Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA
Abstract
:1. Introduction
1.1. Study Site and Regional Geologic Environment
1.2. Previous Studies Relating to Submarine Groundwater Discharge and Paleochannels
2. Materials and Methods
2.1. High-Resolution Seismic Data
2.2. Sediment Cores
3. Results
3.1. Paleochannels
3.2. Hydrologic Properties of Sediment Cores
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weems, R.E.; Lewis, W.C. Structural and tectonic setting of the Charleston, South Carolina, region: Evidence from the Tertiary stratigraphic record. Geol. Soc. Am. Bull. 2002, 114, 24–42. [Google Scholar] [CrossRef]
- Field, M.E.; Duane, D.B. Post-Pleistocene History of United-States Inner Continental-Shelf—Significance to Origin of Barrier Islands. Geol. Soc. Am. Bull. 1976, 87, 691–702. [Google Scholar] [CrossRef]
- Kohout, F.A.; Meisler, H.; Meyer, F.W.; Johnston, R.H.; Leve, G.W.; Wait, R.L. Hydrogeology of the Atlantic continental margin. In The Atlantic Continental Margin; The Geology of North America; Geological Society of America: Boulder, CO, USA, 1988; Volume 1–2, pp. 463–480. [Google Scholar]
- Santos, I.R.; Chen, X.G.; Lecher, A.L.; Sawyer, A.H.; Moosdorf, N.; Rodellas, V.; Tamborski, J.; Cho, H.M.; Dimova, N.; Sugimoto, R.; et al. Submarine groundwater discharge impacts on coastal nutrient biogeochemistry. Nat. Rev. Earth Environ. 2021, 2, 307–323. [Google Scholar] [CrossRef]
- Pinckney, J.L. A Mini-Review of the Contribution of Benthic Microalgae to the Ecology of the Continental Shelf in the South Atlantic Bight. Estuaries and Coasts. Estuaries Coasts 2018, 41, 2070–2078. [Google Scholar] [CrossRef]
- Huettel, M.; Berg, P.; Kostka, J.E. Benthic Exchange and Biogeochemical Cycling in Permeable Sediments. Annu. Rev. Mar. Sci. 2014, 6, 23–51. [Google Scholar] [CrossRef] [PubMed]
- Moore, W.S. Large groundwater inputs to coastal waters revealed by Ra-226 enrichments. Nature 1996, 380, 612–614. [Google Scholar] [CrossRef]
- Moore, W.S. The Effect of Submarine Groundwater Discharge on the Ocean. Annu Rev. Mar. Sci. 2010, 2, 59–88. [Google Scholar] [CrossRef] [Green Version]
- George, C.; Moore, W.S.; White, S.M.; Smoak, E.; Joye, S.B.; Leier, A.; Wilson, A.M. A New Mechanism for Submarine Groundwater Discharge From Continental Shelves. Water Resour. Res. 2020, 56, e2019WR026866. [Google Scholar] [CrossRef]
- Bratton, J.F. The Three Scales of Submarine Groundwater Flow and Discharge across Passive Continental Margins. J. Geol. 2010, 118, 565–575. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, W.E.; Morton, R.A.; Putney, T.R.; Katuna, M.P.; Harris, M.S.; Gayes, P.T.; Driscoll, N.W.; Denny, J.F.; Schwab, W.C. Migration of the Pee Dee River system inferred from ancestral paleochannels underlying the South Carolina Grand Strand and Long Bay inner shelf. Geol. Soc. Am. Bull. 2006, 118, 533–549. [Google Scholar] [CrossRef]
- Evans, R.L.; Law, L.K.; St Louis, B.; Cheesman, S. Buried paleo-channels on the New Jersey continental margin: Channel porosity structures from electromagnetic surveying. Mar. Geol. 2000, 170, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Viso, R.; McCoy, C.; Gayes, P.; Quafisi, D. Geological controls on submarine groundwater discharge in Long Bay, South Carolina (USA). Cont. Shelf Res. 2010, 30, 335–341. [Google Scholar] [CrossRef]
- Blum, M.; Martin, J.; Milliken, K.; Garvin, M. Paleovalley systems: Insights from Quaternary analogs and experiments. Earth-Sci. Rev. 2013, 116, 128–169. [Google Scholar] [CrossRef]
- Foyle, A.M.; Oertel, G.F. Transgressive systems tract development and incised-valley fills within a Quaternary estuary-shelf system: Virginia inner shelf, USA. Mar. Geol. 1997, 137, 227–249. [Google Scholar] [CrossRef]
- Moslow, T.F.; Heron, S.D. Relict Inlets—Preservation and Occurrence in Holocene Stratigraphy of Southern Core Banks, North-Carolina. J. Sediment Petrol. 1978, 48, 1275–1286. [Google Scholar]
- Mulligan, A.E.; Evans, R.L.; Lizarralde, D. The role of paleochannels in groundwater/seawater exchange. J. Hydrol. 2007, 335, 313–329. [Google Scholar] [CrossRef]
- Zecchin, M.; Baradello, L.; Brancolini, G.; Donda, F.; Rizzetto, F.; Tosi, L. Sequence stratigraphy based on high-resolution seismic profiles in the late Pleistocene and Holocene deposits of the Venice area. Mar. Geol. 2008, 253, 185–198. [Google Scholar] [CrossRef]
- Babu, D.S.S.; Ray, J.S. Submarine Groundwater Discharge (SGD) to the Arabian sea and the Bay of Bengal along the Indian coastal zone. J. Indian Geophys. Univ. 2022, 26, 336–349. [Google Scholar]
- Camacho-Cruz, K.; Rey-Villiers, N.; Ortiz-Hernandez, M.C.; Gonzalez-Jones, P.; Galan-Caamal, R.D.; Matus-Hernandez, M.; Sanchez, A. Changes in the enrichment of dissolved inorganic nutrients in the coastal waters of the Mexican Caribbean, influenced by submarine groundwater discharges 2016–2019. Mar. Pollut. Bull. 2022, 185, 114308. [Google Scholar] [CrossRef]
- Hussainzadeh, J.; Samani, S.; Mahaqi, A. Investigation of the geochemical evolution of groundwater resources in the Zanjan plain, NW Iran. Environ. Earth Sci. 2023, 82, 123. [Google Scholar] [CrossRef]
- Kooi, H.; Groen, J. Offshore continuation of coastal groundwater systems; predictions using sharp-interface approximations and variable-density flow modelling. J. Hydrol. 2001, 246, 19–35. [Google Scholar] [CrossRef]
- Lui, H.K.; Liu, M.Y.; Lin, H.C.; Tseng, H.C.; Liu, L.L.; Wang, F.Y.; Hou, W.P.; Chang, R.; Chen, C.T.A. Hydrogeochemistry and Acidic Property of Submarine Groundwater Discharge Around Two Coral Islands in the Northern South China Sea. Front. Earth Sci. 2021, 9, 697388. [Google Scholar] [CrossRef]
- Micallef, A.; Person, M.; Berndt, C.; Bertoni, C.; Cohen, D.; Dugan, B.; Evans, R.; Haroon, A.; Hensen, C.; Jegen, M.; et al. Offshore Freshened Groundwater in Continental Margins. Rev. Geophys. 2021, 59, e2020RG000706. [Google Scholar] [CrossRef]
- Nandimandalam, J.R.; Sharma, K.; Alagappan, R. Preliminary investigation of saline water intrusion (SWI) and submarine groundwater discharge (SGD) along the south-eastern coast of Andhra Pradesh, India, using groundwater dynamics, sea surface temperature and field water quality anomalies. Environ. Sci. Pollut. Res. 2022, 30, 26338–26356. [Google Scholar] [CrossRef] [PubMed]
- Samani, S.; Moghaddam, A.A. Hydrogeochemical characteristics and origin of salinity in Ajabshir aquifer, East Azerbaijan, Iran. Q. J. Eng. Geol. Hydrogeol. 2015, 48, 175–189. [Google Scholar] [CrossRef]
- Selvam, S.; Muthukumar, P.; Roy, P.D.; Venkatramanan, S.; Chung, S.Y.; Elzain, H.E.; Muthusamy, S.; Jesuraja, K. Submarine groundwater discharge and associated nutrient influx in surroundings of the estuary region at Gulf of Mannar coast, Indian Ocean. Chemosphere 2022, 305, 135271. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, C.P.; Wang, Z.A.; Wang, X.J.; Zeng, Z.Z.; Xiao, K.; Guo, H.M.; Jiang, X.W.; Li, Z.Y.; Li, H.L. Submarine Groundwater Discharge in the Northern Bohai Sea, China: Implications for Coastal Carbon Budgets and Buffering Capacity. J. Geophys. Res-Biogeo 2022, 127, e2022JG006810. [Google Scholar] [CrossRef]
- Post, V.E.A.; Groen, J.; Kooi, H.; Person, M.; Ge, S.M.; Edmunds, W.M. Offshore fresh groundwater reserves as a global phenomenon. Nature 2013, 504, 71–78. [Google Scholar] [CrossRef]
- Michael, H.A.; Post, V.E.A.; Wilson, A.M.; Werner, A.D. Science, society, and the coastal groundwater squeeze. Water Resour. Res. 2017, 53, 2610–2617. [Google Scholar] [CrossRef]
- Moosdorf, N.; Oehler, T. Societal use of fresh submarine groundwater discharge: An overlooked water resource. Earth-Sci. Rev. 2017, 171, 338–348. [Google Scholar] [CrossRef]
- Long, J.H.; Hanebuth, T.J.J.; Alexander, C.R.; Wehmiller, J.F. Depositional Environments and Stratigraphy of Quaternary Paleochannel Systems Offshore of the Georgia Bight, Southeastern USA. J. Coast. Res. 2021, 37, 883–905. [Google Scholar] [CrossRef]
- Luciano, K.E.; Harris, M.S. Surficial geology and geophysical investigations of the Capers Inlet, South Carolina (USA) 7.5-Minute Quadrangle. J. Maps 2013, 9, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P. Quaternary geomorphology and modern coastal development in response to an inherent geologic framework: An example from Charleston, South Carolina. J. Coast. Res. 2005, 21, 49–64. [Google Scholar] [CrossRef]
- Harris, M.S.; Sautter, L.R.; Johnson, K.L.; Luciano, K.E.; Sedberry, G.R.; Wright, E.E.; Siuda, A.N.S. Continental shelf landscapes of the southeastern United States since the last interglacial. Geomorphology 2013, 203, 6–24. [Google Scholar] [CrossRef]
- Idris, F.M.; Henry, V.J. Shallow Cenozoic Seismic Stratigraphy and Structure—South-Carolina Lower Coastal-Plain and Continental-Shelf. Geol. Soc. Am. Bull. 1995, 107, 762–778. [Google Scholar] [CrossRef]
- Parham, P.R.; Riggs, S.R.; Culver, S.J.; Mallinson, D.J.; Rink, W.J.; Burdette, K. Quaternary coastal lithofacies, sequence development and stratigraphy in a passive margin setting, North Carolina and Virginia, USA. Sedimentology 2013, 60, 503–547. [Google Scholar] [CrossRef]
- Parham, P.R.; Riggs, S.R.; Culver, S.J.; Mallinson, D.J.; Wehmiller, J.F. Quaternary depositional patterns and sea-level fluctuations, northeastern North Carolina. Quat. Res. 2007, 67, 83–99. [Google Scholar] [CrossRef]
- Colquhoun, D.J. A Review of Cenozoic Evolution of the Southeastern United-States Atlantic Coast North of the Georgia Trough. Quat. Int. 1995, 26, 35–41. [Google Scholar] [CrossRef]
- Luciano, K.E. Geomorphology and Coastal Sediment Dynamics; College of Charleston: Charleston, SC, USA, 2010. [Google Scholar]
- Swift, D.J.P. Barrier-Island Genesis—Evidence from Central Atlantic Shelf, Eastern USA. Sediment Geol. 1975, 14, 1–43. [Google Scholar] [CrossRef]
- Doar, W.R.; Kendall, C.G.S. An analysis and comparison of observed Pleistocene South Carolina (USA) shoreline elevations with predicted elevations derived from Marine Oxygen Isotope Stages. Quat. Res. 2014, 82, 164–174. [Google Scholar] [CrossRef]
- Duncan, C.S.; Goff, J.A.; Austin, J.A.; Fulthorpe, C.S. Tracking the last sea-level cycle: Seafloor morphology and shallow stratigraphy of the latest Quaternary New Jersey middle continental shelf. Mar. Geol. 2000, 170, 395–421. [Google Scholar] [CrossRef]
- Hayes, L.J.; Dixon, D.D. Solvent Barrier Property for Fluorinated Polyethylene. J. Appl. Polym. Sci. 1979, 23, 1907–1913. [Google Scholar] [CrossRef]
- Hein, C.J.; FitzGerald, D.M.; Carruthers, E.A.; Stone, B.D.; Barnhardt, W.A.; Gontz, A.M. Refining the model of barrier island formation along a paraglacial coast in the Gulf of Maine. Mar. Geol. 2012, 307, 40–57. [Google Scholar] [CrossRef]
- Thieler, E.R.; Foster, D.S.; Himmelstoss, E.A.; Mallinson, D.J. Geologic framework of the northern North Carolina, USA inner continental shelf and its influence on coastal evolution. Mar. Geol. 2014, 348, 113–130. [Google Scholar] [CrossRef]
- Boss, S.K.; Hoffman, C.W.; Cooper, B. Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA. Mar. Geol. 2002, 183, 45–65. [Google Scholar] [CrossRef]
- Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J. Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA. Mar. Geol. 2010, 268, 16–33. [Google Scholar] [CrossRef]
- Thieler, E.R.; Pilkey, O.H.; Cleary, W.J.; Schwab, W.C. Modern sedimentation on the shoreface and inner continental shelf at Wrightsville Beach, North Carolina, USA. J. Sediment Res. 2001, 71, 958–970. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Overeem, I. Models of deltaic and inner continental shelf landform evolution. Annu. Rev. Earth Planet. Sci. 2007, 35, 685–715. [Google Scholar] [CrossRef]
- Long, J.H.; Hanebuth, T.J.J.; Ludmann, T. The Quaternary Stratigraphic Architecture of a Low-Accommodation, Passive-Margin Continental Shelf (Santee Delta Region, South Carolina, USA). J. Sediment Res. 2020, 90, 1549–1571. [Google Scholar] [CrossRef]
- Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; et al. Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef]
- Bakker, M. Analytic solutions for interface flow in combined confined and semi-confined, coastal aquifers. Adv. Water Resour. 2006, 29, 417–425. [Google Scholar] [CrossRef]
- Edgetech. Sub-Bottom Profiling. Available online: https://www.edgetech.com/product-category/sub-bottom-profiling/ (accessed on 1 July 2003).
- Saustrup, S.; Goff, J.A.; Gulick, S.P. Recommended “Best Practices” for Chirp Acquisition and Processing; 2019-039; Gulf of Mexico OCS Division: New Orleans, LA, USA, 2018; p. 16.
- Henkart, P. SIOseis; UCSD University of California: La Jolla, CA, USA, 1981. [Google Scholar]
- Fraser, H.J. Experimental study of the porosity and permeability of clastic sediments. J. Geol. 1935, 43, 910–1010. [Google Scholar] [CrossRef]
- Nichols, M.M.; Johnson, G.H.; Peebles, P.C. Modern Sediments and Facies Model for a Microtidal Coastal-Plain Estuary, the James Estuary, Virginia. J. Sediment Petrol. 1991, 61, 883–899. [Google Scholar]
- Moore, W.S.; Shaw, T.J. Chemical signals from submarine fluid advection onto the continental shelf. J. Geophys. Res. 1998, 103, 21543–21552. [Google Scholar] [CrossRef]
- Park, A.D. The Ground-Water Resources of Charleston, Berkeley, and Dorchester Counties, South Carolina; State of South Carolina, Water Resources Commission: Pickens County, SC, USA, 1985; Volume 146.
Lithofacies | Porosity (%) | Permeability (m2) |
---|---|---|
Sandy Shell Hash | 37 | 4.18 × 10−11 |
Well-Sorted Sand | 45 | 1.59 × 10−11 |
Silty Sand | 48 | 1.95 × 10−11 |
Muddy Shell Hash | 47 | 2.12 × 10−11 |
Silty Mud | 68 | 1.20 × 10−13 |
Mud | 67 | 1.06 × 10−13 |
Lime Mud Marl | 43 | 1.56 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
White, S.M.; Smoak, E.; Leier, A.L.; Wilson, A.M. Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA. Geosciences 2023, 13, 232. https://doi.org/10.3390/geosciences13080232
White SM, Smoak E, Leier AL, Wilson AM. Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA. Geosciences. 2023; 13(8):232. https://doi.org/10.3390/geosciences13080232
Chicago/Turabian StyleWhite, Scott M., Erin Smoak, Andrew L. Leier, and Alicia M. Wilson. 2023. "Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA" Geosciences 13, no. 8: 232. https://doi.org/10.3390/geosciences13080232
APA StyleWhite, S. M., Smoak, E., Leier, A. L., & Wilson, A. M. (2023). Small Muddy Paleochannels and Implications for Submarine Groundwater Discharge near Charleston, South Carolina, USA. Geosciences, 13(8), 232. https://doi.org/10.3390/geosciences13080232