The Coastal Areas of the Bay of Naples: The Sedimentary Dynamics and Geological Evolution of the Naples Canyons
Abstract
:1. Introduction
- (i)
- If the canyon exhibits an actual connection with a fluvial system [26];
- (ii)
- (iii)
- If the canyon apex is located within 5 km of a fluvial outlet.
2. Geologic Setting
3. Materials and Methods
4. Results
4.1. Morpho-Bathymetric Data
4.2. Sedimentological Data
4.3. Seismo-Stratigraphic Data
5. Discussion
- (1)
- The erosion of the pre-canyon channels, which starts in peculiar sites of the upper slope, where the slope gradient exceeds critical values due to the high rates of sedimentation;
- (2)
- The localized failures of the slope on the walls and on the bottom of the pre-canyon channels, in one or more sites of the intermediate and lower slope, triggered by the erosion of sediment fluxes;
- (3)
- The evolution of the slope failures in a canyon with a retreating head, advancing upwards on the slope along the pre-canyon channels, due to the retrogressive slides induced by sediment fluxes.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harris, P.T.; Whiteway, T. Global distribution of large submarine canyons. Geomorphic differences between active and passive continental margins. Mar. Geol. 2011, 285, 69–86. [Google Scholar] [CrossRef]
- Harris, P.T.; McMillan Lawler, M.; Rupp, J.; Baker, E.K. Geomorphology of the oceans. Mar. Geol. 2014, 352, 4–24. [Google Scholar] [CrossRef]
- Harris, P.T.; McMillan Lawler, M. Geomorphology of Mediterranean submarine canyons in a global context—Results from a multivariate analysis of canyon geomorphic statistics. In Submarine Canyon Dynamics in the Mediterranean and Tributary Seas—An Integrated Geological, Oceanographic and Biological Perspective, 1st ed.; Briand, F., Ed.; CIESM Publisher: Monaco, Monaco, 2015; Volume 47, pp. 23–25. [Google Scholar]
- Fildani, A. Submarine canyons: A brief review looking forward. Geology 2017, 45, 383–384. [Google Scholar] [CrossRef] [Green Version]
- Di Vito, M.A.; Isaia, R.; Orsi, G.; Southon, J.; De Vita, S.; D’Antonio, M.; Pappalardo, L.; Piochi, M. Volcanic and deformational history of the Campi Flegrei caldera in the past 12 ka. J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [Google Scholar] [CrossRef]
- Deino, A.L.; Orsi, G.; De Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- Aiello, G.; Insinga, D.; Iorio, M.; Meo, A.; Senatore, M.R. On the occurrence of the Neapolitan Yellow Tuff tephra in the Northern Phlegraean Fields offshore (Eastern Tyrrhenian margin; Italy). Ital. J. Geosci. 2017, 136, 263–274. [Google Scholar] [CrossRef]
- Milia, A. The Dohrn canyon: A response to the eustatic fall and tectonic uplift of the outer shelf along the eastern Tyrrhenian sea margin, Italy. Geo-Mar. Lett. 2000, 20, 101–108. [Google Scholar] [CrossRef]
- Pratson, L.F.; Coakley, B.J. A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows. Geol. Soc. Am. Bull. 1996, 108, 225–234. [Google Scholar] [CrossRef]
- Pratson, L.F.; Nittrouer, C.A.; Wilberg, P.L.; Steckler, M.S.; Swenson, J.B.; Cacchione, D.A.; Karson, J.A.; Murray, A.B.; Wolinsky, M.A.; Gerber, T.P.; et al. Seascape evolution on clastic continental shelves and slopes. In Continental Margin Sedimentation: From Sediment Transport to Sequence Stratigraphy, 1st ed.; Nittrouer, C.A., Austin, J.A., Field, M.E., Kravitz, J.H., Syvitski, J.P.M., Wilberg, P.L., Eds.; Wiley: New York, NY, USA, 2007; pp. 339–380. [Google Scholar]
- Puig, P.; Palanques, A.; Martin, J. Contemporary sediment-transport processes in submarine canyons. Annu. Rev. Mar. Sci. 2014, 6, 53–77. [Google Scholar] [CrossRef]
- Amblas, D.; Ceramicola, S.; Gerber, T.P.; Canals, M.; Chiocci, F.L.; Dowdeswell, J.A.; Harris, P.T.; Huvenne, V.A.I.; Lai, S.Y.J.; Lastras, G.; et al. Submarine canyons and gullies. In Submarine Geomorphology, 1st ed.; Micallef, A., Krastel, S., Savini, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 251–272. [Google Scholar]
- Matos, F.L.; Ross, S.W.; Huvenne, V.A.I.; Davies, J.S.; Cunha, M.R. Canyons pride and prejudice: Exploring the submarine canyon research landscape, a history of geographic and thematic bias. Prog. Oceanogr. 2018, 169, 6–19. [Google Scholar] [CrossRef]
- Bührig, L.H.; Colombera, L.; Patacci, M.; Mountney, N.P.; McCaffrey, W.D. A global analysis of controls on submarine-canyon geomorphology. Earth Sci. Rev. 2022, 233, 104150. [Google Scholar] [CrossRef]
- Li, S.; Alves, T.M.; Li, W.; Wang, X.; Rebesco, M.; Li, J.; Zhao, F.; Yu, K.; Wu, S. Morphology and evolution of submarine canyons on the northwest South China Sea margin. Mar. Geol. 2022, 443, 106695. [Google Scholar] [CrossRef]
- Chiocci, F.L.; Orlando, L.; Tortora, P. Small-scale seismic stratigraphy and paleogeographical evolution of the continental shelf facing the SE Elba island (Northern Tyrrhenian Sea, Italy). J. Sediment. Res. 1991, 61, 506–526. [Google Scholar]
- Druckman, Y.; Buchbinder, B.; Martinotti, G.M.; Siman Tov, R.; Aharon, P. The buried Afiq canyon (eastern Mediterranean, Israel): A case study of a Tertiary submarine canyon exposed in Late Messinian times. Mar. Geol. 1995, 123, 167–185. [Google Scholar] [CrossRef]
- De Pippo, T.; Ilardi, M.; Pennetta, M. Main observations on genesis and morphological evolution of submarine valleys. Zeitsch Fur Geomorphol. 1999, 43, 91–111. [Google Scholar] [CrossRef]
- Hernandez-Molina, F.; Somoza, L.; Lobo, F. Seismic stratigraphy of the Gulf of Cadiz continental shelf. A model for Late Quaternary very high resolution sequence stratigraphy and response to sea level fall. In Sedimentary Responses to Forced Regressions; Geological Society of London: London, UK, 2000; Volume 172, pp. 329–362. [Google Scholar]
- Lericolais, G.; Auffret, M.; Bourillet, J.F. The Quaternary Channel River: Seismic stratigraphy of its palaeo-valleys and deeps. J. Quat. Sci. 2003, 18, 245–260. [Google Scholar] [CrossRef]
- Bourillet, F.; Zaragosi, S.; Mulder, T. The French Atlantic margin and deep sea submarine systems. Geo-Mar. Lett. 2006, 26, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Collier, J.S.; Felgate, A.P.; Potter, G. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 2007, 448, 342–345. [Google Scholar] [CrossRef]
- Toucanne, S.; Zaragosi, S.; Bourillet, J.F.; Marieu, V.; Cremer, M.; Kageyama, M.; Van Vliet Lanoe, B.; Eynaud, F.; Turon, J.L.; Gibbard, P.L. The first estimation of Fleuve Manche palaeoriver discharge during the last deglaciation: Evidence for Fennoscandian ice sheet meltwater flow in the English Channel ca 20–18 ka ago. Earth Planet. Sci. Lett. 2010, 290, 459–473. [Google Scholar] [CrossRef] [Green Version]
- Molisso, F.; Caccavale, M.; Capodanno, M.; Di Gregorio, C.; Gilardi, M.; Guarino, A.; Oliveri, E.; Tamburrino, S.; Sacchi, M. Sedimentological analysis of marine deposits off the Bagnoli-Coroglio Site of National Interest (SNI), Pozzuoli (Napoli) Bay. Chem. Ecol. 2020, 36, 565–578. [Google Scholar] [CrossRef]
- Sacchi, M.; Caccavale, M.; Corradino, M.; Esposito, G.; Ferranti, L.; Hamori, Z.; Horvath, F.; Insinga, D.; Marino, C.; Matano, F.; et al. The use and beauty of ultra-high resolution seismic reflection imaging in late quaternary volcaniclastic settings, bay of Naples, Italy/Ultra nagy felbontású reflexiós szeizmikus képalkotás haszna és szépségei: Késo-negyedidoszaki tengeri vulkanoklasztos felépítménvek a Nápolvi-Obölben. Foldt. Kozlony 2019, 149, 371–394. [Google Scholar]
- Puig, P.; Duran, R.; Munoz, A.; Elvira, E.; Guill’en, J. Submarine canyon-head morphologies and inferred sediment transport processes in the Alías-Almanzora canyon system (SW Mediterranean): On the role of the sediment supply. Mar. Geol. 2017, 393, 21–34. [Google Scholar] [CrossRef]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef] [Green Version]
- Rohling, E.J.; Braun, K.; Grant, K.; Kucera, M.; Roberts, A.P.; Siddall, M.; Trommer, G. Comparison between Holocene and Marine Isotope Stage-11 sea-level histories. Earth Planet. Sci. Lett. 2010, 291, 97–105. [Google Scholar] [CrossRef]
- Dutton, A.; Lambeck, K. Ice Volume and Sea Level During the Last Interglacial. Science 2012, 337, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocchi, P.; Vacchi, M.; Lorscheid, T.; de Boer, B.; Simms, A.R.; van de Wal, R.S.W.; Vermeersen, B.L.A.; Pappalardo, M.; Rovere, A. MIS 5e relative sea-level changes in the Mediterranean Sea: Contribution of isostatic disequilibrium. Quat. Sci. Rev. 2018, 185, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Aiello, G.; Iorio, M.; Molisso, F.; Sacchi, M. Integrated Morpho-Bathymetric, Seismic-Stratigraphic, and Sedimentological Data on the Dohrn canyon (Naples Bay, Southern Tyrrhenian Sea): Relationships with Volcanism and Tectonics. Geosciences 2020, 10, 319. [Google Scholar] [CrossRef]
- Fusi, N.; Mirabile, L.; Camerlenghi, A.; Ranieri, G. Marine geophysical survey of the Gulf of Naples (Italy): Relationship between submarine volcanic activity and sedimentation. Mem. Soc. Geol. Ital. 1991, 47, 95–114. [Google Scholar]
- Mirabile, L.; De Marinis, E.; Frattini, M. The Phlegrean Fields beneath the sea: The underwater volcanic district of Naples, Italy. Boll. Geof. Teor. Appl. 2000, 41, 159–186. [Google Scholar]
- Aiello, G.; Budillon, F.; Cristofalo, G.; D’Argenio, B.; De Alteriis, G.; De Lauro, M.; Ferraro, L.; Marsella, E.; Pelosi, N.; Sacchi, M.; et al. Marine Geology and Morphobathymetry in the Bay of Naples (South-Eastern Tyrrhenian Sea, Italy). In Mediterranean Ecosystems, 1st ed.; Faranda, F.M., Guglielmo, L., Spezie, G., Eds.; Springer: Milano, Italy, 2001; pp. 1–8. [Google Scholar]
- D’Argenio, B.; Aiello, G.; de Alteriis, G.; Milia, A.; Sacchi, M.; Tonielli, R.; Budillon, F.; Chiocci, F.L.; Conforti, A.; De Lauro, M.; et al. Digital Elevation Model of the Naples Bay and surrounding areas, Eastern Tyrrhenian sea, Italy. In Mapping Geology in Italy; Pasquarè, C., Venturini, C., Groppelli, G., Eds.; SELCA: Firenze, Italy, 2004; pp. 3–10. [Google Scholar]
- Passaro, S.; Tamburrino, S.; Vallefuoco, M.; Tassi, F.; Vaselli, O.; Giannini, L.; Chiodini, G.; Caliro, S.; Sacchi, M.; Rizzo, A.; et al. Seafloor doming driven by degassing processes unveils sprouting volcanism in coastal areas. Sci. Rep. 2016, 6, 22448. [Google Scholar] [CrossRef]
- Ruggieri, S.; Aiello, G.; Marsella, E. Integrated marine geophysical data interpretation of the Naples Bay continental slope (southern Tyrrhenian sea, Italy). Boll. Geof. Teor. Appl. 2007, 48, 1–24. [Google Scholar]
- Aiello, G.; Marsella, E.; D’Isanto, C. Sistemi deposizionali di ambiente marino profondo ed instabilità gravitative sottomarine: Esempi di studio sulla scarpata sottomarina della Campania in base all’interpretazione integrata di dati di geofisica marina. Atti Associaz. Ital. Oceanol. E Limnol. 2008, 19, 9–20. [Google Scholar]
- Aiello, G.; Marsella, E.; Passaro, S. Submarine instability processes on the continental slopes off the Campania region (Southern Tyrrhenian sea, Italy): The case history of Ischia island (Naples Bay). Boll. Geof. Teor. Appl. 2009, 50, 193–207. [Google Scholar]
- Di Fiore, V.; Aiello, G.; D’Argenio, B. Gravity instabilities in the Dohrn Canyon (Bay of Naples, Southern Tyrrhenian Sea): Potential wave and run-up (tsunami) reconstruction from a fossil submarine landslide. Geol. Carpathica 2011, 62, 55–63. [Google Scholar] [CrossRef]
- Locardi, E. Individuazione delle strutture sismogenetiche dall’esame dell’evoluzione vulcano-tettonica dell’Appennino e del Tirreno. Mem. Soc. Geol. Ital. 1982, 24, 569–596. [Google Scholar]
- Ferranti, L.; Oldow, J.S. Pre-Quaternary orogen-parallel extension in the Southern Apennine belt, Italy. Tectonophysics 1996, 260, 325–347. [Google Scholar] [CrossRef]
- Corrado, S.; Di Bucci, D.; Leschiutta, I.; Naso, G.; Trigari, A. La tettonica quaternaria della Piana d’Isernia nell’evoluzione strutturale del settore molisano. Il Quat. 1997, 10, 609–614. [Google Scholar]
- Bruno, P.P.G.; Rapolla, A.; Di Fiore, V. Structural setting of the Bay of Naples (Italy) through seismic reflection data: Implications for Campanian volcanism. Tectonophysics 2003, 372, 193–213. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Scarpa, R. Faulting geometry of the complex 1980 Campania-Lucania earthquake from leveling data. Geophys. J. Int. 2005, 162, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Milano, G.; Di Giovanbattista, R.; Ventura, G. Seismic activity in the transition zone between Southern and Central Apennines (Italy): Evidence of longitudinal extension inside the Ortona-Roccamonfina tectonic line. Tectonophysics 2008, 457, 102–110. [Google Scholar] [CrossRef]
- Barberi, F.; Cassano, E.; La Torre, P.; Sbrana, A. Structural evolution of Campi Flegrei caldera in light of volcanological and geophysical data. J. Volcanol. Geotherm. Res. 1991, 48, 33–49. [Google Scholar] [CrossRef]
- Cosentino, D.; De Rita, D.; Funiciello, R.; Parotto, M.; Salvini, F.; Vittori, E. Fracture System in Phlegrean Fields (Naples, Southern Italy). Bull. Volcanol. 1984, 47, 247–257. [Google Scholar] [CrossRef]
- Di Girolamo, P.; Ghiara, M.R.; Lirer, L.; Munno, R.; Rolandi, G.; Stanzione, D. Vulcanologia e petrologia dei Campi Flegrei. Boll. Soc. Geol. Ital. 1984, 103, 349–413. [Google Scholar]
- Cinque, A.; Rolandi, G.; Zamparelli, V. L’estensione dei depositi marini olocenici nei Campi Flegrei in relazione alla vulcanotettonica. Boll. Soc. Geol. Ital. 1985, 104, 327–348. [Google Scholar]
- Rosi, M.; Sbrana, A. Phlegrean Fields. In Quaderni de La Ricerca Scientifica; CNR: Rome, Italy, 1987. [Google Scholar]
- Scandone, R.; Bellucci, F.; Lirer, L.; Rolandi, G. The structure of the Campanian Plain and the activity of the Neapolitan volcanoes. J. Volcanol. Geotherm. Res. 1991, 48, 1–31. [Google Scholar] [CrossRef]
- Orsi, G.; De Vita, S.; Di Vito, M.A. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and its configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [Google Scholar] [CrossRef]
- Acocella, V.; Funiciello, R.; Marotta, E.; Orsi, G.; De Vita, S. The role of extensional structures on experimental calderas and resurgence. J. Volcanol. Geotherm. Res. 2004, 129, 199–217. [Google Scholar] [CrossRef]
- Marianelli, P.; Sbrana, A.; Proto, M. Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 2006, 34, 937–940. [Google Scholar] [CrossRef]
- Perrotta, A.; Scarpati, C.; Luongo, G.; Morra, V. The Campi Flegrei caldera boundary in the city of Naples. In Volcanism in the Campania Plain: Vesuvius, Campi Flegrei and Ignimbrites, 1st ed.; De Vivo, B., Ed.; Elsevier Science Publishers: Amsterdam, The Netherlands, 2006; pp. 85–96. [Google Scholar]
- Pyle, D.M.; Rickett, G.D.; Margari, V.; van Andel, T.H.; Sinitsyn, A.A.; Praslov, N.D.; Lisitsyn, S. Wide dispersal and deposition of distal tephra during the Pleistocene ‘Campanian Ignimbrite/Y5’ eruption, Italy. Quat. Sci. Rev. 2006, 25, 2713–2728. [Google Scholar] [CrossRef]
- Fedele, F.; Giaccio, B.; Hajdas, I. Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. J. Hum. Evol. 2008, 55, 834–857. [Google Scholar] [CrossRef]
- Giaccio, B.; Isaia, R.; Fedele, F.G.; Di Canzio, E.; Hoffecker, J.; Ronchitelli, A.; Sinitsyn, A.A.; Anikovich, M.; Lisitsyn, S.; Popov, V.V. The Campanian Ignimbrite and Codola tephra layers: Two temporal/stratigraphic markers for the Early Upper Palaeolithic in southern Italy and eastern Europe. J. Volcanol. Geotherm. Res. 2008, 177, 208–226. [Google Scholar] [CrossRef] [Green Version]
- Scarpati, C.; Perrotta, A.; Cole, P.D. The Neapolitan Yellow Tuff—A large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull. Volcanol. 1993, 55, 343–356. [Google Scholar] [CrossRef]
- Pappalardo, L.; Civetta, L.; D’Antonio, M.; Deino, A.; Di Vito, M.A.; Orsi, G.; Carandente, A.; De Vita, S.; Isaia, R.; Piochi, M. Chemical and Sr-isotopical evolution of the Phlegraean magmatic system before the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J. Volcanol. Geotherm. Res. 1999, 91, 141–166. [Google Scholar] [CrossRef]
- Sacchi, M.; Pepe, F.; Corradino, M.; Insinga, D.D.; Molisso, F.; Lubritto, C. The Neapolitan Yellow Tuff caldera offshore the Campi Flegrei: Stratalarchitecture and kinematic reconstruction during the last 15 ky. Mar. Geol. 2014, 354, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Forni, F.; Petricca, E.; Bachmann, O.; Mollo, S.; De Astis, G.; Piochi, M. The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy). Contrib. Mineral. Petrol. 2018, 173, 45. [Google Scholar] [CrossRef]
- Rolandi, G.; Di Lascio, M.; Rolandi, R. The Neapolitan Yellow Tuff eruption as the source of the Campi Flegrei caldera. In Vesuvius, Campi Flegrei, and Campanian Volcanism, 1st ed.; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 2020; pp. 273–296. [Google Scholar]
- Corradino, M.; Pepe, F.; Sacchi, M.; Solaro, G.; Duarte, H.; Ferranti, L.; Zinno, I. Resurgent uplift at large calderas and relationship to caldera-forming faults and the magma reservoir: New insights from the Neapolitan Yellow Tuff caldera (Italy). J. Volcanol. Geotherm. Res. 2021, 411, 107183. [Google Scholar] [CrossRef]
- Mariani, M.; Prato, R. Neogenic coastal basins of Tyrrhenian margin: Seismo-stratigraphic approach. Mem. Soc. Geol. Ital. 1988, 41, 519–531. [Google Scholar]
- Brancaccio, L.; Cinque, A.; Romano, P.; Rosskopf, C.; Russo, F.; Santangelo, N.; Sgrosso, I. Geomorphology and neotectonic evolution of a sector of the Tyrrhenian flank of the southern Apennines (region of Naples, Italy). Zeitsch Fur Geomorphol. 1991, 82, 47–58. [Google Scholar]
- Barra, D.; Romano, P.; Santo, A.; Campaiola, L.; Roca, V.; Tuniz, C. The Versilian transgression in the Volturno river plain (Campania, southern Italy): Palaeoenvironmental history and geochronological data. Il Quat. 1996, 9, 327–332. [Google Scholar]
- Barra, D.; Calderoni, G.; Cinque, A.; De Vita, P.; Rosskopf, C.; Russo Ermolli, E. New data on the evolution of the Sele river coastal plain (Southern Italy) during the Holocene. Il Quat. 1998, 11, 287–299. [Google Scholar]
- Amato, V.; Aucelli, P.; Ciampo, G.; Cinque, A.; Di Donato, V.; Pappone, G.; Petrosino, P.; Romano, P.; Rosskopf, C.; Russo Ermolli, E. Relative sea level changes and palaeogeographical evolution of the southern Sele Plain (Italy) during the Holocene. Quatern. Intern. 2013, 288, 112–128. [Google Scholar] [CrossRef]
- Amorosi, A.; Pacifico, A.; Rossi, V.; Ruberti, D. Late Quaternary incision and deposition in an active volcanic setting: The Volturno valley fill, southern Italy. Sedim. Geol. 2012, 282, 307–320. [Google Scholar] [CrossRef]
- Amorosi, A.; Molisso, F.; Pacifico, A.; Rossi, V.; Ruberti, D.; Sacchi, M.; Vigliotti, M. The Holocene evolution of the Volturno river coastal plain (Southern Italy). J. Mediterr. Earth Sci. 2013, 11, 7–11. [Google Scholar]
- Santangelo, N.; Romano, P.; Ascione, A.; Russo Ermolli, E. Quaternary evolution of the Southern Apennines coastal plains: A review. Geol. Carpath. 2017, 68, 43–56. [Google Scholar] [CrossRef] [Green Version]
- Bartole, R.; Savelli, D.; Tramontana, M.; Wezel, F.C. Structural and sedimentary features in the Tyrrhenian margin off Campania. Mar. Geol. 1984, 55, 163–180. [Google Scholar] [CrossRef]
- Argnani, A.; Trincardi, F. Paola slope basin: Evidence of regional contraction on the Eastern Tyrrhenian margin. Mem. Soc. Geol. Ital. 1990, 44, 93–105. [Google Scholar]
- Agate, M.; Catalano, R.; Infuso, S.; Lucido, M.; Mirabile, L.; Sulli, A. Structural evolution of the Northern Sicily continental margin during the Plio-Pleistocene. In Geological Development of the Sicilian-Tunisian Platform, 1st ed.; Max, M.D., Colantoni, P., Eds.; Unesco: Paris, France, 1993; Volume 58, pp. 25–30. [Google Scholar]
- Hyppolite, J.C.; Angelier, J.; Barrier, M. Compressional and extensional tectonics in an arc system: Example of the Southern Apennines. J. Struct. Geol. 1995, 17, 1725–1740. [Google Scholar] [CrossRef]
- Aiello, G.; Marsella, E.; Sacchi, M. Quaternary structural evolution of Terracina and Gaeta basins (Eastern Tyrrhenian margin, Italy). Rend. Lincei 2000, 11, 41–58. [Google Scholar] [CrossRef]
- Caiazzo, C.; Ascione, A.; Cinque, A. Late Tertiary-Quaternary tectonics of the Southern Apennines (Italy): New evidences from the Tyrrhenian slope. Tectonophysics 2006, 421, 23–51. [Google Scholar] [CrossRef]
- D’Argenio, B.; Pescatore, T.; Scandone, P. Schema geologico dell’Appennino meridionale. In Atti del Convegno Moderne Vedute sulla Geologia Dell’appennino 1973; Accademia Nazionale dei Lincei: Rome, Italy, 1973; Volume 183, pp. 49–72. [Google Scholar]
- Bigi, G.; Bonardi, G.; Catalano, R.; Cosentino, D.; Lentini, F.; Parotto, M.; Sartori, R.; Scandone, P.; Turco, E. Structural Model of Italy, 1:500.000; Consiglio Nazionale delle Ricerche: Rome, Italy, 1992. [Google Scholar]
- Aiello, G. Submarine Stratigraphy of the Eastern Bay of Naples: New Seismo-Stratigraphic Data and Implications for the Somma-Vesuvius and Campi Flegrei Volcanic Activity. J. Mar. Sci. Eng. 2022, 10, 1520. [Google Scholar] [CrossRef]
- Aiello, G.; Sacchi, M. New morpho-bathymetric data on marine hazard in the offshore of Gulf of Naples (Southern Italy). Nat. Hazards 2022, 111, 2881–2908. [Google Scholar] [CrossRef]
- Milia, A.; Torrente, M.M. Late Quaternary volcanism and transtensional tectonics in the Bay of Naples, Campanian continental margin, Italy. Mineral. Petrol. 2003, 79, 49–65. [Google Scholar] [CrossRef]
- Sacchi, M.; Passaro, S.; Molisso, F.; Matano, F.; Steinmann, L.; Spiess, V.; Pepe, F.; Corradino, M.; Caccavale, M.; Tamburrino, S.; et al. The holocene marine record of unrest, volcanism, and hydrothermal activity of Campi Flegrei and Somma–Vesuvius. In Vesuvius, Campi Flegrei, and Campanian Volcanism, 1st ed.; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier Science Publishers: Amsterdam, The Netherlands, 2020; pp. 435–469. [Google Scholar]
- Sacchi, M.; Matano, F.; Molisso, F.; Passaro, S.; Caccavale, M.; Di Martino, G.; Guarino, A.; Innangi, S.; Tamburrino, S.; Tonielli, R.; et al. Geological framework of the Bagnoli–Coroglio coastal zone and continental shelf, Pozzuoli (Napoli) Bay. Chem. Ecol. 2020, 36, 529–549. [Google Scholar] [CrossRef]
- Passaro, S.; Sacchi, M.; Tamburrino, S.; Ventura, G. Fluid Vents, Flank Instability, and Seafloor Processes along the Submarine Slopes of the Somma-Vesuvius Volcano, Eastern Tyrrhenian Margin. Geosciences 2018, 8, 60. [Google Scholar] [CrossRef] [Green Version]
- Giaccio, B.; Hajdas, I.; Isaia, R.; Deino, A.; Nomade, S. High-precision 14C and 40Ar/39Ar dating of the Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic-cultural processes at 40 ka. Sci. Rep. 2017, 7, 45940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, P.; Di Vito, M.A.; Giampaola, D.; Cinque, A.; Bartoli, C.; Boenzi, G.; Di Marco, M.; Giglio, M.; Iodice, S.; Liuzza, V.; et al. Intersection of exogenous, endogenous and anthropogenic factors in the Holocene landscape: A study of the Naples coastline during the last 6000 years. Quat. Intern. 2013, 303, 107–119. [Google Scholar] [CrossRef]
- Vacchi, M.; Russo Ermolli, E.; Morhange, C.; Ruello, M.R.; Di Donato, V.; Di Vito, M.A.; Giampaola, D.; Carsana, V.; Liuzza, V.; Cinque, A.; et al. Millennial variability of rates of sea-level rise in the ancient harbour of Naples (Italy, western Mediterranean Sea). Quat. Res. 2020, 93, 284–298. [Google Scholar] [CrossRef]
- Fedele, L.; Morra, V.; Perrotta, A.; Scarpati, C. Carta Geologica Regionale alla Scala 1:10.000. Isole di Procida e Vivara (con Note Illustrative); Regione Campania, Settore Difesa del Suolo, Geotermia e Geotecnica: Napoli, Italy, 2012. [Google Scholar]
- Sacchi, M.; Insinga, D.; Milia, A.; Molisso, F.; Raspini, A.; Torrente, M.M.; Conforti, A. Stratigraphic signature of the Vesuvius 79 AD event off the Sarno prodelta system, Naples Bay. Mar. Geol. 2005, 222–223, 443–469. [Google Scholar] [CrossRef]
- Molisso, F.; Insinga, D.; Marzaioli, F.; Sacchi, M.; Lubritto, C. Radiocarbon dating versus volcanic event stratigraphy: Age modelling of Quaternary marine sequences in the coastal region of the Eastern Tyrrhenian Sea. Nucl. Instrum. Methods Phys. Res. 2010, 268, 1236–1240. [Google Scholar] [CrossRef]
- Insinga, D.D.; Petrosino, P.; Alberico, I.; De Lange, G.J.; Lubritto, C.; Molisso, F.; Sacchi, M.; Sulpizio, R.; Wu, J.; Lirer, F. The Late Holocene tephra record of the central Mediterranean Sea: Mapping occurrences and new potential isochrons for the 4.4–2.0 ka time interval. J. Quat. Sci. 2020, 35, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Hsü, K.J.; Montadert, L.; Bernouilli, D.; Cita, M.B.; Erikson, A.; Garrison, R.G.; Kidd, R.B.; Mélières, F.; Müller, C.; Wright, R. History of the Mediterranean salinity crisis. In Initial Reports of the Deep Sea Drilling Project 42A; US Government Printing Office: Washington, DC, USA, 1978; pp. 1053–1078. [Google Scholar]
- Bertoni, C.; Cartwright, J. 3D seismic analysis of slope-confined canyons from the Plio-Pleistocene of the Ebro Continental Margin (Western Mediterranean). Basin Res. 2005, 17, 43–62. [Google Scholar] [CrossRef]
- Ridente, D.; Foglini, F.; Minisini, D.; Trincardi, F.; Verdicchio, G. Shelf-edge erosion, sediment failure and inception of Bari Canyon on the Southwestern Adriatic Margin (Central Mediterranean). Mar. Geol. 2007, 246, 193–207. [Google Scholar] [CrossRef]
- Gamberi, F.; Della Valle, G.; Marani, M.; Mercorella, A.; Distefano, S.; Di Stefano, A. Tectonic controls on sedimentary system along the continental slope of the central and southeastern Tyrrhenian Sea. Ital. J. Geosci. 2019, 138, 317–332. [Google Scholar] [CrossRef]
- Torrente, M.M.; Milia, A.; Bellucci, F.; Rolandi, G. Extensional tectonics in the Campania Volcanic Zone (eastern Tyrrhenian Sea, Italy): New insights into the relationship between faulting and ignimbrite eruptions. Ital. J. Geosci. 2010, 129, 297–315. [Google Scholar]
- Pérès, J.M.; Picard, J. Nouveau manuel de bionomie benthique. Recl. Des Trav. De La Stn. Mar. D’endoume 1964, 31, 5–137. [Google Scholar]
- Brandano, M.; Civitelli, G. Non-seagrass meadow sedimentary facies of the Pontinian Islands, Tyrrhenian Sea: A modern example of mixed carbonate–siliciclastic sedimentation. Sedim. Geol. 2007, 201, 286–301. [Google Scholar] [CrossRef]
- Aiello, G.; Caccavale, M. From Siliciclastic to Bioclastic Deposits in the Gulf of Naples: New Highlights from Offshore Ischia and Procida-Pozzuoli Based on Sedimentological and Seismo-Stratigraphic Data. Quaternary 2021, 4, 44. [Google Scholar] [CrossRef]
- Steinmann, L.; Spiess, V.; Sacchi, M. The Campi Flegrei caldera (Italy): Formation and evolution in interplay with sea-level variations since the Campanian Ignimbrite eruption at 39 ka. J. Volcanol. Geotherm. Res. 2016, 327, 361–374. [Google Scholar] [CrossRef]
Sea Bottom Sample | Gravel (%) | Sand (%) | Silt (%) | Shale (%) | Grain Size |
---|---|---|---|---|---|
1A2 | 9.42 | 28.62 | 45.53 | 16.43 | Sandy silt |
1F2 | 7.30 | 77.29 | 10.43 | 4.98 | Silty sand |
1H2 | 6.61 | 34.36 | 38.06 | 20.97 | Sandy silt |
1J | 5.54 | 30.09 | 44.70 | 19.67 | Sandy silt |
1L | 7.11 | 42.40 | 35.35 | 15.14 | Sandy silt |
1M1 | 7.93 | 81.15 | 7.69 | 3.22 | Silty sand |
e1R | 8.86 | 36.37 | 36.98 | 17.78 | Sandy silt |
1V | 7.57 | 89.21 | 2.60 | 0.62 | Sand |
1W | 10.37 | 85.51 | 2.96 | 1.16 | Sand |
1Y | 17.09 | 75.69 | 5.27 | 1.95 | Sand |
BX7_1 | 0.00 | 57.82 | 42.18 | 0.00 | Silty sand |
B639 | 0.20 | 11.13 | 64.91 | 23.76 | Sandy silt |
B640 | 0.00 | 2.12 | 68.48 | 29.40 | Silt |
B644 | 0.13 | 9.88 | 67.16 | 22.82 | Silt |
B645 | 0.00 | 10.25 | 58.61 | 31.14 | Sandy silt |
B650 | 0.02 | 3.83 | 68.96 | 27.20 | Silt |
B651 | 0.03 | 7.71 | 71.62 | 20.64 | Silt |
B654 | 0.08 | 14.86 | 65.23 | 19.83 | Sandy silt |
B656 | 57.58 | 35.43 | 5.04 | 1.95 | Gravel sand |
B657 | 0.51 | 31.07 | 50.44 | 17.97 | Sandy silt |
B658 | 0.21 | 2.82 | 70.22 | 26.75 | Silt |
B659 | 0.00 | 19.93 | 63.98 | 16.09 | Sandy silt |
B661 | 1.16 | 35.39 | 51.43 | 12.01 | Sandy silt |
B662 | 8.93 | 21.53 | 55.96 | 13.58 | Sandy silt |
B671 | 2.01 | 40.94 | 44.66 | 12.39 | Sandy silt |
B672 | 0.15 | 3.09 | 59.77 | 36.99 | Silt |
B676 | 0.18 | 7.99 | 67.33 | 24.51 | Silt |
B678 | 0.00 | 8.87 | 56.67 | 34.45 | Silt |
B679 | 0.15 | 3.09 | 59.77 | 36.99 | Silt |
B691 | 0.00 | 14.31 | 56.78 | 28.91 | Sandy silt |
B692 | 0.05 | 15.86 | 52.62 | 31.46 | Sandy silt |
Bx693 | 0.00 | 17.23 | 53.30 | 29.48 | Sandy silt |
B697 | 0.00 | 14.24 | 57.99 | 27.77 | Sandy silt |
B698 | 0.00 | 8.71 | 55.92 | 35.37 | Silt |
B699 | 0.00 | 15.82 | 43.51 | 40.67 | Sandy silt |
Bx701 | 0.20 | 8.19 | 56.22 | 35.39 | Silt |
B707 | 0.28 | 3.10 | 52.28 | 44.34 | Silt |
B730 | 1.79 | 52.45 | 30.43 | 15.33 | Silty sand |
B972 | 6.97 | 32.15 | 52.86 | 8.02 | Sandy silt |
B973 | 0.00 | 33.43 | 59.36 | 7.21 | Sandy silt |
B979 | 0.00 | 54.73 | 41.11 | 4.16 | Silty sand |
B981 | 0.00 | 94.49 | 3.86 | 1.66 | Sand |
B987 | 0.00 | 31.73 | 61.86 | 6.41 | Sandy silt |
Bx990 | 0.00 | 11.95 | 66.09 | 21.97 | Sandy silt |
B992 | 17.92 | 71.95 | 7.46 | 2.66 | Sand |
B993 | 0.79 | 33.63 | 51.57 | 14.02 | Sandy silt |
B994 | 1.94 | 25.01 | 55.84 | 17.21 | Sandy silt |
B998 | 0.32 | 10.25 | 63.04 | 26.40 | Sandy silt |
B1006 | 0.74 | 33.95 | 51.96 | 13.35 | Sandy silt |
B1007 | 0.67 | 13.67 | 64.46 | 21.20 | Sandy silt |
B1036 | 1.92 | 77.50 | 14.71 | 5.87 | Silty sand |
B1044 | 1.28 | 45.75 | 42.56 | 10.41 | Sandy silt |
B1049 | 2.70 | 21.02 | 53.46 | 22.82 | Sandy silt |
B1050 | 12.46 | 62.36 | 14.66 | 10.53 | Silty sand |
B1054 | 11.19 | 26.95 | 43.37 | 18.49 | Sandy silt |
BxMIS1 | 0.00 | 33.34 | 66.66 | 0.00 | Sandy silt |
BxMIS2 | 4.26 | 90.33 | 5.41 | 0.00 | Sand |
BxMIS3 | 0.85 | 93.55 | 5.60 | 0.00 | Sand |
BxP_2 | 8.14 | 63.03 | 28.83 | 0.00 | Silty sand |
BxP_3 | 18.37 | 77.27 | 4.36 | 0.00 | Sand |
BxP_5 | 0.51 | 81.44 | 18.05 | 0.00 | Silty sand |
BxPM0 | 0.34 | 91.27 | 8.39 | 0.00 | Sand |
BxPM5 | 0.00 | 96.29 | 3.71 | 0.00 | Sand |
BxPM25 | 6.66 | 69.45 | 23.89 | 0.00 | Silty sand |
BxPM26 | 2.26 | 76.08 | 21.67 | 0.00 | Silty sand |
BxPM27 | 3.99 | 52.17 | 43.83 | 0.00 | Silty sand |
Sample | Grain Size | Detailed Location (Naples Bay) |
---|---|---|
1A2 | Sandy silt | Pentapalummo Bank |
1H2 | Sandy silt | Pentapalummo Bank |
1J | Sandy silt | Pentapalummo Bank |
1L | Sandy silt | Pentapalummo Bank |
1M1 | Silty sand | Pentapalummo Bank |
1R | Sandy silt | Pentapalummo Bank |
1V | Sand | Pentapalummo Bank |
1W | Sand | Pentapalummo Bank |
1Y | Sand | Pentapalummo Bank |
BX7_1 | Silty sand | Continental shelf of Naples Bay |
B639 | Sandy silt | Continental shelf of Naples Bay |
B640 | Silt | Head of the Magnaghi canyon |
B644 | Silt | Continental shelf of Naples Bay |
B645 | Sandy silt | Head of the Magnaghi canyon |
B650 | Silt | Gulf of Pozzuoli |
B651 | Silt | Gulf of Pozzuoli |
B654 | Sandy silt | Gulf of Pozzuoli |
B656 | Gravel sand | Gulf of Pozzuoli |
B657 | Sandy silt | Nisida Bank |
B658 | Silt | Slope westwards of the Ammontatura channel |
B659 | Sandy silt | Continental shelf of Naples Bay |
B661 | Sandy silt | Continental shelf of Naples Bay |
B662 | Sandy silt | Continental shelf of Naples Bay |
B671 | Sandy silt | Continental shelf of Naples Bay |
B672 | Silt | Continental shelf of Naples Bay |
B676 | Silt | Continental shelf of Naples Bay |
B678 | Silt | Continental shelf of Naples Bay |
B679 | Silt | Continental shelf of Naples Bay |
B691 | Sandy silt | Continental shelf of Naples Bay |
B692 | Sandy silt | Continental shelf of Naples Bay |
Bx693 | Sandy silt | Continental shelf of Naples Bay (next to the head of the Dohrn eastern branch) |
B697 | Sandy silt | Continental shelf of Naples Bay |
B698 | Silt | Continental shelf of Naples Bay |
B699 | Sandy silt | Continental shelf of Naples Bay |
Bx701 | Silt | Dohrn western branch |
B707 | Silt | Magnaghi canyon |
B730 | Silty sand | Continental shelf of Naples Bay |
B972 | Sandy silt | Continental shelf of Naples Bay |
B973 | Sandy silt | Continental shelf of Naples Bay |
B979 | Silty sand | Continental shelf of Naples Bay |
B981 | Sand | Continental shelf of Naples Bay |
B987 | Sandy silt | Continental shelf of Naples Bay |
Bx990 | Sandy silt | Continental shelf of Naples Bay |
B992 | Sand | Continental shelf of Naples Bay (northwards of the Magnaghi canyon) |
B993 | Sandy silt | Continental shelf of Naples Bay (northwards of the Magnaghi canyon) |
B994 | Sandy silt | Continental shelf of Naples Bay (northwards of the Magnaghi canyon) |
B998 | Sandy silt | Continental shelf of Naples Bay (offshore Procida Island) |
B1006 | Sandy silt | Continental shelf of Naples Bay (offshore Procida Island) |
B1007 | Sandy silt | Continental shelf of Naples Bay (offshore Procida Island) |
B1036 | Silty sand | Continental shelf of Naples Bay (offshore Procida Island) |
B1044 | Sandy silt | Continental shelf of Naples Bay |
B1049 | Sandy silt | Dohrn western branch |
B1050 | Silty sand | Dohrn western branch |
B1054 | Sandy silt | Dohrn western branch |
BxMIS1 | Sandy silt | Miseno Bank |
BxMIS2 | Sand | Miseno Bank |
BxMIS3 | Sand | Miseno Bank |
BxP_2 | Silty sand | Continental shelf of Naples Bay |
BxP_3 | Sand | Continental shelf of Naples Bay |
BxP_5 | Silty sand | Continental shelf of Naples Bay |
BxPM0 | Sand | Continental shelf of Naples Bay |
BxPM5 | Sand | Continental shelf of Naples Bay |
BxPM25 | Silty sand | Continental shelf of Naples Bay |
BxPM26 | Silty sand | Continental shelf of Naples Bay |
BxPM27 | Silty sand | Continental shelf of Naples Bay |
Core | Location | Reference |
---|---|---|
C69 | Naples Bay | Sacchi et al. [92]; Molisso et al. [93] |
C71 | Naples Bay | Sacchi et al. [92]; Molisso et al. [93] |
C73 | Naples Bay | Sacchi et al. [92]; Molisso et al. [93] |
C70 | Naples Bay | Sacchi et al. [92]; Molisso et al. [93] |
C4 | Naples Bay | Sacchi et al. [92] |
C82 | Naples Bay | Sacchi et al. [92]; Molisso et al. [93] |
C81 | Naples Bay | Sacchi et al. [92] |
C87 | Naples Bay | Molisso et al. [93] |
C74_12 | Naples canyons | Aiello et al. [31] |
C14 | Ammontatura Channel | Insinga et al. [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, G.; Caccavale, M. The Coastal Areas of the Bay of Naples: The Sedimentary Dynamics and Geological Evolution of the Naples Canyons. Geosciences 2023, 13, 226. https://doi.org/10.3390/geosciences13080226
Aiello G, Caccavale M. The Coastal Areas of the Bay of Naples: The Sedimentary Dynamics and Geological Evolution of the Naples Canyons. Geosciences. 2023; 13(8):226. https://doi.org/10.3390/geosciences13080226
Chicago/Turabian StyleAiello, Gemma, and Mauro Caccavale. 2023. "The Coastal Areas of the Bay of Naples: The Sedimentary Dynamics and Geological Evolution of the Naples Canyons" Geosciences 13, no. 8: 226. https://doi.org/10.3390/geosciences13080226
APA StyleAiello, G., & Caccavale, M. (2023). The Coastal Areas of the Bay of Naples: The Sedimentary Dynamics and Geological Evolution of the Naples Canyons. Geosciences, 13(8), 226. https://doi.org/10.3390/geosciences13080226