First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Bubble Composition
3.2. Acoustical Observations of Bubble Size and Flux
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Acoustic Doppler Current Profilers ADCPs and Current Meters | |
---|---|
Profiling Feature | |
Frequency | 1.5 MHz |
Max Profiling Range | 20.0 m (66.0 ft) |
Min Cell Size | 0.40 m (1.2 ft) |
Min Blanking Distance | 0.50 m (1.6 ft) |
Main Measurement Cell | |
Cell Begin (CB) | Min 0.50 m(1.6 ft) Max 19.5 m(63.4 ft) |
Cell End (CE) | Min 1.50 m (4.9 ft) Max 20 m (66.0 ft) |
Min CE–CB | 1.00 m (3.28 ft) |
Velocity (Main measurement cell plus up to 10 cells in profiling feature) | |
Range | ±6 m/s |
Resolution | 0.1 cm/s |
Accuracy | ±1% of measured velocity, ±0.5 cm/s |
Compass/Tilt Sensor | |
Calibration Procedure | Built–in, compensate for ambient magnetic fields |
Resolution | 0.1° |
Heading Accuracy | ±2° |
Pitch, Roll Accuracy | ±1° |
Temperature | |
Resolution | 0.01 °C |
Accuracy | ±0.1 °C |
Pressure | Piezoresistive strain gauge, 0.1% accuracy |
Recorder Size | 4 MB |
Environmental | |
Pressure Rating | 200 m (pressure sensor dependent) |
Operating Temperature | −5° to 40 °C |
Storage Temperature | −10° to 50 °C |
Physical | |
Housing | Delrin plastic |
Weight in Air | 2.5 kg|5.5 lb. |
Weight in Water | −0.3 kg|−0.7 lb. |
Dimensions | 15.2 cm × 18.0 cm|6.0 in × 7.1 in |
Power | |
Input Power | 7–15 V DC |
Typical Power Consumption | 0.2 to 0.5 W Continuous; 0.01 W Stand–by |
Communications | RS232, SDI–12 |
Small underwater remotely operated vehicle GNOM Standard | |
Underwater part | |
Maximum Operating depth | up to 150 m |
Dimensions (L × W × H) | 350 mm × 200 mm × 200 mm |
Weight in air / total system weight | 3 kg/12 kg |
Thrusters | 3 magnetically coupled DC motors Horizontal: 2× thrusters, 24 VDC 16W Vertical: 1× thruster, 24 VDC 16W |
Cruising speed | up to 3 knots |
Camera system | |
Camera Model | Sony Super HAD 2 CCD |
Camera resolution | 700 TV Lines |
Image Sensor | 1/3″ Interline Transfer CCD |
Mini Illumination | 0.1 lux (0.01 − b/w camera) |
Lens | 3.6 mm/F2.0 |
Iris Control | Auto |
Focus | Auto |
Field of View (FOV) | 66° |
Camera Tilt | ±50° |
Lighting system | |
Light Source | White ultra–bright LEDs |
Luminous Flux | 400 lumens |
Beam Angle | 105° |
Color Temperature | 5600–6000° Kelvin |
Control | Variable intensity |
Navigation system | |
Sensors | Compass and Depth |
Heading Accuracy | ±3° |
Compass Resolution | 0.5° |
Depth Sensor Accuracy | 1% F.S. |
References
- Schuur, E.A.G.; McGuire, A.D.; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Salyuk, A.; Rekant, P.; Kosmach, D. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Space Phys. 2010, 115, 14. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Salyuk, A.; Yusupov, V.; Kosmach, D.; Gustafsson, Ö. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 2010, 327, 1246–1250. [Google Scholar] [CrossRef] [PubMed]
- Shakhova, N.; Semiletov, I.; Sergienko, V.; Lobkovsky, L.; Yusupov, V.; Salyuk, A.; Salomatin, A.; Chernykh, D.; Kosmach, D.; Panteleev, G.; et al. The East Siberian Arctic Shelf: Towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20140451. [Google Scholar] [CrossRef]
- Steinbach, J.; Holmstrand, H.; Shcherbakova, K.; Kosmach, D.; Brüchert, V.; Shakhova, N.; Salyuk, A.; Sapart, C.J.; Chernykh, D.; Noormets, R.; et al. Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf. Proc. Natl. Acad. Sci. USA 2021, 118, e2019672118. [Google Scholar] [CrossRef] [PubMed]
- Vonk, J.E.; Sánchez-García, L.; Van Dongen, B.E.; Alling, V.; Kosmach, D.; Charkin, A.; Semiletov, I.P.; Dudarev, O.V.; Shakhova, N.; Roos, P.; et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 2012, 489, 137–140. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Gustafsson, O.; Sergienko, V.; Lobkovsky, L.; Dudarev, O.; Tumskoy, V.; Grigoriev, M.; Mazurov, A.; Salyuk, A.; et al. Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat. Commun. 2017, 8, 15872. [Google Scholar] [CrossRef] [Green Version]
- Shakhova, N.; Semiletov, I.; Leifer, I.; Sergienko, V.; Salyuk, A.; Kosmach, D.; Chernykh, D.; Stubbs, C.; Nicolsky, D.; Tumskoy, V.; et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nat. Geosci. 2014, 7, 64–70. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Chuvilin, E. Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf. Geosciences 2019, 9, 251. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.F.; Middelburg, J.J.; Röckmann, T.; Aerts, R.; Blauw, L.G.; Egger, M.; Jetten, M.S.M.; de Jong, A.E.E.; Meisel, O.H.; Rasigraf, O.; et al. Methane Feedbacks to the Global Climate System in a Warmer World. Rev. Geophys. 2018, 56, 207–250. [Google Scholar] [CrossRef] [Green Version]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.; Schuur, E.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.; Koven, C.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef] [Green Version]
- Romanovskii, N.N.; Hubberten, H.-W.; Gavrilov, A.V.; Eliseeva, A.A.; Tipenko, G.S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian Seas. Geo-Mar. Lett. 2005, 25, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Ostrovsky, I.; McGinnis, D.F.; Lapidus, L.; Eckert, W. Quantifying gas ebullition with echosounder: The role of methane transport by bubbles in a medium-sized lake. Limnol. Oceanogr. Methods 2008, 6, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Greinert, J.; Nutzel, B. Hydroacoustic experiments to establish a method for the determination of methane bubble fluxes at cold seeps. Geo-Mar. Lett. 2004, 24, 75–85. [Google Scholar] [CrossRef]
- Chernykh, D.; Yusupov, V.; Salomatin, A.; Kosmach, D.; Shakhova, N.; Gershelis, E.; Konstantinov, A.; Grinko, A.; Chuvilin, E.; Dudarev, O.; et al. Sonar Estimation of Methane Bubble Flux from Thawing Subsea Permafrost: A Case Study from the Laptev Sea Shelf. Geosciences 2020, 10, 411. [Google Scholar] [CrossRef]
- Leifer, I.; Chernykh, D.; Shakhova, N.; Semiletov, I. Sonar gas flux estimation by bubble insonification: Application to methane bubble flux from seep areas in the outer Laptev Sea. Cryosphere 2017, 11, 1333–1350. [Google Scholar] [CrossRef] [Green Version]
- Semiletov, I.P.; Pipko, I.; Pivovarov, N.Y.; Popov, V.V.; Zimov, S.A.; Voropaev, Y.V.; Daviodov, S.P. Atmospheric carbon emission from North Asian Lakes: A factor of global significance. Atmos. Environ. 1996, 30, 1657–1671. [Google Scholar] [CrossRef]
- Leifer, I.; Culling, D. Formation of seep bubble plumes in the Coal Oil Point seep field. Geo-Mar. Lett. 2010, 30, 339–353. [Google Scholar] [CrossRef]
- Yusupov, V.; Salomatin, A.; Shakhova, N.; Chernykh, D.; Domaniuk, A.; Semiletov, I. Echo Sounding for Remote Estimation of Seabed Temperatures on the Arctic Shelf. Geosciences 2022, 12, 315. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I. Methane release and coastal environment in the East Siberian Arctic shelf. J. Mar. Syst. 2007, 66, 227–243. [Google Scholar] [CrossRef]
- Shakhova, N.; Semiletov, I.; Panteleev, G. The distribution of methane on the Siberian Arctic shelves: Implications for the marine methane cycle. Geophys. Res. Lett. 2005, 32, L09601. [Google Scholar] [CrossRef]
- McGinnis, D.F.; Greinert, J.; Artemov, Y.; Beaubien, S.E.; Wüest, A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? J. Geophys. Res. Atmos. 2006, 111, 15. [Google Scholar] [CrossRef] [Green Version]
- Salomatin, A.S.; Yusupov, V.I. Acoustic investigations of gas “flares” in the Sea of Okhotsk. Oceanology 2011, 51, 857–865. [Google Scholar] [CrossRef]
- Clift, R.; Grace, J.R.; Weber, M.E. Bubbles, drops, and particles. Dry. Technol. 1978, 11, 263–264. [Google Scholar]
- Medwin, H.; Clay, C.S. Fundamentals of Acoustical Oceanography; Elsevier Science: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Semiletov, I.P.; Pivovarov, N.Y.; Pipko, I.I.; Gukov, A.Y.; Volkova, T.I.; Sharp, J.P.; Shcherbakov, Y.S.; Fedorov, K.P. Dynamics of dissolved CH4 and CO2 in the Lena River Delta and Laptev Sea. Trans. Dokl. Russ. Acad. Sci. 1996, 350, 401–404. [Google Scholar]
- Semiletov, I.P.; Zimov, S.A.; Voropayev, Y.V.; Davydov, S.P.; Barkov, N.A.; Gusev, A.M.; Lipenkov, V.Y. Atmospheric methane in the past and present. Dokl. Earth Sci. 1994, 343, 155–159. [Google Scholar]
- Veloso, M.; Greinert, J.; Mienert, J.; De Batist, M. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard. Limnol. Oceanogr. Methods 2015, 13, 267–287. [Google Scholar] [CrossRef] [Green Version]
- Jansson, P.; Triest, J.; Grilli, R.; Ferré, B.; Silyakova, A.; Mienert, J.; Chappellaz, J. High-resolution underwater laser spectrometer sensing provides new insights into methane distribution at an Arctic seepage site. Ocean Sci. 2019, 15, 1055–1069. [Google Scholar] [CrossRef] [Green Version]
- Ferré, B.; Jansson, P.; Moser, M.; Serov, P.; Portnov, A.; Graves, C.A.; Panieri, G.; Gründger, F.M.L.; Berndt, C.; Lehmann, M.F.; et al. Reduced methane seepage from Arctic sediments during cold bottom-water conditions. Nat. Geosci. 2020, 13, 144–148. [Google Scholar] [CrossRef]
- Semiletov, I.; Makshtas, A.; Akasofu, S.-I.; Andreas, E.L. Atmospheric CO2 balance: The role of Arctic Sea ice. Geophys. Res. Lett. 2004, 31, L05121. [Google Scholar] [CrossRef]
Gas Mixture Components | Gas Components in Bubbles near the Seabed, % | Gas Components in Bubbles near the Sea Surface, % |
---|---|---|
O2 | 1.8 | 6.24 |
N2 | 9.17 | 23.36 |
CH4 | 85.22 | 69.56 |
CO2 | 3.71 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernykh, D.; Shakhova, N.; Yusupov, V.; Gershelis, E.; Morgunov, B.; Semiletov, I. First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice. Geosciences 2023, 13, 228. https://doi.org/10.3390/geosciences13080228
Chernykh D, Shakhova N, Yusupov V, Gershelis E, Morgunov B, Semiletov I. First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice. Geosciences. 2023; 13(8):228. https://doi.org/10.3390/geosciences13080228
Chicago/Turabian StyleChernykh, Denis, Natalia Shakhova, Vladimir Yusupov, Elena Gershelis, Boris Morgunov, and Igor Semiletov. 2023. "First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice" Geosciences 13, no. 8: 228. https://doi.org/10.3390/geosciences13080228
APA StyleChernykh, D., Shakhova, N., Yusupov, V., Gershelis, E., Morgunov, B., & Semiletov, I. (2023). First Calibrated Methane Bubble Wintertime Observations in the Siberian Arctic Seas: Selected Results from the Fast Ice. Geosciences, 13(8), 228. https://doi.org/10.3390/geosciences13080228