russian Platform (Riphean and Vendian). Essays on the Regional Geology of the USSR; Moscow University Publisher: Moscow, Russia, 1968; 101p. (In Russian) [Google Scholar]
- Kheraskova, T.N. The significance of N.S. Shatsky’s works on the tectonics of ancient platforms and their petroleum resources from a modern viewpoint. Geotectonics 2005, 39, 253–271. [Google Scholar]
- Aisberg, R.E.; Garetskiy, R.G.; Karabanov, A.K. Peculiarities of formation of rift and passive-margin basins in the west of the East-European platform. Litasfera 2009, 1, 3–10. (In Russian) [Google Scholar]
- Kruchek, S.A.; Matveyev, A.V.; Yakubovskaya, T.V.; Obukhovskaya, T.G.; Naidenkov, I.V.; Aksamentova, N.V.; Arkhipova, A.A.; Pap, A.M.; Veretennikov, N.V.; Makhnach, A.S.; et al. Stratigraphic Charts of Precambrian and Phanerozoic Deposits of Belarus: Explanatory Note; State Enterprise «BelNIGRI»: Minsk, Belarus, 2010; 282p. (In Russian) [Google Scholar]
- Makhnach, A.S.; Veretennikov, N.V.; Shkuratov, V.I.; Bordon, V.E. Riphean and Vendian of Belarus; Nauka i Tekhnika Publisher: Moscow, Russia, 1976; 360p. (In Russian) [Google Scholar]
- Ryabenko, V.A.; Mikhnytska, T.P. The Riphean of Ukraine; Ukrainian State Geological Institute: Kyiv, Ukraine, 2000; 180p. (In Ukrainian)
- Vlasov, B.I.; Volovnik, B.Y.; Gruzman, G.G. Peculiarities of the structure and the principle of the stratification of the Polissya Group in Volyn. Geol. J. 1972, 32, 56–67. (In Russian) [Google Scholar]
- Hozhyk, P.F.; Semenenko, V.M.; Maslun, N.V.; Poletaev, V.I.; Ivanik, M.M.; Mikhnytska, T.P.; Velikanov, V.Y.; Melnychuk, V.G.; Konstantynenko, L.I.; Kyryanov, V.V.; et al. Stratigraphy of the Upper Proterozoic, Palaeozoic and Mesozoic of Ukraine; Lohos: Kyiv, Ukraine, 2013; 637p. (In Ukrainian) [Google Scholar]
- Claesson, S.; Bogdanova, S.V.; Bibikova, E.V.; Gorbatschev, R. Isotopic evidence for Palaeorpoterozoic accretion in the basement of the East European Craton. Tectonophysics 2001, 339, 1–18. [Google Scholar] [CrossRef]
- Shumlyanskyy, L. Geochemistry of the Osnitsk-Mikashevichy volcanoplutonic complex of the Ukrainian Shield. Geochem. Int. 2014, 52, 912–924. [Google Scholar] [CrossRef]
- Vysotskyi, O.B.; Stepanyuk, L.M.; Shumlyanskyy, L.V. The U-Pb and Lu-Hf zircon geochronology (LA-ICP-MS) of felsic volcanic rocks of the Klesiv Group (Volyn Domain of the Ukrainian Shield). Abstract Vol. “The Precambrian: Rock Associations and Their Ore Potential”; IGMOF of the NAS of Ukraine: Kyiv, Ukraine, 2020; pp. 20–22. (In Ukrainian) [Google Scholar]
- Bogdanova, S.V.; Bibikova, E.V.; Gorbachev, R. Palaeoproterozoic U-Pb zircon ages from Belorussia: New tectonic implications for the East European Craton. Precambrian Res. 1994, 68, 231–240. [Google Scholar] [CrossRef]
- Paszkowski, M.; Budzyn, B.; Mazur, S.; Slama, J.; Shumlyanskyy, L.; Środoń, J.; Dhuime, B.; Kedzior, A.; Liivamagi, S.; Pisarzowska, A. Detrital zircon U–Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus. Precambrian Res. 2019, 331, 105352. [Google Scholar] [CrossRef]
- Francovschi, I.; Shumlyanskyy, L.; Soesoo, A.; Tarasko, I.; Melnychuk, V.; Hoffmann, A.; Kovalick, A.; Love, G.; Bekker, A. U–Pb geochronology of detrital zircon from the Ediacaran and Cambrian sedimentary successions of NE Estonia and Volyn region of Ukraine: Implications for the provenance and comparison with other areas within Baltica. Precambrian Res. 2023, 392, 107087. [Google Scholar] [CrossRef]
- Kuzmenkova, O.F.; Nosova, A.A.; Shumlyanskyy, L.V. A comparison of the Neoproterozoic Volyn-Brest magmatic province with large continental flood basalt provinces of the world, the nature of low-Ti and high-Ti basic magmatism. Litasfera 2010, 33, 3–16. (In Russian) [Google Scholar]
- Shumlyanskyy, L.V.; Andréasson, P.G.; Buchan, K.L.; Ernst, R.E. The Volynian Flood Basalt Province and coeval (Ediacaran) magmatism in Baltoscandia and Laurentia. Mineral. J. 2007, 29, 47–55. [Google Scholar]
- Shumlyanskyy, L.V. The evolution of the Vendian continental flood basalt magmatism of the Volyn region. Mineral. J. 2012, 34, 50–68. (In Ukrainian) [Google Scholar]
- Shumlyanskyy, L.V.; Kuzmenkova, O.F.; Tsymbal, S.M.; Melnychuk, V.G.; Tarasko, I.V. Geochemistry and isotope composition of Sr and Nd in intrusive bodies of the high-Ti dolerites of the Volyn region. Mineral. J. 2011, 33, 72–82. (In Ukrainian) [Google Scholar]
- Shumlyanskyy, L.; Nosova, A.; Billström, K.; Söderlund, U.; Andréasson, P.-G.; Kuzmenkova, O. The U-Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: Implication for the age of the magmatism and the nature of a crustal contaminant. GFF 2016, 138, 17–30. [Google Scholar] [CrossRef]
- Chebanenko, I.I.; Vyshnyakov, I.B.; Vlasov, B.I. Geotectonics of the Volyno-Podolian Region; Naukova Dumka Publisher: Kyiv, Ukraine, 1990; 244p. (In Russian) [Google Scholar]
- Nechaev, S.V. Geochronology of the Late Precambrian deposits of the south-western slope of the Russian platform. In Abstract Vol. of the Conference on the Late Precambrian (Riphean) of the Russian Platform; Nauka Publisher: Moscow, Russia, 1974; pp. 40–47. (In Russian) [Google Scholar]
- Zaitseva, T.S.; Kuzmenkova, O.F.; Kuznetsov, A.B.; Laptsevich, A.G.; Adamskaya, E.V. U-Th-Pb LA-ICP-MS dating of detrital zircons from the Riphean deposits of the Volyn-Orsha paleobasin (drill hole Kormyanskaya, Belarus). In Proceedings of the VII Russian Conference, Saint-Petersburg, Russia, 21–24 September 2021; Stratigraphy of the Upper Precambrian, Abstract Vol.. pp. 71–74. (In Russian). [Google Scholar]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; von Quadt, A.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand. Newslett. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Tsymbal, S.; Kusiak, M.; Wilde, S.A.; Nemchin, A.A.; Tarasko, I.; Shumlianska, L.; Hofmann, M. U-Pb age and Hf isotope systematics of zircon from eclogite xenoliths in Devonian kimberlites: Preliminary data on the Archaean roots in the junction zone between the Sarmatian and Fennoscandian segments of the East European Platform. Geosciences 2021, 11, 487. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.V.; Hofmann, M.; Borodynya, B.V.; Artemenko, G.V. The local sources of detrital material in Middle Devonian quartzites of the Donets basin: Results of U-Pb LA-ICP-MS zircon dating. Mineral. J. 2021, 43, 85–88. [Google Scholar] [CrossRef]
- Shcherbak, N.P.; Artemenko, G.V.; Lesnaya, I.M.; Ponomarenko, O.M. Geochronology of the Early Precambrian. The Archean; Naukova Dumka Publisher: Kyiv, Ukraine, 2005; 243p. (In Russian) [Google Scholar]
- Ponomarenko, A.N.; Lesnaya, I.M.; Ziultsle, O.V.; Hatsenko, V.A.; Dovbush, T.I.; Kanunikova, L.I.; Shumlyanskyy, L.V. Neoarchean of the Ros-Tikych Domain of the Ukrainian Shield. Geochem. Ore Form. 2010, 28, 11–16. (In Russian) [Google Scholar]
- Claesson, S.; Bibikova, E.; Shumlyanskyy, L.; Dhuime, B.; Hawkesworth, C. The oldest crust in the Ukrainian Shield—Eoarchean U-Pb ages and Hf-Nd constraints from enderbites and metasediments. In Continent Formation through Time; Van Kranendonk, N.M.W., Parman, S., Shirey, S., Clift, P.D., Eds.; Geological Society of London: London, UK, 2015; Volume 389, pp. 227–259. [Google Scholar] [CrossRef]
- Claesson, S.; Bibikova, E.V.; Shumlyanskyy, L.; Whitehouse, M.J.; Billström, K. Can oxygen isotopes in magmatic zircon be modified by metamorphism? A case study from the Eoarchean Dniester-Bug Series, Ukrainian Shield. Precambrian Res. 2016, 273, 1–11. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Wilde, S.A.; Nemchin, A.A.; Claesson, S.; Billström, K.; Bagiński, B. Eoarchean rock association in the Dniester-Bouh Domain of the Ukrainian shield: A suite of LILE-depleted enderbites and mafic granulites. Precambrian Res. 2021, 352, 106001. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.V. Geochemistry of pyroxene plagioclase gneisses (enderbites) of the Bouh area and Hf isotope composition in zircons. Mineral. J. 2012, 34, 64–79. (In Ukrainian) [Google Scholar]
- Shumlyanskyy, L.; Hawkesworth, C.; Billström, K.; Bogdanova, S.; Mytrokhyn, O.; Romer, R.; Dhuime, B.; Claesson, S.; Ernst, R.; Whitehouse, M.; et al. The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian Shield: New U-Pb ages and Hf isotopes in zircon. Precambrian Res. 2017, 292, 216–239. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Ernst, R.E.; Albekov, A.; Söderlund, U.; Wilde, S.A.; Bekker, A. The early Statherian (ca. 1800-1750 Ma) Prutivka-Novogol large igneous province of Sarmatia: Geochronology and implication for the Nuna/Columbia supercontinent reconstruction. Precambrian Res. 2021, 358, 106185. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Franz, G.; Glynn, S.; Mytrokhyn, O.; Voznyak, D.; Bilan, O. Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): Implications for the emplacement history and origin of miarolitic pegmatites. Eur. J. Mineral. 2021, 33, 703–716. [Google Scholar] [CrossRef]
- Ponomarenko, A.N.; Stepanyuk, L.M.; Shumlyanskyy, L.V. Geochronology and geodynamics of the Paleoproterozoic of the Ukrainian Shield. Mineral. J. 2014, 36, 48–60. (In Ukrainian) [Google Scholar]
- Shumlyanskyy, L.V.; Stepanyuk, L.M.; Claesson, S.; Rudenko, K.V.; Bekker, A.Y. The U-Pb zircon and monazite geochronology of granitoids of the Zhytomyr and Sheremetiv complexes, the Northwestern region of the Ukrainian Shield. Mineral. J. 2018, 40, 63–85. [Google Scholar] [CrossRef]
- Liebmann, J.; Spencer, C.J.; Kirkland, C.L.; Bucholz, C.E.; Xia, X.P.; Martin, L.; Kitchen, N.; Shumlyanskyy, L. Coupling sulfur and oxygen isotope ratios in sediment melts across the Archean-Proterozoic transition. Geochim. Cosmochim. Acta 2021, 307, 242–257. [Google Scholar] [CrossRef]
- Johansson, Å.; Bingen, B.; Huhma, H.; Waight, T.; Vestergaard, R.; Soesoo, A.; Skridlaite, G.; Krzeminska, E.; Shumlyanskyy, L.; Holland, M.E.; et al. A geochronological review of magmatism along the external margin of Columbia and in the Grenville-age orogens forming the core of Rodinia. Precambrian Res. 2022, 371, 106463. [Google Scholar] [CrossRef]
- Bogdanova, S.V.; Gorbatschev, R.; Garetsky, R.G. EUROPE|East European Craton. In Reference Module in EarthSystems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Wiszniewska, J.; Kusiak, M.A.; Krzemińska, E.; Dörr, W.; Suzuki, K. Mesoproterozoic AMCG granitoids in the Mazury complex, NE Poland—A geochronological update. Granitoids Pol. AM Monogr. 2007, 1, 31–39. [Google Scholar]
- Wiszniewska, J.; Krzemińska, E. Advances in geochronology in the Suwałki anorthosite massif and subsequent granite veins, northeastern Poland. Precambrian Res. 2021, 361, 106265. [Google Scholar] [CrossRef]
- Neymark, L.A.; Amelin, J.V.; Lapin, A.M. 1994. Pb–Nd–Sr isotopic and chemical constraints on the origin of the 1.54–1.56 Ma, Salmi rapakivi-anorthosite batholith (Karelia, Russia). Mineral. Petrol. 1994, 50, 173–193. [Google Scholar] [CrossRef]
- Rämö, O.T.; Huhma, H.; Kirs, J. Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: New data from the concealed Precambrian of the East European craton. Precambrian Res. 1996, 79, 209–226. [Google Scholar] [CrossRef]
- Amelin, Y.V.; Larin, A.M.; Tucker, R.D. Chronology of multiphase emplacement of the Salmi rapakivi–anorthosite complex, Baltic Shield: Implications for magmatic evolution. Contrib. Mineral. Petrol. 1996, 127, 353–368. [Google Scholar] [CrossRef]
- Bingen, B.; Solli, A. Geochronology of magmatism in the Caledonian and Sveconorwegian belts of Baltica: Synopsis for detrital zircon provenance studies. Norwegian J. Geol. 2009, 89, 267–290. [Google Scholar]
- Li, Z.X.; Bogdanova, S.V.; Collins, A.S.; Davidson, A.; De Waele, B.; Ernst, R.E.; Fitzsimons, I.C.W.; Fuck, R.A.; Gladkochub, D.P.; Jacobs, J.; et al. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res. 2008, 160, 179–210. [Google Scholar] [CrossRef]
- Rainbird, R.H.; Heaman, L.M.; Young, G. Sampling Laurentia: Detrital zircon geochronology offers evidence for an extensive Neoproterozoic river system originating from the Grenville orogen. Geology 1992, 20, 351–354. [Google Scholar] [CrossRef]
- Johansson, Å. Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? Precambrian Res. 2009, 175, 221–234. [Google Scholar] [CrossRef]
- Terentiev, R.A.; Santosh, M. Baltica (East European Craton) and Atlantica (Amazonian and West African Cratons) in the Proterozoic: The pre-Columbia connection. Earth-Sci. Rev. 2020, 210, 1–27. [Google Scholar] [CrossRef]
- Aleinikoff, J.N.; Zartman, R.E.; Walter, M.; Rankin, D.W.; Lyttle, P.T.; Burton, W.C. U-Pb ages of metarhyolites of the Catoctin and Mount Rogers Formations, central and southern Appalachians: Evidence for two pulses of Iapetan rifting. Am. J. Sci. 1995, 255, 428–454. [Google Scholar] [CrossRef]
- Bingen, B.; Demaiffe, D.; van Breemen, O. The 616 Ma old Egersund dike swarm, SW Norway, and Late Neoproterozoic opening of the Iapetus Ocean. J. Geol. 1998, 106, 565–574. [Google Scholar] [CrossRef]
- Weil, A.B.; Van der Voo, R.; Mac Niocaill, C.; Meert, J.G. The Proterozoic supercontinent Rodinia: Paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth Planet. Sci. Lett. 1998, 154, 13–24. [Google Scholar] [CrossRef]
- Hartz, E.H.; Torsvik, T.H. Baltica upside down: A new plate tectonic model for Rodinia and the Iapetus Ocean. Geology 2002, 30, 255–258. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 2003, 375, 261–288. [Google Scholar] [CrossRef]
- Torsvik, T.H. The Rodinia jigsaw puzzle. Science 2003, 300, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- de Brito Neves, B.B.; Reinhardt, A.; Fuck, R.A.; da Cruz Campanha, G.A. The Statherian taphrogenesis of the South American Platform. Braz. J. Geol. 2022, 52, e2021053. [Google Scholar] [CrossRef]
- Augustsson, C.; Willner, A.P.; Rüsing, T.; Niemeyer, H.; Gerdes, A.; Adams, C.J.; Miller, H. The crustal evolution of South America from a zircon Hf-isotope perspective. Terra Nova 2016, 28, 128–137. [Google Scholar] [CrossRef]
- Roverato, M.; Giordano, D.; Giovanardi, T.; Juliani, C.; Polo, L. The 2.0–1.88 Ga Paleoproterozoic evolution of the southern Amazonian Craton (Brazil): An interpretation inferred by lithofaciological, geochemical and geochronological data. Gondwana Res. 2019, 70, 1–24. [Google Scholar] [CrossRef]
- Ribeiro, B.V.; Lopes, L.B.L.; Kirkland, C.L.; Cawood, P.A.; Faleiros, F.M.; Hartnady, M.I.H.; Teixeira, W.; Mulder, J.A.; Roberts, N.M.W.; Tassinari, C.C.G. Growing the Paleo- to Mesoproterozoic margin of the SW Amazonia and the transition from an accretionary to a collisional system. Precambrian Res. 2022, 381, 106841. [Google Scholar] [CrossRef]
- Almeida, M.E.; Nascimento, R.S.C.; Mendes, T.A.; Santos, J.O.S.; Macambira, M.J.B.; Vasconcelos, P.; Pinheiro, S.S. An outline of Paleoproterozoic-Mesoproterozoic crustal evolution of the NW Amazon craton and implications for the Columbia Supercontinent. Int. Geol. Rev. 2022, 64, 3195–3229. [Google Scholar] [CrossRef]
- Valencia-Morales, Y.T.; Weber, B.; Tazzo-Rangel, M.D.; González-Guzmán, R.; Frei, D.; Quintana-Delgado, J.A.; Rivera-Moreno, E.N. Early Mesoproterozoic inliers in the Chiapas Massif Complex of southern Mexico: Implications on Oaxaquia-Amazonia-Baltica configuration. Precambrian Res. 2022, 373, 106611. [Google Scholar] [CrossRef]
- Keppie, J.D. Terranes of Mexico revisited: A 1.3 billion year odyssey. Int. Geol. Rev. 2004, 46, 765–794. [Google Scholar] [CrossRef]
- Keppie, J.D.; Ortega-Gutiérrez, F. 1.3–0.9 Ga Oaxaquia (Mexico): Remnant of an arc/backarc on the northern margin of Amazonia. J. S. Am. Earth Sci. 2010, 29, 21–27. [Google Scholar] [CrossRef]
- Elming, S.-Å.; Shumlyanskyy, L.; Kravchenko, S.; Layer, P.; Söderlund, U. Proterozoic basic dykes in the Ukrainian Shield: A palaeomagnetic, geochronologic and geochemical study—The accretion of the Ukrainian Shield to Fennoscandia. Precambrian Res. 2010, 178, 119–135. [Google Scholar] [CrossRef]
- Gordasnikov, Y.Y.; Troitskiy, Y.Y. The Middle Russian aulacogen is a core structure of the Moscow syncline. Sov. Geol. 1966, 12, 50–58. (In Russian) [Google Scholar]
- Cawood, P.A.; Strachan, R.A.; Pisarevsky, S.A.; Gladkochub, D.P.; Murphy, J.B. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet. Sci. Lett. 2016, 449, 118–126. [Google Scholar] [CrossRef]
- Evans, D.A.D.; Mitchell, R.N. Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology 2011, 39, 443–446. [Google Scholar] [CrossRef]
- Salminen, J.; Elming, S.-Å.; Layer, P. Timing the break-up of the Baltica and Laurentia connection in Nuna—Rapid plate motion oscillation and plate tectonics in the Mesoproterozoic. Precambrian Res. 2023, 384, 106923. [Google Scholar] [CrossRef]
- Buntin, S.; Artemieva, I.M.; Malehmir, A.; Thybo, H.; Malinowski, M.; Högdahl, K.; Janik, T.; Buske, S. Long-lived Paleoproterozoic eclogitic lower crust. Nat. Commun. 2021, 12, 6553. [Google Scholar] [CrossRef]
- Męźyk, M.; Malinowski, M.; Mazur, S. Structure of a diffuse suture between Fennoscandia and Sarmatia in SE Poland based on interpretation of regional reflection seismic profiles supported by unsupervised clustering. Precambrian Res. 2021, 358, 106176. [Google Scholar] [CrossRef]
- Tsymbal, S.N. Kimberlites of the central part of the Prypyat swell, Ukraine. Mineral. J. 2003, 25, 70–87. (In Russian) [Google Scholar]
- Garetsky, R.G.; Karatayev, G.I. A tectonogeodynamic model for the junction zone between the Fennoscandian and Sarmatian segments of the East European Platform. Russ. Geol. Geophys. 2011, 52, 1228–1235. [Google Scholar] [CrossRef]
- Kvasnytsya, V.; Shumlyanskyy, L. Native gold and diamonds from the Palaeoproterozoic terrigenous rocks of the Bilokorovychi basin, North-Western part of the Ukrainian shield. Mineral. J. 2018, 40, 23–38. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shumlyanskyy, L.; Bekker, A.; Tarasko, I.; Francovschi, I.; Wilde, S.A.; Melnychuk, V. Detrital Zircon Geochronology of the Volyn-Orsha Sedimentary Basin in Western Ukraine: Implications for the Meso-Neoproterozoic History of Baltica and Possible Link to Amazonia and the Grenvillian—Sveconorwegian—Sunsas Orogenic Belts. Geosciences 2023, 13, 152. https://doi.org/10.3390/geosciences13050152
Shumlyanskyy L, Bekker A, Tarasko I, Francovschi I, Wilde SA, Melnychuk V. Detrital Zircon Geochronology of the Volyn-Orsha Sedimentary Basin in Western Ukraine: Implications for the Meso-Neoproterozoic History of Baltica and Possible Link to Amazonia and the Grenvillian—Sveconorwegian—Sunsas Orogenic Belts. Geosciences. 2023; 13(5):152. https://doi.org/10.3390/geosciences13050152
Chicago/Turabian StyleShumlyanskyy, Leonid, Andrey Bekker, Iryna Tarasko, Ion Francovschi, Simon A. Wilde, and Viktor Melnychuk. 2023. "Detrital Zircon Geochronology of the Volyn-Orsha Sedimentary Basin in Western Ukraine: Implications for the Meso-Neoproterozoic History of Baltica and Possible Link to Amazonia and the Grenvillian—Sveconorwegian—Sunsas Orogenic Belts" Geosciences 13, no. 5: 152. https://doi.org/10.3390/geosciences13050152
APA StyleShumlyanskyy, L., Bekker, A., Tarasko, I., Francovschi, I., Wilde, S. A., & Melnychuk, V. (2023). Detrital Zircon Geochronology of the Volyn-Orsha Sedimentary Basin in Western Ukraine: Implications for the Meso-Neoproterozoic History of Baltica and Possible Link to Amazonia and the Grenvillian—Sveconorwegian—Sunsas Orogenic Belts. Geosciences, 13(5), 152. https://doi.org/10.3390/geosciences13050152