Factors Contributing to the Long-Term Sea Level Trends in the Iberian Peninsula and the Balearic and Canary Islands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sea Level Data
2.2. Altimetry Data
2.3. Temperature and Salinity Data
2.4. Atmospheric Variables
2.5. Data Processing
2.6. Statistical Model
3. Results
3.1. Sea Level Linear Trends
3.2. Linear Trends of the Atmospheric Forcing, and the Thermosteric and Halosteric Sea-Level Change
3.3. Linear Model
3.4. Mass of Salt and Freshwater Contributions
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Calafat, F.M.; Chambers, D.P.; Tsimplis, M.N. On the ability of global sea level reconstructions to determine trends and variability. J. Geophys. Res. Ocean. 2014, 119, 1572–1592. [Google Scholar] [CrossRef]
- Llovel, W.; Cazenave, A.; Rogel, P.; Lombard, M.; Bergé-Nguyen, A. 2-D reconstruction of past sea level (1950–2003) using tidegauge records and spatial patterns from a general ocean circulation model. Clim. Past Discuss. 2009, 5, 1109–1132. [Google Scholar]
- Church, J.A.; White, N.J. A 20th century acceleration in global sea level rise. Geophys. Res. Lett. 2006, 33, L01602. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J. Sea-level rise from late 19th to early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- Church, J.A.; White, N.J.; Coleman, R.; Lambeck, K.; Mitrovica, J.X. Estimates of the Regional Distribution of Sea Level Rise overthe 1950–2000 Period. J. Clim. 2004, 17, 2609–2625. [Google Scholar] [CrossRef]
- Ramos-Alcántara, J.; Gomis, D.; Jordà, G. Reconstruction of Mediterranean coastal sea level at different timescales based on tide gauge records. Ocean Sci. 2022, 18, 1781–1803. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M.; Kopp, R.E.; Krinner, G.; et al. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1211–1362. [Google Scholar] [CrossRef]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.P., Zhai, A., Pirani, S.L., Connors, C., Péan, S., Berger, N., Caud, Y., Chen, L., Goldfarb, M.I., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pötner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegri, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. [Google Scholar] [CrossRef]
- Dangendorf, S.; Marcos, M.; Wöppelmann, G.; Conrad, T.; Frederikse, C.P.; Riva, R. Reassessment of 20th Century Global Mean Sea Level Rise. Proc. Natl. Acad. Sci. USA 2017, 114, 5946–5951. [Google Scholar] [CrossRef]
- Dangendorf, S.; Marcos, M.; Müller, A.; Zorita, E.; Riva, R.; Berk, K.; Jensen, J. Detecting anthropogenic footprints in sea level rise. Nat. Commun. 2015, 6, 7849. [Google Scholar] [CrossRef]
- Gomis, D.; Tsimplis, M.; Marcos, M.; Fenoglio-Marc, L.; Pérez, B.; Raicich, F.; Vilibic, I.; Wöppelmann, G.; Monserrat, S. Mediterranean Sea-Level Variability and Trends. In The Climate of the Mediterranean Region: From the Past to the Future; Lionello, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- BongartsLebbe, T.; Rey-Valette, H.; Chaumillon, É.; Camus, G.; Almar, R.; Cazenave, A.; Claudet, J.; Rocle, N.; Meur-Férec, C.; Viard, F.; et al. Designing Coastal Adaptation Strategies to Tackle Sea Level Rise. Front. Mar. Sci. 2021, 8, 740602. [Google Scholar] [CrossRef]
- Gregory, J.M.; Griffies, S.M.; Hughes, C.W.; Lowe, J.A.; Church, J.A.; Fukimori, I.; Gomez, N.; Kopp, R.E.; Landerer, F.; Le Cozannet, G.; et al. Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global. Surv. Geophys. 2019, 40, 1251–1289. [Google Scholar] [CrossRef]
- Jordà, G.; Gomis, D. On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean Sea. J. Geophys. Res. Ocean. 2013, 118, 953–963. [Google Scholar] [CrossRef]
- Gregory, J.M.; Lowe, J.A. Predictions of global and regionalsea-level rise using AOGCMs with and without flux adjustment. Geophys. Res. Lett. 2000, 27, 3069–3072. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, L.; Boyer, T.; Li, C. Halosteric Sea Level Changes during the Argo Era. Water 2017, 9, 484. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Baker, T.F. Sea level drop in the Mediterranean Sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett. 2000, 27, 1731–1734. [Google Scholar] [CrossRef]
- Jordà, G.; Gomis, D. Reliability of the steric and mass components of Mediterranean sea level as estimated from hydrographic gridded products. Geophys. Res. Lett. 2013, 40, 3655–3660. [Google Scholar] [CrossRef]
- Camargo, C.M.L.; Riva, R.E.M.; Hermans, T.H.J.; Slangen, A.B.A. Trends and Uncertainties of Regional Barystatic Sea-level Change in the Satellite Altimetry Era. Earth Syst. Dynam. Discuss 2021, preprint. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Spada, G.; Marcos, M.; Fleming, N. Multidecadal sea level trends and land movements in the Mediterranean Seawith estimates of factors perturbing tide gauge data and cumulative uncertainties. Glob. Planet. Chang. 2011, 76, 63–76. [Google Scholar] [CrossRef]
- Gomis, D.; Ruiz, S.; Sotillo, M.G.; Álvarez-Fanjul, E.; Terradas, J. Low frequency Mediterranean sea level variability: Thecontribution of atmospheric pressure and wind. Glob. Planet. Chang. 2008, 63, 215–229. [Google Scholar] [CrossRef]
- Marcos, M.; Tsimplis, M.N. Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys. Res. Lett. 2007, 34, L18604. [Google Scholar] [CrossRef]
- Carrère, L.; Lyard, F. Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing—Comparisons with observations. Geophys. Res. Lett. 2003, 30, 1275. [Google Scholar] [CrossRef]
- Storto, A.; Bonaduce, A.; Feng, X.; Yang, C. Steric Sea Level Changes from Ocean Reanalyses at Global and Regional Scales. Water 2019, 11, 1987. [Google Scholar] [CrossRef]
- Church, J.A.; Roemmich, D.; Domingues, C.M.; Willis, J.K.; White, N.J.; Gilson, J.E.; Stammer, D.; Köhl, A.; Chambers, D.P.; Landerer, F.W.; et al. Ocean Temperature and Salinity Contributions to Global and Regional Sea-Level Change. In Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, T., Wilson, W.S., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 143–176. [Google Scholar]
- Vargas-Yáñez, M.; Tel, E.; Moya, F.; Ballesteros, E.; García-Martínez, M.C. Long-Term Changes, Inter-Annual, and Monthly Variability of Sea Level at the Coasts of the Spanish Mediterranean and the Gulf of Cádiz. Geosciences 2021, 11, 350. [Google Scholar] [CrossRef]
- Holgate, S.J.; Matthews, A.; Woodworth, P.L.; Rickards, L.J.; Tamisiea, M.E.; Bradshaw, E.; Foden, P.R.; Gordon, K.M.; Jevrejeva, S.; Pugh, J. New Data Systems and Products at the Permanent Service for Mean Sea Level. J. Coast. Res. 2013, 29, 493–504. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Wöppelmann, G.; Herrero, C.; García-Fernández, M.J. The long sea level record at Cádiz (Southern Spain). J. Geophys. Res. 2011, 116, C12003. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Gómez, B.P.; Fraile, M.A.; Talke, S.A. Historical tide-gauge sea level observations in Alicante and Santander (Spain) since the 19th century. Geosci. Data J. 2021, 82, 144–153. [Google Scholar] [CrossRef]
- Marcos, M.; Puyol, B.; Calafat, F.M.; Woppelmann, G. Sea level changes at Tenerife Island (NE Tropical Atlantic) since 1927. J. Geophys. Res. Ocean. 2013, 118, 4899–4910. [Google Scholar] [CrossRef]
- Whitehouse, P.L. Glacial isostatic adjustment modelling: Historical perspectives, recent advances, and future directions. Earth Surf. Dynam. 2018, 6, 401–429. [Google Scholar] [CrossRef]
- Peltier, W.R. Global Glacial Isostacy and the surface of the ice-age Earth: The ICE-5G (VM2) Model and GRACE. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Peltier, W.R. Postglacial Variations in the Level of the Sea: Implications for Climate Dynamics and Solid-Earth Geophysics. Rev. Geophys. 1998, 36, 603–689. [Google Scholar] [CrossRef]
- Peltier, W.R. On the Hemispheric Origins of Meltwater Pulse 1A. Quat. Sci. Rev. 2005, 24, 1655–1671. [Google Scholar] [CrossRef]
- Santamaría-Gómez, A.; Gravelle, M.; Dangendorf, S.; Marcos, M.; Spada, G.; Wöppelmann, G. Uncertainty of the 20th century sea-level rise due to vertical land motion errors. Earth Planet. Sci. Lett. 2017, 473, 24–32. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Riva, R.; Frederikse, T. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations. Ocean Sci. 2018, 14, 187–204. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.J.; Rayner, N.A. Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Ishii, M.; Kimoto, M.; Sakamoto, K.; Iwasaki, S. Steric sea level changes estimated from historical ocean subsurface temperatureand salinity analyses. J. Oceanogr. 2006, 62, 155–170. [Google Scholar] [CrossRef]
- Ishii, M.; Kimoto, M.; Sakamoto, K.; Iwasaki, S. Subsurface Temperature and Salinity Analyses. Available online: https://rda.ucar.edu/datasets/ds285.3/ (accessed on 19 August 2021).
- López-Jurado, J.L.; Balbín, R.; Alemany, F.; Amengual, B.; Aparicio-González, A.; Fernández de Puelles, M.L.; García-Martínez, M.C.; Gazá, M.; Jansá, J.; Morillas-Kieffer, A.; et al. The RADMED Monitoring Programme as a Tool for MSFD Implementation: Towards an Ecosystem-Based Approach. Ocean. Sci. 2015, 11, 897–908. [Google Scholar] [CrossRef]
- Gomis, D.; Tsimplis, M.N.; Martí-Mínguez, B.; Ratsimandresy, A.W.; García-Lafuente, J.; Josey, S.A. Mediterranean Sea level and barotropic flow through the Strait of Gibraltar for the period 1958–2001 and reconstructed since 1659. J. Geophys. Res. 2006, 111, C11005. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Vargas-Yáñez, M.; Moya, F.; Balbín, R.; Santiago, R.; Ballesteros, E.; Sánchez-Leal, R.F.; Romero, P.; Carmen, G.-M.M. Seasonal and Long-Term Variability of the Mixed Layer Depth and its Influence on Ocean Productivity in the Spanish Gulf of Cádiz and Mediterranean Sea. Front. Mar. Sci. 2022, 9, 901893. [Google Scholar] [CrossRef]
- Vargas-Yáñez, M.; García-Martínez, M.C.; Moya, F.; Balbín, R.; López-Jurado, J.L.; Serra, M.; Zunino, P.; Pascual, J.; Salat, J. Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED Project. Prog. Oceanogr. 2017, 157, 27–46. [Google Scholar] [CrossRef]
- Llasses, J.; Jordà, G.; Gomis, D. Skills of different hydrographic networks in capturing changes in the Mediterranean Sea at climate scales. Clim. Res. 2015, 63, 1–18. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Cheng, L.; Palmer, M.D.; Hansen, J.; Tassone, C.; Aich, V.; Adusumilli, S.; Beltrami, H.; Boyer, T.; Cuesta-Valero, F.J.; et al. Heat stored in the Earth system: Where does the energy go? Earth Syst. Sci. Data 2020, 12, 2013–2041. [Google Scholar] [CrossRef]
- Zemp, M.; Huss, M.; Eckert, N.; Thibert, E.; Paul, F.; Nussbaumer, S.U.; Gärtner-Roer, I. Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from the latest glaciological observations. Cryosphere 2020, 14, 1043–1050. [Google Scholar] [CrossRef]
- Borghini, M.; Bryden, H.; Schroeder, K.; Sparnocchia, S.; Vetrano, A. The Mediterranean is becoming saltier. Ocean Sci. 2014, 10, 693–700. [Google Scholar] [CrossRef]
- Coppola, L.; Raimbault, P.; Mortier, L.; Testor, P. Monitoring the Environment in the Northwestern Mediterranean Sea. Eos Trans. Am. Geophys. Union Am. Geophys. Union (AGU) 2019, 100, 10. [Google Scholar] [CrossRef]
Period | Linear Trends (b ± 95% CI). Tide Gauges. | |||||
---|---|---|---|---|---|---|
1948–2019 | Sea Level b | Pressure bP | U-Wind bU | V-Wind bV | Thermost. BT | Halost. BH |
Location (GIA) | mm/yr | dbar/yr | ms−1/yr | ms−1/yr | mm/yr | mm/yr |
Santander (−0.11) | 2.08 ± 0.21 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.00 | 0.62 ± 0.10 | 0.36 ± 0.15 |
Vigo (−0.12) | 2.66 ± 0.24 | 0.02 ± 0.01 | 1.72 ± 0.16 | −1.41 ± 0.18 | ||
A Coruña (0.0) | 2.29 ± 0.22 | 0.02 ± 0.01 | 1.18 ± 0.14 | −0.78 ± 0.17 | ||
Leixoes (−0.2) | 1.61 ± 0.20 | 0.02 ± 0.01 | 1.78 ± 0.17 | −1.41 ± 0.19 | ||
Cascais (−0.07) | 1.62 ± 0.19 | 0.02 ± 0.01 | 1.98 ± 0.20 | −1.26 ± 0.24 | ||
Arrecife (0.01) | 0.59 ± 0.16 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.96 ± 0.15 | ||
Las Palmas (0.05) | ||||||
Tenerife (0.09) | 1.59 ± 0.12 | 0.02 ± 0.01 | 0.02 ± 0.00 | 1.19 ± 0.12 | −0.32 ± 0.13 | |
Cádiz (−0.18) | 2.62 ± 0.21 | 0.02 ± 0.01 | −0.01 ± 0.01 | 1.43 ± 0.12 | −1.16 ± 0.25 | |
Tarifa (−0.18) | 1.38 ± 0.21 | 0.02 ± 0.01 | 1.48 ± 1.13 | −1.21 ± 0.25 | ||
Algeciras (−0.19) | 1.00 ± 0.14 | 0.02 ± 0.01 | 1.48 ± 0.13 | −1.21 ± 0.25 | ||
Gibraltar (−0.19) | −0.18 ± 0.16 | 0.02 ± 0.01 | 1.48 ± 0.13 | −1.21 ± 0.25 | ||
Ceuta (−0.18) | 0.89 ± 0.15 | 0.02 ± 0.01 | 1.48 ± 0.13 | −1.21 ± 0.25 | ||
Málaga (−0.23) | 1.40 ± 0.19 | 0.02 ± 0.01 | −0.01 ± 0.00 | 1.53 ± 0.13 | −1.51 ± 0.24 | |
Alicante (−0.05) | 0.82 ± 0.17 | 0.02 ± 0.01 | −0.01 ± 0.00 | 1.44 ± 0.09 | −1.91 ± 0.15 | |
L’Estartit (0.06) | ||||||
Palma (0.25) |
Period | Linear Trends (b ± 95% CI) Tide Gauges and Altimetry. | |||||
---|---|---|---|---|---|---|
1993–2019 | Sea Level b | Pressure bP | U-Wind bU | V-Wind bV | Thermost. bT | Halost. bH |
Location | mm/yr | dbar/yr | ms−1/yr | ms−1/yr | mm/yr | mm/yr |
Santander Tide Gauge Altimetry | 2.0 ± 0.8 2.56± 0.25 | −0.02 ± 0.02 | −0.02 ± 0.02 | 1.5 ± 0.7 | ||
Vigo Tide gauge Altimetry | 1.4 ± 0.9 2.9 ± 0.3 | 0.9 ± 0.8 | ||||
A Coruña Tide Gauge Altimetry | 3.0 ± 0.9 2.69 ± 0.25 | 1.1 ± 0.6 | 0.7 ± 0.7 | |||
Leixoes Tide gauge Altimetry | 1.3 ± 0.8 3.07 ± 0.25 | 0.02 ± 0.02 | −0.03 ± 0.02 | 1.0 ± 0.9 | ||
Cascais Tide gauge Altimetry | 3.8 ± 0.5 2.8 ± 0.3 | −0.05 ± 0.03 | ||||
Arrecife Tide gauge Altimetry | 1.4 ± 0.5 3.0 ± 0.3 | −0.03 ± 0.02 | −0.03 ± 0.02 | 1.0 ± 0.6 | ||
Las Palmas Tide gauge Altimetry | 3.3 ± 0.5 2.9 ± 0.3 | −0.02 ± 0.02 | 0.02 ± 0.02 | 0.8 ± 0.5 | ||
Tenerife Tide gauge Altimetry | 3.4 ± 0.8 3.1 ± 0.3 | −0.02 ± 0.02 | 0.02 ± 0.02 | 1.5 ± 0.5 | ||
Cádiz Tide gauge Altimetry | 1.3 ± 0.9 3.2 ± 0.3 | −0.03 ± 0.02 | 0.7 ± 0.6 | 2.8 ± 1.1 | ||
Tarifa Tide gauge Altimetry | 4.7 ± 0.7 2.5 ± 0.3 | 2.4 ± 0.7 | 1.5 ± 1.2 | |||
Algeciras Tide gauge Altimetry | 2.3 ± 0.6 2.4 ± 0.4 | 2.4 ± 0.7 | 1.5 ± 1.2 | |||
Gibraltar Tide gauge Altimetry | 4.7 ± 0.6 2.4 ± 0.4 | 2.4 ± 0.7 | 1.5 ± 1.2 | |||
Ceuta Tide gauge Altimetry | 1.9 ± 0.6 2.4 ± 0.4 | 2.4 ± 0.7 | 1.5 ± 1.2 | |||
Málaga Tide gauge Altimetry | 3.7 ± 0.7 4.1 ± 0.4 | 0.03 ± 0.03 | 2.4 ± 0.7 | |||
Alicante Tide gauge Altimetry | 2.0 ± 0.8 3.0 ± 0.3 | 2.9 ± 0.4 | −4.2 ± 0.6 | |||
L’Estartit Tide gauge Altimetry | 2.7 ± 0.8 2.7 ± 0.3 | 2.9 ± 0.3 | −6.2 ± 0.4 | |||
Palma * Tide gauge Altimetry | 2.0 ± 1.1 1.8 ± 0.5 | 3.7 ± 0.5 | −5.9 ± 0.5 |
Period | Coefficients of the Linear Model for Sea Level from Tide Gauges | ||||||
---|---|---|---|---|---|---|---|
1948–2019 | Time b | Pressure b1 | U-Wind b2 | V-Wind b3 | Thermost. b4 | Halost. b5 | R |
Location | mm/yr | mm/mbar | mm/ms−1 | mm/ms−1 | |||
Santander | 2.08 ± 0.21 | −9.4 ± 0.9 | 8.2 ± 2.1 | 14.9 ± 2.3 | 0.85 | ||
Vigo | 2.66 ± 0.24 | −11.6 ± 1.1 | −11.31 ± 2.3 | 20.2 ± 2.4 | 0.85 | ||
A Coruña | 2.29 ± 0.22 | −9.9 ± 1.0 | −5.4 ± 2.2 | 18.1 ± 2.3 | 0.84 | ||
Leixoes | 1.61 ± 0.20 | −8.2± 1.0 | 21.1 ± 2.1 | −0.10 ± 0.05 | 0.81 | ||
Cascais | 1.62 ± 0.19 | −11.3 ± 1.0 | −5.1 ± 1.4 | 4.0 ± 1.2 | 0.07 ± 0.04 | 0.84 | |
Arrecife | 0.59 ± 0.16 | −9.6 ± 1.8 | 0.11 ± 0.07 | 0.46 | |||
Las Palmas | |||||||
Tenerife | 1.59 ± 0.12 | −12.1 ± 1.3 | 0.14 ± 0.07 | 0.07 ± 0.06 | 0.83 | ||
Cádiz | 2.62 ± 0.21 | −12.1 ± 1.8 | −10.0 ± 2.5 | 6 ± 3 | 0.75 | ||
Tarifa | 1.38 ± 0.21 | −12.7 ± 2.0 | −7.9 ± 2.1 | 15 ± 7 | 0.22 ± 0.11 | 0.22 ± 0.05 | 0.64 |
Algeciras | 1.00 ± 0.14 | −11.8 ± 1.2 | −6.9 ± 1.3 | 13 ± 4 | 0.09 ± 0.03 | 0.72 | |
Gibraltar | −0.18 ± 0.16 | −10.7 ± 1.5 | −6.2 ± 1.7 | 18 ± 5 | 0.22 ± 0.08 | 0.17 ± 0.04 | 0.62 |
Ceuta | 0.89 ± 0.15 | −12.7 ± 1.3 | 13 ± 5 | 0.13 ± 0.06 | 0.70 | ||
Málaga | 1.40 ± 0.19 | −14.1 ± 1.3 | −11.7 ± 1.8 | 0.10 ± 0.09 | 0.17 ± 0.05 | 0.71 | |
Alicante | 0.82 ± 0.17 | −13.6 ± 1.0 | −6.2 ± 1.8 | 7 ± 3 | 0.76 | ||
L’Estartit | |||||||
Palma |
Period | Coefficients ± 95% CI of the Linear Model for Sea Level from Tide Gauges and Altimetry | ||||||
---|---|---|---|---|---|---|---|
1993–2019 | Time b | Pressure b1 | U-Wind b2 | V-Wind b3 | Thermost. b4 | Halost. b5 | R |
Location | mm/yr | mm/mbar | mm/ms−1 | mm/ms−1 | |||
Santander Tide gauge Altimetry | 2.0 ± 0.8 2.56 ± 0.25 | −10.0 ± 0.9 1.3 ± 0.6 | 10.2 ± 2.0 2.4 ± 1.3 | 11.7 ± 2.5 6.4 ± 1.6 | 0.19 ± 0.11 0.19 ± 0.07 | 0.10 ± 0.07 0.09 ± 0.05 | 0.92 0.83 |
Vigo Tide gauge Altimetry | 1.4 ± 0.9 2.9 ± 0.3 | −11.6 ± 1.4 | −9 ± 3 −4.8 ± 1.4 | 18 ± 3 6.1 ± 1.4 | 0.27 ± 0.15 0.13 ± 0.07 | 0.19 ± 0.13 0.10 ± 0.06 | 0.83 0.81 |
A Coruña Tide gauge Altimetry | 3.0 ± 0.9 2.69 ± 0.25 | −9.3 ± 1.6 0.8 ± 0.6 | −4 ± 3 −1.4 ± 1.3 | 18 ± 4 5.2 ± 1.4 | 0.27 ± 0.19 0.12 ± 0.07 | 0.18 ± 0.17 0.08 ± 0.06 | 0.79 0.82 |
Leixoes Tide gauge Altimetry | 1.3 ± 0.8 3.07 ± 0.25 | −8.3 ± 1.4 1.2 ± 0.7 | 21 ± 3 5.7 ± 1.4 | 0.12 ± 0.06 | 0.08 ± 0.05 | 0.83 0.84 | |
Cascais Tide gauge Altimetry | 3.8 ± 0.5 2.8 ± 0.3 | −8.7 ± 1.0 | −5.8 ± 1.4 −3.1 ± 1.1 | 4.6 ± 1.3 4.6 ± 1.0 | 0.89 0.80 | ||
Arrecife Tide gauge Altimetry | 1.4 ± 0.5 3.0 ± 0.3 | −7.7 ± 2.1 | 3.8 ± 2.4 | 0.19 ± 0.08 | 0.13 ± 0.08 | 0.60 0.78 | |
Las Palmas Tide gauge Altimetry | 3.3 ± 0.5 2.9 ± 0.3 | −9.7 ± 1.8 | 4.2 ± 2.2 | 0.26 ± 0.09 0.18 ± 0.08 | 0.13 ± 0.08 0.11 ± 0.07 | 0.85 0.78 | |
Tenerife Tide gauge Altimetry | 3.7 ± 0.5 3.1 ± 0.3 | −12 ± 2 −3.6 ± 1.8 | −3.5 ± 2.2 | 0.21 ± 0.12 0.25 ± 0.09 | 0.10 ± 0.10 0.15 ± 0.08 | 0.79 0.78 | |
Cádiz Tide gauge Altimetry | 1.3 ± 0.9 3.2 ± 0.3 | −9.9 ± 2.5 | −8 ± 3 −3.4 ± 1.2 | 11 ± 5 7.0 ± 1.5 | 0.09 ± 0.06 | −0.13 ± 0.08 0.04 ± 0.03 | 0.63 0.83 |
Tarifa Tide gauge Altimetry | 4.7 ± 0.7 2.5 ± 0.3 | −12.2 ± 1.7 | −7.3 ± 1.7 −2.6 ± 1.1 | 25 ± 6 18 ± 3 | 0.04 ± 0.04 | 0.89 0.77 | |
Algeciras Tide gauge Altimetry | 2.3 ± 0.6 2.4 ± 0.4 | −10.5 ± 1.6 −1.5 ± 1.5 | −5.5 ± 1.6 −3.4 ± 1.5 | 22 ± 6 16 ± 5 | 0.08 ± 0.03 | 0.83 0.68 | |
Gibraltar Tide gauge Altimetry | 4.7 ± 0.6 2.4 ± 0.4 | −10.8 ± 2.0 −1.5 ± 1.5 | −7.2 ± 2.0 −3.4 ± 1.5 | 23 ± 7 16 ± 5 | 0.84 0.68 | ||
Ceuta Tide gauge Altimetry | 1.9 ± 0.6 2.4 ± 0.4 | −12.1 ± 1.6 | −1.9 ± 1.5 | 18 ± 6 20 ± 5 | 0.08 ± 0.06 | 0.81 0.66 | |
Málaga Tide gauge Altimetry | 3.7 ± 0.7 4.1 ± 0.4 | −12.1 ± 1.8 | 12.3 ± 2.1 −4.4 ± 1.6 | 8 ± 5 13 ± 4 | 0.06 ± 0.06 | 0.15 ± 0.04 | 0.84 0.79 |
Alicante Tide gauge Altimetry | 2.0 ± 0.8 3.0 ± 0.3 | −10.3 ± 1.6 −3.0 ± 1.1 | −3.1 ± 1.8 | 5.4 ± 3.0 | 0.63 0.77 | ||
L’Estartit Tide gauge Altimetry | 2.7 ± 0.8 2.7 ± 0.3 | −13.5 ± 1.0 −2.9 ± 0.7 | −8 ± 3 | 4.2 ± 2.1 3.3 ± 1.3 | 0.27 ± 0.14 0.3 ± 0.1 | 0.22 ± 0.12 0.25 ± 0.09 | 0.88 0.79 |
Palma Tide gauge Altimetry | 2.0 ± 1.1 2.0 ± 1.1 | −9.7 ± 2.0 −2.3 ± 1.1 | 6 ± 3 | 0.34 ± 0.14 | 0.28 ± 0.23 | 0.58 0.58 |
Period | Contributions to Sea Level Trends from Tide Gauges. | |||||
---|---|---|---|---|---|---|
1948–2019 | Mass Add. | Pressure | U-Wind | V-Wind | Thermost. | Halost. |
Location | mm/yr | mm/yr | mm/yr | mm/yr | mm/yr | mm/yr |
Santander | 2.1 ± 0.4 | −0.20 ± 0.10 | 0.05 ± 0.04 | 0.10 ± 0.07 | ||
Vigo | 2.9 ± 0.4 | −0.22 ± 0.13 | ||||
A Coruña | 2.5 ± 0.3 | −0.18 ± 0.11 | ||||
Leixoes | 2.0 ± 0.4 | −0.18 ± 0.08 | −0.18 ± 0.10 | |||
Cascais | 1.9 ± 0.4 | −0.22 ± 0.11 | 0.08 ± 0.09 | −0.09 ± 0.05 | ||
Arrecife | 0.82 ± 0.23 | −0.22 ± 0.07 | ||||
Las Palmas | ||||||
Tenerife | 1.7 ± 0.3 | −0.20 ± 0.07 | 0.17 ± 0.08 | −0.02 ± 0.02 | ||
Cádiz | 2.8 ± 0.4 | −0.23 ± 0.11 | 0.06 ± 0.06 | |||
Tarifa | 1.6 ± 0.5 | −0.27 ± 0.10 | 0.33 ± 0.16 | −0.27 ± 0.09 | ||
Algeciras | 1.4 ± 0.3 | −0.25 ± 0.08 | −0.11 ± 0.04 | |||
Gibraltar | −0.1 ± 0.4 | −0.22 ± 0.08 | 0.32 ± 0.12 | −0.20 ± 0.07 | ||
Ceuta | 1.0 ± 0.3 | −0.26 ± 0.09 | 0.19 ± 0.09 | |||
Málaga | 1.8 ± 0.5 | −0.29 ± 0.12 | 0.16 ± 0.13 | −0.26 ± 0.08 | ||
Alicante | 1.1 ± 0.3 | −0.25 ± 0.13 | −0.04 ± 0.03 | |||
L’Estartit | ||||||
Palma |
Period | Contributions to Sea Level Trends from Tide Gauges and Altimetry. | |||||
---|---|---|---|---|---|---|
1993–2019 | Mass Add. | Pressure | U-Wind | V-Wind | Thermost. | Halost. |
Location | mm/yr | mm/yr | mm/yr | mm/yr | mm/yr | mm/yr |
Santander Tide gauge Altimetry | 2.3 ± 1.4 2.6 ± 0.5 | −0.22 ±.0.22 −0.05 ± 0.06 | −0.24 ± 0.21 −0.13 ± 0.12 | 0.16 ± 0.13 −0.14 ± 0.09 | ||
Vigo Tide gauge Altimetry | 1.2 ± 1.1 2.8 ± 0.4 | 0.24 ± 0.24 0.12 ± 0.12 | ||||
A Coruña Tide gauge Altimetry | 2.6 ± 1.4 2.5 ± 0.4 | 0.3 ± 0.3 0.14 ± 0.11 | 0.14 ± 0.18 0.06 ± 0.07 | |||
Leixoes Tide gauge Altimetry | 2.0 ± 1.2 3.2 ± 0.5 | −0.7 ± 0.4 −0.19 ± 0.12 | 0.08 ± 0.09 | |||
Cascais Tide gauge Altimetry | 4.0 ± 0.6 3.0 ± 0.4 | −0.21 ± 0.15 −0.21 ± 0.14 | ||||
Arrecife Tide gauge Altimetry | 1.5 ± 0.6 2.9 ± 0.4 | −0.10 ± 0.11 | 0.12 ± 0.11 | |||
Las Palmas Tide gauge Altimetry | 3.0 ± 0.7 2.8 ± 0.4 | 0.09 ± 0.09 | 0.21 ± 0.16 0.14 ± 0.11 | |||
Tenerife Tide gauge Altimetry | 3.3 ± 0.8 2.8 ± 0.6 | −0.07 ± 0.08 | 0.32 ± 0.21 0.38 ± 0.18 | |||
Cádiz Tide gauge Altimetry | 2.1 ± 1.5 3.3 ± 0.6 | −0.4 ± 0.3 −0.24 ± 0.14 | −0.10 ± 0.14 0.06 ± 0.07 | −0.4 ± 0.3 0.11 ± 0.10 | ||
Tarifa Tide gauge Altimetry | 4.6 ± 0.7 2.5 ± 0.3 | 0.06 ± 0.07 | ||||
Algeciras Tide gauge Altimetry | 2.1 ± 0.7 2.4 ± 0.4 | 0.12 ± 0.11 | ||||
Gibraltar Tide gauge Altimetry | 4.7 ± 0.6 2.4 ± 0.4 | |||||
Ceuta Tide gauge Altimetry | 1.7 ± 0.7 2.4 ± 0.4 | 0.19 ± 0.15 | ||||
Málaga Tide gauge Altimetry | 4.1 ± 1.0 4.1 ± 0.7 | −0.4 ± 0.3 −0.13 ± 0.12 | 0.14 ± 0.15 | |||
Alicante Tide gauge Altimetry | 2.0 ± 0.8 3.0 ± 0.3 | |||||
L’Estartit Tide gauge Altimetry | 3.3 ± 1.9 3.4 ± 1.2 | 0.8 ± 0.4 0.8 ± 0.3 | −1.4 ± 0.7 −1.5 ± 0.6 | |||
Palma Tide gauge Altimetry | 3.7 ± 2.5 0.7 ± 1.2 | 1.3 ± 0.6 | −1.6 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Yáñez, M.; Tel, E.; Marcos, M.; Moya, F.; Ballesteros, E.; Alonso, C.; García-Martínez, M.C. Factors Contributing to the Long-Term Sea Level Trends in the Iberian Peninsula and the Balearic and Canary Islands. Geosciences 2023, 13, 160. https://doi.org/10.3390/geosciences13060160
Vargas-Yáñez M, Tel E, Marcos M, Moya F, Ballesteros E, Alonso C, García-Martínez MC. Factors Contributing to the Long-Term Sea Level Trends in the Iberian Peninsula and the Balearic and Canary Islands. Geosciences. 2023; 13(6):160. https://doi.org/10.3390/geosciences13060160
Chicago/Turabian StyleVargas-Yáñez, Manuel, Elena Tel, Marta Marcos, Francina Moya, Enrique Ballesteros, Cristina Alonso, and M. Carmen García-Martínez. 2023. "Factors Contributing to the Long-Term Sea Level Trends in the Iberian Peninsula and the Balearic and Canary Islands" Geosciences 13, no. 6: 160. https://doi.org/10.3390/geosciences13060160
APA StyleVargas-Yáñez, M., Tel, E., Marcos, M., Moya, F., Ballesteros, E., Alonso, C., & García-Martínez, M. C. (2023). Factors Contributing to the Long-Term Sea Level Trends in the Iberian Peninsula and the Balearic and Canary Islands. Geosciences, 13(6), 160. https://doi.org/10.3390/geosciences13060160