Electromagnetic and Radon Earthquake Precursors
Abstract
:1. Introduction
2. Electromagnetic Precursors
2.1. ULF Emissions
2.2. HF Emissions
2.3. VHF Emissions
2.4. Remote Sensing and Satellite Techniques
2.5. TEC
3. Radon Precursors
3.1. Radon Properties
3.2. Pre-Seismic Radon Anomalies
3.2.1. Soil
3.2.2. Groundwater
3.2.3. Atmosphere
4. Models
4.1. Electromagnetic Precursors Models
4.1.1. Models for the ULF Precursors
- Magneto-hydrodynamic model [220]: According to this model, an electrically conducting fluid flowing through a magnetic field causes an additional induced field to be created. If B is the magnetic field, Maxwell’s equations indicate that the induced magnetic field can be given by the equation , where is the magnetic Reynolds number, comparable to the hydrodynamic Reynolds number, which determines the relative significance of the convective and diffusive components.
- Piezomagnetic model [221]: this model suggests that an applied stress causes ferromagnetic rocks to shift in magnetisation, which in turn, induce a secondary magnetic field.
- Electrokinetic model [222]: this model suggests that electric currents flowing in the Earth due to electrified interfaces present at solid–liquid boundaries induce magnetic fields.
4.1.2. Models for the HF Precursors
4.2. Radon Precursors Models
5. Analysis Methods
5.1. Important Properties: Fractal Behaviour, Long Memory and Hurst Exponents
5.1.1. Fractal Behaviour
5.1.2. Long Memory
5.1.3. Hurst Exponent
- (i)
- The series has positive long-range autocorrelation if . A series’ high value is followed by another high value and vice versa. High Hurst exponents suggest persistent interactions that are anticipated to remain until the series’ remote future;
- (ii)
- Low values of the time series follow high values if , and vice versa. In the future of the time series, there is a persistent transition between low and high values for low H values (antipersistency);
- (iii)
- If , the time series is completely uncorrelated, i.e., the related processes are random.
5.2. Significant Analysis Methods for Electromagnetic and Radon Precursors
5.2.1. Power-Law Analysis
5.2.2. DFA
- (i)
- First, the original time series is integrated:In Equation (3), the symbols <…> represent the total average value of the time series, whereas k represents the different time scales.
- (ii)
- Next, the integrated time series is divided into equal-length bins, n, which do not overlap.
- (iii)
- The trend in the bin is subsequently expressed by the function , which is then fitted. Simple linear trends or polynomials of order two or a higher order may be used. The notation indicates the y coordinate of this linear function in each box n.
- (iv)
- Next, each box of length n is detrended in the integrated time series by subtracting the local linear trend, . In this way, and for every bin, the detrended time series is calculated as follows:
- (v)
- Next, for each bin of size n, the root-mean-square (rms) of the integrated and detrended time series fluctuations is calculated as
- (vi)
- The technique steps (i)–(v) are repeated for different sizes of the scale boxes. This indicates the precise of a kind of relationship that exists between and n. An exponential relationship exists between and n if the time series contains long-term associations.The DFA scaling exponent of Equation (6) assesses the strength of the time series long-term relationships.
- (vii)
- Equation (4)’s logarithmic translation yields a linear relationship between and . A strong linear relationship implies that the accompanying fluctuations have a long memory since they are long-lasting. This study used the square of the Spearman’s () to assess the linear fit’s accuracy. According to Nikolopoulos et al. [34,230,235,280], good linear fits are considered as having 0.95 or higher.
5.2.3. Fractal Dimension Analysis with Katz’s Method
5.2.4. Fractal Dimension Analysis with Higuchi’s Method
5.2.5. Fractal Dimension Analysis with Sevcik’s Method
5.2.6. Rescaled Range Analysis
6. Precursors and Earthquake-Related Parameters
7. Table of Papers
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eftaxias, K.; Balasis, G.; Contoyiannis, Y.; Papadimitriou, C.; Kalimeri, M. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones—Part 2. Nat. Hazards Earth Syst. Sci. 2010, 10, 275–294. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Marousaki, A.; Potirakis, S.; Koulouras, G.; Nomicos, C.; Panagiotaras, D.; Stonhamb, J.; Louizi, A. Environmental monitoring of radon in soil during a very seismically active period occurred in South West Greece. J. Environ. Monit. 2012, 14, 564–578. [Google Scholar] [CrossRef] [PubMed]
- Keilis-Borok, V.I.; Soloviev, A.A. Nonlinear Dynamics of the Lithosphere and Earthquake Forecast; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
- Keilis-Borok, V. Earthquake Forecast: State-of-the-Art and Emerging Possibilities. Annu. Rev. Earth Planet. Sci. 2002, 30, 1–33. [Google Scholar] [CrossRef]
- Hayakawa, M.; Hobara, Y. Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat. Nat. Hazards Risk 2010, 1, 115–155. [Google Scholar] [CrossRef]
- Cicerone, R.; Ebel, J.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [Google Scholar] [CrossRef]
- Molchanov, A.; Kopytenko, A.; Voronov, M.; Kopytenko, A.; Matiashviali, G.; Fraser-Smith, C.; Bernardi, A. Results of ULF magnetic feld measurements near the epicenters of the Spitak (Ms = 6.9) and Loma-Prieta (Ms = 7.1) earthquakes: Comparative analysis. Geophys. Res.Lett. 1992, 19, 1495–1498. [Google Scholar] [CrossRef]
- Conti, L.; Picozza, P.; Sotgiu, A. A Critical Review of Ground Based Observations of Earthquake Precursors. Front. Earth Sci. 2021, 9, 676766. [Google Scholar] [CrossRef]
- Shrivastava, A. Are pre-seismic ULF electromagnetic emissions considered as a reliable diagnostics for earthquake prediction? Curr. Sci. 2014, 107, 596–600. [Google Scholar]
- Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics 2009, 470, 205–213. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic Pre-earthquake Precursors: Mechanisms, Data and Models—A Review. J. Earth Sci. Clim. Chang. 2015, 6, 250. [Google Scholar] [CrossRef]
- Aggarwal, P.; Sykes, R.; Simpson, W.; Richards, G. Spatial and temporal variations in ts/tp and in P wave residuals at Blue Mountain Lake, New York: Application to earthquake forecast. J. Geophys. Res. 1975, 80, 718–732. [Google Scholar] [CrossRef]
- Parvaiz, K.; Sharad, T.; Azad, M.; Purushottam, B.; Purohit, P.; Gwal, A.K. Scientific efforts in the direction of successful earthquake forecast. Int. J. Geomat. Geosci. 2011, 1, 669–677. [Google Scholar]
- Zong, J.; Tao, D.; Shen, X. Possible ELF/VLF Electric Field Disturbances Detected by Satellite CSES before Major Earthquakes. Atmosphere 2022, 13, 1394. [Google Scholar] [CrossRef]
- Thomas, J.E.; Ekanem, A.M.; George, N.J.; Akpan, A.E. Ionospheric perturbations: A case study of 2007 five major earthquakes using DEMETER data. Acta Geophys. 2023, 71, 1607–1618. [Google Scholar] [CrossRef]
- Vesnin, A.; Yasyukevich, Y.; Perevalova, N.; Şentürk, E. Ionospheric Response to the 6 February 2023 Turkey&-Syria Earthquake. Remote Sens. 2023, 15, 2336. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Sengupta, R. Anomalous radon emission as precursor of earthquake. J. Appl. Geophys. 2009, 187, 245–258. [Google Scholar] [CrossRef]
- Zafrir, H.; Steinitz, G.; Malik, U.; Haquin, G.; Gazit-Yaari, N. Response of Radon in a seismic calibration explosion, Israel. Radiat. Meas. 2009, 44, 193–198. [Google Scholar] [CrossRef]
- Chyi, L.; Quick, T.; Yang, T.; Chen, C. Soil gas radon spectra and Earthquakes. TAO 2005, 16, 763–774. [Google Scholar] [CrossRef]
- Kuo, T.; Lin, C.; Fan, K.; Chang, G.; Lewis, C.; Han, Y.; Wu, Y.; Chen, W.; Tsai, C. Radon anomalies precursory to the 2003 Mw=6.8 Chengkung and 2006 Mw=6.1 Taitung earthquakes in Taiwan. Radiat. Meas. 2009, 44, 295–299. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Vogiannis, E.; Chaldeos, Y.; Giannakopoulos, P.; Kottou, S.; Nomicos, C.; Stonham, J. Traces of self-organisation and long-range memory in variations of environmental radon in soil: Comparative results from monitoring in Lesvos Island and Ileia (Greece). J. Radioanal. Nucl. Chem. 2014, 299, 203–219. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Fotopoulos, A.; Panagiotaras, D.; Nomicos, C.; Yannakopoulos, P.; Kottou, S.; Zisos, A.; Louizi, A.; Stonham, J. Long-range memory patterns in variations of environmental radon in soil. Anal. Methods 2013, 5, 4010–4020. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Fotopoulos, A.; Panagiotaras, D.; Koulouras, G.; Zisos, A.; Nomicos, C.; Louizi, A.; Stonham, J. Self-organised critical features in soil radon and MHz electromagnetic disturbances: Results from environmental monitoring in Greece. Appl. Radiat. Isotop. 2013, 72, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Kumar, A.; Singh, B.B.; Mahajan, S.; Kumar, V.; Dhar, S. Radon Monitoring in Soil Gas and Ground Water for Earthquake Prediction Studies in North West Himalayas, India. Terr. Atmos. Ocean Sci. 2010, 21, 685–690. [Google Scholar] [CrossRef]
- Singh, M.; Ramola, R.; Singh, B.; Sing, S.; Virk, H. Subsurface soil gas radon changes associated to earthquakes. Nucl. Tracks Radiat. Meas. 1991, 19, 417–420. [Google Scholar] [CrossRef]
- Nazaroff, W.; Nero, A. Radon and Its Decay Products in Indoor Air; John Wiley & Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- Richon, P.; Bernard, P.; Labed, V.; Sabroux, J.; Beneito, A.; Lucius, D.; Abbad, S.; Robe, M. Results of monitoring 222Rn in soil gas of the Gulf of Corinth region, Greece. Radiat. Meas. 2007, 42, 87–93. [Google Scholar] [CrossRef]
- Erees, F.; Aytas, S.; Sac, M.; Yener, G.; Salk, M. Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Radiat. Meas. 2007, 42, 80–86. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Igarashi, G.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Evidence of precursor phenomena in the Kobe earthquake obtained from atmospheric radon concentration. Appl. Geochem. 2006, 21, 1064–1072. [Google Scholar] [CrossRef]
- Namvaran, M.; Negarestani, A. Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J. Radioanal. Nucl. Chem. 2012. [Google Scholar] [CrossRef]
- Zoran, M.; Savastru, R.; Savastru, D.; Chitaru, C.; Baschir, L.; Tautan, M. Monitoring of radon anomalies in South-Eastern part of Romania for earthquake surveillance. J. Radioanal. Nucl. Chem. 2012, 293, 769–781. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Nomicos, C.; Koulouras, G.; Kottou, S.; Yannakopoulos, P.H. Long-Memory Trends in Disturbances of Radon in Soil Prior ML=5.1 Earthquakes of 17 November 2014 Greece. J. Earth Sci. Clim. Chang. 2015, 6, 244. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Valais, I.; Michail, C.; Bakas, A.; Fountzoula, C.; Cantzos, D.; Bhattacharyya, D.; Sianoudis, I.; Fountos, G.; Yannakopoulos, P.H.; et al. Radioluminescence properties of the CdSe/ZnS Quantum Dot nanocrystals with analysis of long-memory trends. Radiat. Meas. 2016, 92, 19–31. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.H.; Priniotakis, G.; Voyiatzis, I.; Cantzos, D. Long-lasting patterns in 3 kHz electromagnetic time series after the ML= 6.6 earthquake of 2018-10-25 near Zakynthos, Greece. Geosciences 2020, 10, 235. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Rafique, M.; Alam, A.; Cantzos, D.; Yannakopoulos, P. Fractal Features in kHz Electromagnetic Observations Preceding Near-Field Earthquakes in Ilia, Greece. Geosciences 2023, 13, 387. [Google Scholar] [CrossRef]
- Alam, A.; Nikolopoulos, D.; Wang, N. Fractal Patterns in Groundwater Radon Disturbances Prior to the Great 7.9 Mw Wenchuan Earthquake, China. Geosciences 2023, 13, 268. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model—An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Calais, E.; Haase, J.S.; Minster, J.B. Detection of ionospheric perturbations using a dense GPS array in Southern California. Geophys. Res. Lett. 2003, 30, 12. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, Y.I.; Chen, C.H.; Liu, C.Y.; Chen, C.Y.; Nishihashi, M.; Li, J.Z.; Xia, Y.Q.; Oyama, K.I.; Hattori, K.; et al. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res. Space Phys. 2009, 114, A4. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, Y.; Tan, B.; Li, M. Observational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China. ISPRS Int. J. Geo-Inf. 2016, 5, 237. [Google Scholar] [CrossRef]
- Sharma, G.; Saikia, P.; Walia, D.; Banerjee, P.; Raju, P. TEC anomalies assessment for earthquakes precursors in North-Eastern India and adjoining region using GPS data acquired during 2012–2018. Quat. Int. 2021, 575–576, 120–129. [Google Scholar] [CrossRef]
- Klimenko, M.; Klimenko, V.; Zakharenkova, I.; Cherniak, I. The global morphology of the plasmaspheric electron content during Northern winter 2009 based on GPS/COSMIC observation and GSM TIP model results. Adv. Space Res. 2015, 55, 2077–2085. [Google Scholar] [CrossRef]
- Gokhberg, M.B.; Morgounov, V.A.; Yoshino, T.; Tomizawa, I. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan. J. Geophys. Res. Space Phys. 1982, 87, 7824–7828. [Google Scholar] [CrossRef]
- Gufeld, I.L.; Rozhnoi, A.A.; Tyumensev, S.N.; Sherstuk, S.V.; Yampolsky, V.S. Radiowave disturbances in period to Rudber and Rachinsk earthquakes. Phys. Solid Earth 1992, 28, 267–270. [Google Scholar]
- Molchanov, O.A.; Hayakawa, M. Subionospheric VLF signal perturbations possibly related to earthquakes. J. Geophys. Res. Space Phys. 1998, 103, 17489–17504. [Google Scholar] [CrossRef]
- Muto, F.; Yoshida, M.; Horie, T.; Hayakawa, M.; Parrot, M.; Molchanov, O.A. Detection of ionospheric perturbations associated with Japanese earthquakes on the basis of reception of LF transmitter signals on the satellite DEMETER. Nat. Hazards Earth Syst. Sci. 2008, 8, 135–141. [Google Scholar] [CrossRef]
- Rozhnoi, A.; Shalimov, S.; Solovieva, M.; Levin, B.; Hayakawa, M.; Walker, S. Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals. J. Geophys. Res. Space Phys. 2012, 117, A9. [Google Scholar] [CrossRef]
- Whitehead, N.; Barry, B.; Ditchburn, R.; Morris, C.; Stewart, M. Systematics of radon at the Wairakei geothermal region, New Zealand. J. Environ. Radioact. 2007, 92, 16–29. [Google Scholar] [CrossRef]
- King, C. Radon Emanation on San Andreas Fault. Nature 1978, 271, 516–519. [Google Scholar] [CrossRef]
- King, C. Impulsive radon emanation on a creeping segment of the San Andreas fault, California. Pure Appl. Geophys. 1985, 122, 340–352. [Google Scholar] [CrossRef]
- Tansi, C.; Tallarico, A.; Iovine, G.; Gallo, M.F.; Falcone, G. Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: The south-eastern Crati graben (Northern Calabria, Italy). Tectonophysics 2005, 396, 181–193. [Google Scholar] [CrossRef]
- Walia, V.; Yang, T.; Hong, W.; Lin, S.; Fu, C.; Wen, K.; Chen, C. Geochemical variation of soil-gas composition for fault trace and earthquake precursory studies along the Hsincheng fault in NW Taiwan. Appl. Radiat. Isot. 2009, 67, 1855–1863. [Google Scholar] [CrossRef]
- Immé, G.; Delf, S.L.; Nigro, S.L.; Morelli, D.; Patané, G. Gas radon emission related to geodynamic activity on Mt. Etna. Ann. Geophys. 2005, 48, 65–71. [Google Scholar] [CrossRef]
- Morelli, D.; Martino, S.D.; Immé, G.; Delfa, S.L.; Nigro, S.L.; Patané, G. Evidence of soil Radon as a tracer of magma uprising in Mt.Etna. Radiat. Meas. 2006, 41, 721–725. [Google Scholar] [CrossRef]
- Ghosh, D.; Deb, A.; Dutta, S.; Sengupta, R. Multifractality of radon concentration fluctuation in earthquake related signal. Fractals 2012, 20, 33–39. [Google Scholar] [CrossRef]
- Majumdar, K. A study of fluctuation in radon concentration behaviour as an earthquake precursor. Curr. Sci. India 2004, 86, 1288–1292. [Google Scholar]
- Moore, G.W. Magnetic disturbances preceding the 1964 Alaska earthquake. Nature 1964, 203, 508–509. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bernardi, A.; McGill, P.R.; Ladd, M.E.; Helliwell, R.A.; Villard, O.G. Low-frequency magnetic field measurements near the epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 1990, 17, 1465–1468. [Google Scholar] [CrossRef]
- Hayakawa, M.; Kawate, R.; Molchanov, O.; Yumoto, K. Results of ultra-low-frequency magnetic field measurements during the Guam earthquake of 8 August 1993. Geophys. Res. Lett. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ito, T.; Smirnova, N. Fractal analysis of ULF geomagnetic data associated with the Guam Earthquake on August 8, 1993. Geophys. Res. Lett. 1999, 26, 2797–2800. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Physical properties of the variations of the electric field of the earth preceding earthquakes, I. Tectonophysics 1984, 110, 73–98. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K. Physical properties of the variations of the electric field of the earth preceding earthquakes, II. Tectonophysics 1984, 110, 99–125. [Google Scholar] [CrossRef]
- Swati; Singh, B.; Pundhir, D.; Hobara, Y. Fractal analysis of Ultra Low Frequency magnetic field emissions observed at Agra associated with two major earthquakes occurred in Pakistan. J. Atmos. Electr. 2020, 39, 1–15. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S.; Nagao, T.; Kamogawa, M.; Flores-Márquez, E.L.; Ramírez-Rojas, A.; Perez-Oregon, J. Improving the Estimation of the Occurrence Time of an Impending Major Earthquake Using the Entropy Change of Seismicity in Natural Time Analysis. Geosciences 2023, 13, 222. [Google Scholar] [CrossRef]
- Kopytenko, Y.A.; Matiashvili, T.G.; Voronov, P.M.; Kopytenko, E.A.; Molchanov, O.A. Detection of Ultra-low-frequency Emissions Connected with the Spitak Earthquake and its Aftershock Activity, Based on Geomagnetic Pulsations Data at Dusheti and Vardzia Observatories. Phys. Earth Planet. Inter. 1993, 77, 85–95. [Google Scholar] [CrossRef]
- Du, A.; Huang, Q.; Yang, S. Epicenter location by abnormal ULF electromagnetic emissions. Geophys. Res. Lett. 2002, 29, 1455. [Google Scholar] [CrossRef]
- Hattori, K. ULF magnetic anomaly preceding the 1997 Kagoshima earthquakes. In Seismo Electomagnetics, Lithosphere-Atmosphere-Ionosphere Coupling; TERRAPUB: Tokyo, Japan, 2002; pp. 19–28. [Google Scholar]
- Hattori, K.; Serita, A.; Yoshino, C.; Hayakawa, M.; Isezaki, N. Singular spectral analysis and principal component analysis for signal discrimination of ULF geomagnetic data associated with 2000 Izu Island Earthquake Swarm. Phys. Chem. Earth 2006, 31, 281–291. [Google Scholar] [CrossRef]
- Hattori, K.; Han, P.; Yoshino, C.; Febriani, F.; Yamaguchi, H.; Chen, C.H. Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During 2000-2010: Case Studies and Statistical Studies. Surv. Geophys. 2013, 34, 293–316. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.H.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.Y.; Yoshida, S. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. Space Phys. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Xu, G.; Ashida, R.; Chen, C.H.; Febriani, F.; Yamaguchi, H. Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). J. Asian Earth Sci. 2015, 114, 321–326. [Google Scholar] [CrossRef]
- Xu, G.; Han, P.; Huang, Q.; Hattori, K.; Febriani, F.; Yamaguchi, H. Anomalous behaviors of geomagnetic diurnal variations prior to the 2011 off the Pacific coast of Tohoku earthquake (Mw9.0). J. Asian Earth Sci. 2013, 77, 59–65. [Google Scholar] [CrossRef]
- Hayakawa, M.; Rozhnoi, A.; Solovieva, M.; Hobara, Y.; Ohta, K.; Schekotov, A.; Fedorov, E. The lower ionospheric perturbation as a precursor to the 11 March 2011 Japan earthquake. Geomat. Nat. Hazards Risk 2013, 4, 275–287. [Google Scholar] [CrossRef]
- Nagao, T.; Orihara, Y.; Kamogawa, M. Precursory phenomena possibly related to the 2011 M9.0 off the Pacific coast of Tohoku earthquake. J. Disaster Res. 2014, 9, 303–310. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Romanov, A.; Romanov, A.; Tsybulya, K.; Davidenko, D.K.M.; Taylor, P. Atmosphere-iono- sphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results. Earth Sci. 2011, 24, 557–564. [Google Scholar] [CrossRef]
- Stanica, D.A.; Stanica, D.; Vladimirescu, N. Long-range anomalous electromagnetic effect related to M9 Great Tohoku earthquake. Earth Sci. 2015, 4, 31–38. [Google Scholar] [CrossRef]
- Stanica, D.A.; Stanica, D.; Blecki, J.; Ernst, T.; Jozwiak, W.; Slominski, J. Pre-seismic geomagnetic and ionosphere signatures related to the Mw5.7 earthquake occurred in Vrancea zone on September 24, 2016. Acta Geophys. 2018, 66, 167–177. [Google Scholar] [CrossRef]
- Stanica, D.A.; Stanica, D.; Valeca, M.; Iordache, S. Electromagnetic contribution to the resilience improvement against the Vrancea intermediate depth earthquakes, Romania. Ann. Geophys. 2020, 63, 551. [Google Scholar] [CrossRef]
- Sarlis, N.; Skordas, E.; Varotsos, P.; Nagao, T.; Kamogawa, M.; Tanaka, H.; Uyeda, S. Minimum of the order parameter fluctuations of seismicity before major earthquake in Japan. Proc. Natl. Acad. Sci. USA 2013, 110, 13734–13738. [Google Scholar] [CrossRef]
- Hirano, T.; Hattori, K. ULF geomagnetic changes possibly associated with the 2008 Iwate–Miyagi Nairiku earthquake. J. Asian Earth Sci. 2011, 41, 442–449. [Google Scholar] [CrossRef]
- Ouyang, X.; Liu, W.; Xiao, Z.; Hao, Y. Observations of ULF waves on the ground and ionospheric Doppler shifts during storm sudden commencement. J. Geophys. Res. Space Phys. 2016, 121, 2976–2983. [Google Scholar] [CrossRef]
- Eftaxias, K.; Balasis, G.; Contoyiannis, Y.; Papadimitriou, C.; Kalimeri, M.; Athanasopoulou, L.; Nikolopoulos, S.; Kopanas, J.; Antonopoulos, G.; Nomicos, C. Unfolding the procedure of characterizing recorded ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones-Part 1. Nat. Hazards Earth Syst. Sci. 2009, 9, 1953–1971. [Google Scholar] [CrossRef]
- Eftaxias, K.; Contoyiannis, Y.; Balasis, G.; Karamanos, K.; Kopanas, J.; Antonopoulos, G.; Koulouras, G.; Nomicos, C. Evidence of fractional-Brownian-motion-type asperity model for earthquake generation in candidate pre-seismic electromagnetic emissions. Nat. Hazards Earth Syst. Sci. 2008, 8, 657–669. [Google Scholar] [CrossRef]
- Kapiris, P.; Peratzakis, J.P.A.; Nomikos, K.; Eftaxias, K. VHF-electromagnetic evidence of the underlying pre-seismic critical stage. Earth Plan. Space 2002, 54, 1237–1246. [Google Scholar] [CrossRef]
- Kapiris, P.; Eftaxias, K.; Nomikos, K.; Polygiannakis, J.; Dologlou, E.; Balasis, G.; Bogris, N.; Peratzakis, A.; Hadjicontis, V. Evolving towards a critical point: A possible electromagnetic way in which the critical regime is reached as the rupture approaches. Nonlinear Process. Geophys. 2003, 10, 511–524. [Google Scholar] [CrossRef]
- Petraki, E. Electromagnetic Radiation and Radon-222 Gas Emissions as Precursors of Seismic Activity. Ph.D. Thesis, Department of Electronic and Computer Engineering, Brunel University, London, UK, 2016. [Google Scholar]
- Stavrakas, I.; Clarke, M.; Koulouras, G.; Stavrakakis, G.; Nomicos, C. Study of directivity effect on electromagnetic emissions in the HF band as earthquake precursors: Preliminary results on field observations. Tectonophysics 2007, 431, 263–271. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Chaldeos, Y.; Koulouras, G.; Nomicos, C.; Yannakopoulos, P.H.; Kottou, S.; Stonham, J. Fractal evolution of MHz electromagnetic signals prior to earthquakes: Results collected in Greece during 2009. Geomat. Nat. Hazards Risk 2016, 7, 550–564. [Google Scholar] [CrossRef]
- Contoyiannis, Y.; Kapiris, P.; Eftaxias, K. Monitoring of a preseismic phase from its electromagnetic precursors. Phys. Rev. E 2005, 71, 066123. [Google Scholar] [CrossRef]
- Eftaxias, K.; Panin, V.; Deryugin, Y. Evolution-EM signals before earthquakes in terms of mesomechanics and complexity. Tectonophysics 2007, 431, 273–300. [Google Scholar] [CrossRef]
- Eftaxias, K.; Sgrigna, V.; Chelidze, T. Mechanical and electromagnetic phenomena accompanying preseismic deformation: From laboratory to geophysical scale. Tectonophysics 2007, 341, 1–5. [Google Scholar] [CrossRef]
- Sorokin, V.; Novikov, V. Possible Interrelations of Space Weather and Seismic Activity: An Implication for Earthquake Forecast. Geosciences 2024, 14, 116. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.; Spyroglou, I.; Rigas, A.; Preka-Papadema, P.; Mavromichalaki, H.; Kiosses, I. The sun as a significant agent provoking earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 287–333. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D.; Karelin, A.; Boyarchuk, K. Multiparameter Approach and LAIC Validation. In Earthquake Precursors in the Atmosphere and Ionosphere: New Concepts; Springer: Dordrecht, The Netherlands, 2022; pp. 187–247. [Google Scholar] [CrossRef]
- Sorokin, V.M.; Chmyrev, V.M.; Hayakawa, M. A Review on Electrodynamic Influence of Atmospheric Processes to the Ionosphere. Open J. Earthq. Res. 2020, 9, 113–141. [Google Scholar] [CrossRef]
- Ouzunov, D.; Velichkova, S.; Botev, E. Modulation in VHF Wireless Signals Associated With Preearthquake Processes. Case Studies for the Balkans. Eur. Assoc. Geosci. Amplif. Eng. 2021, 2021, 1–5. [Google Scholar] [CrossRef]
- Suárez, G.; Espinosa-Aranda, J.; Cuéllar, A.; Ibarrola, G.; García, A.; Zavala, M.; Maldonado, S.; Islas, R. A dedicated seismic early warning network: The Mexican Seismic Alert System (SASMEX). Seismol. Res. Lett. 2018, 89, 382–391. [Google Scholar] [CrossRef]
- Moriya, T.; Mogi, T.; Takada, M. Anomalous pre-seismic transmission of VHF-band radio waves resulting from large earthquakes, and its statistical relationship to magnitude of impending earthquakes. Geophys. J. Int. 2010, 180, 858–870. [Google Scholar] [CrossRef]
- Devi, M.; Barbara, A.K.; Ruzhin, Y.Y.; Hayakawa, M. Over-the-Horizon Anomalous VHF Propagation and Earthquake Precursors. Surv. Geophys. 2012, 33, 1081–1106. [Google Scholar] [CrossRef]
- Erickson, W.C. Radio noise near the Earth in the 1–30 MHz frequency range. In Low Frequency Astrophysics from Space; Springer: Berlin/Heidelberg, Germany, 1990; pp. 57–69. [Google Scholar]
- Eftaxias, K.; Kapiris, P.; Polygiannakis, J.; Peratzakis, A.; Kopanas, J.; Antonopoulos, G.; Rigas, D. Experience of short term earthquake precursors with VLF–VHF electromagnetic emissions. Nat. Hazards Earth Syst. Sci. 2003, 3, 217–228. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L. Mass balance and a glacier surge of Guliya ice cap in the western Kunlun Shan between 2005 and 2015. Remote Sens. Environ. 2020, 244, 111832. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. Daily Terra–Aqua MODIS cloud-free snow and Randolph Glacier Inventory 6.0 combined product (M*D10A1GL06) for high-mountain Asia between 2002 and 2019. Earth Syst. Sci. Data 2021, 13, 767–776. [Google Scholar] [CrossRef]
- Gul, J.; Muhammad, S.; Liu, S.y.; Ullah, S.; Ahmad, S.; Hayat, H.; Tahir, A.A. Spatio-temporal changes in the six major glaciers of the Chitral River basin (Hindukush Region of Pakistan) between 2001 and 2018. J. Mt. Sci. 2020, 17, 572–587. [Google Scholar] [CrossRef]
- Hassan, J.; Chen, X.; Muhammad, S.; Bazai, N.A. Rock glacier inventory, permafrost probability distribution modeling and associated hazards in the Hunza River Basin, Western Karakoram, Pakistan. Sci. Total Environ. 2021, 782, 30. [Google Scholar] [CrossRef]
- Tian, L.; Yao, T.; Gao, Y.; Thompson, L.; Mosley-Thompson, E.; Muhammad, S.; Zong, J.; Wang, C.; Jin, S.; Li, Z. Two glaciers collapse in western Tibet. J. Glaciol. 2017, 63, 194–197. [Google Scholar] [CrossRef]
- Khan, M.Y.; Turab, S.A.; Ali, L.; Shah, M.T.; Qadri, S.T.; Latif, K.; Kanli, A.I.; Akhter, M.G. The dynamic response of coseismic liquefaction-induced ruptures associated with the 2019 M w 5.8 Mirpur, Pakistan, earthquake using HVSR measurements. Lead. Edge 2021, 40, 590–600. [Google Scholar] [CrossRef]
- Mahmood, I.; Qureshi, S.N.; Tariq, S.; Atique, L.; Iqbal, M.F. Analysis of Landslides Triggered by October 2005, Kashmir Earthquake. PLoS Curr. 2015, 7. [Google Scholar] [CrossRef] [PubMed]
- Nath, B.; Singh, R.P.; Gahalaut, V.K.; Singh, A.P. Dynamic Relationship Study between the Observed Seismicity and Spatiotemporal Pattern of Lineament Changes in Palghar, North Maharashtra (India). Remote Sens. 2022, 14, 135. [Google Scholar] [CrossRef]
- Kiseleva, E.; Mikhailov, V.; Smolyaninova, E.; Dmitriev, P.; Golubev, V.; Timoshkina, E.; Hooper, A.; Samiei-Esfahany, S.; Hanssen, R. PS-InSAR Monitoring of Landslide Activity in the Black Sea Coast of the Caucasus. Procedia Technol. 2014, 16, 404–413. [Google Scholar] [CrossRef]
- Lin, C.H.; Liu, D.; Liu, G. Landslide detection in La Paz City (Bolivia) based on time series analysis of InSAR data. Int. J. Remote Sens. 2019, 40, 6775–6795. [Google Scholar] [CrossRef]
- Fiorentini, N.; Maboudi, M.; Leandri, P.; Losa, M.; Gerke, M. Surface Motion Prediction and Mapping for Road Infrastructures Management by PS-InSAR Measurements and Machine Learning Algorithms. Remote Sens. 2020, 12, 3976. [Google Scholar] [CrossRef]
- Saralioglu, E. Mapping surface deformation using SNAP-StaMPS after Seferhisar-Izmir earthquake. Nat. Hazards 2022, 111, 687–708. [Google Scholar] [CrossRef]
- Lapenna, V.; Lorenzo, P.; Perrone, A.; Piscitelli, S.; Sdao, F.; Rizzo, E. High-resolution geoelectrical tomographies in the study of Giarrossa landslide. Bull. Eng. Geol. Environ. 2003, 62, 259–268. [Google Scholar] [CrossRef]
- Khan, M.Y.; Rehman, K.; Wajid, A.; Turab, S.A.; Latif, K.; Iqbal, S. Characterization of Ground Penerating Radar (GPR) wave response in shallow subsurface for forensic investigation in controlled environment. J. Himal. Earth Sci. 2019, 52, 58. [Google Scholar]
- Khan, M.Y.; Shafique, M.; Turab, S.A.; Ahmad, N. Characterization of an unstable slope using geophysical, UAV, and geological techniques: Karakoram Himalaya, Northern Pakistan. Front. Earth Sci. 2021, 9, 668011. [Google Scholar] [CrossRef]
- Schwarz, B.; Krawczyk, C.M. Coherent diffraction imaging for enhanced fault and fracture network characterization. Solid Earth 2020, 11, 1891–1907. [Google Scholar] [CrossRef]
- Hu, Z.; Shan, W. Landslide investigations in the northwest section of the lesser Khingan range in China using combined HDR and GPR methods. Bull. Eng. Geol. Environ. 2016, 75, 591. [Google Scholar] [CrossRef]
- Baradello, L.; Accaino, F. GPR and high resolution seismic integrated methods to understand the liquefaction phenomena in the Mirabello Village earthquake earthquake (ML 5.9) 2012. Eng. Geol. 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y. Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA. J. Appl. Geophys. 2001, 47, 199–215. [Google Scholar] [CrossRef]
- Yadav, K.S.; Vadnathani, R.B.; Goswami, K.R.; Patel, P.M. Anomalous Variations in Ionosphere TEC Before the Earthquakes of 2021 in the Different Parts of the Globe. Trends Sci. 2023, 20, 5169. [Google Scholar] [CrossRef]
- Muhammad, A.; Külahcı, F.; Birel, S. Investigating radon and TEC anomalies relative to earthquakes via AI models. J. Atmos. Sol.-Terr. Phys. 2023, 245, 106037. [Google Scholar] [CrossRef]
- Arikan, F.; Arikan, O.; Erol, C.B. Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model. Adv. Space Res. 2007, 39, 867–874. [Google Scholar] [CrossRef]
- Arikan, F.; Deviren, M.N.; Lenk, U.S.O.; Arikan, O. Observed Ionospheric Effects of 23 October 2011 Van, Turkey Earthquake. Geom. Nat. Haz. Risk 2012, 3, 638027. [Google Scholar] [CrossRef]
- Gulyaeva, T.; Arikan, F. Statistical discrimination of global post-seismic ionosphere effects under geomagnetic quiet and storm conditions. Geomat. Nat. Hazards Risk 2017, 8, 509–524. [Google Scholar] [CrossRef]
- Tuna, H.; Arikan, O.; Arikan, F. Model based Computerized Ionospheric Tomography in space and time. Adv. Space Res. 2018, 61, 2057–2073. [Google Scholar] [CrossRef]
- Sotomayor Beltran, C. Ionospheric Disturbances before and after the January 14, 2018 Earthquake in Peru; Academy of Sciences of the Czech Republic: Starė Mĕsto, Czech Republic, 2019. [Google Scholar]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef]
- Liu, J.Y.; Le, H.; Chen, Y.I.; Chen, C.H.; Liu, L.; Wan, W.; Su, Y.Z.; Sun, Y.Y.; Lin, C.H.; Chen, M.Q. Observations and simulations of seismoionospheric GPS total electron content anomalies before the 12 January 2010 M7 Haiti earthquake. J. Geophys. Res. Space Phys. 2011, 116, A4. [Google Scholar] [CrossRef]
- Sharma, G.; Champati ray, P.; Mohanty, S.; Kannaujiya, S. Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quat. Int. 2017, 462, 65–74. [Google Scholar] [CrossRef]
- Ghafar, M.M.; Salh, H.; Külahcı, F. Investigation of Radon, Total Electron Content and Linear and Nonlinear Variations of Meteorological Variables Due to Earthquakes: ARIMA and Monte Carlo Modelling. Turk. J. Sci. Technol. 2024, 19, 73–86. [Google Scholar] [CrossRef]
- Keskin, S.; Külahcı, F. ARIMA model simulation for total electron content, earthquake and radon relationship identification. Nat. Hazards 2023, 115, 1955–1976. [Google Scholar] [CrossRef]
- Mohammed, D.H.K.; Külahcı, F.; Alalı, A.S. Evaluation of the Effects of Earthquakes on Radon and Total Electron Content Values and Meteorological Changes on the North Anatolian Fault Zone, Türkiye. Turk. J. Sci. Technol. 2023, 18, 75–85. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, M.; Yu, T.; Wan, W.; Lei, J.; Liu, L.; Ning, B. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake? J. Geophys. Res. Space Phys. 2008, 113, A11. [Google Scholar] [CrossRef]
- Ondoh, T. Seismo-ionospheric phenomena. Adv. Space Res. 2000, 26, 1267–1272. [Google Scholar] [CrossRef]
- Freeshah, M.A.; Zhang, X.; Chen, J.; Zhao, Z.; Osama, N.; Sadek, M.; Twumasi, N. Detecting ionospheric TEC disturbances by three methods of detrending through dense CORS during a strong thunderstorm. Ann. Geophys. 2020, 63, GD667. [Google Scholar] [CrossRef]
- Toman, I.; Brčić, D.; Kos, S. Contribution to the research of the effects of Etna volcano activity on the features of the ionospheric total electron content behaviour. Remote Sens. 2021, 13, 1006. [Google Scholar] [CrossRef]
- Singh, V.; Chauhan, V.; Singh, O.P.; Singh, B. Ionospheric effect of earthquakes as determined from ground based TEC measurement and satellite data. Indian J. Radio Space Phys. 2010, 39, 63–70. [Google Scholar]
- Vogiannis, E.; Nikolopoulos, D. Radon sources and associated risk in terms of exposure and dose. Front. Public Health 2015, 2, 93477. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Louizi, A. Study of indoor radon and radon in drinking water in Greece and Cyprus: Implications to exposure and dose. Radiat. Meas. 2008, 43, 1305–1314. [Google Scholar] [CrossRef]
- WHO. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- WHO. Radon and Health; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- WHO. Radon and Health; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- WHO. Radon and Its Effects on Health; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Rahman, S.; Rafique, M.; Anwar, J.; Anwar, J. Radon measurement studies in workplace buildings of the Rawalpindi region and Islamabad Capital area, Pakistan. Build. Environ. 2010, 45, 421–426. [Google Scholar] [CrossRef]
- Rafique, M.; Matiullah, R.S.; Rahman, S.; Shahzad, M.I.; Azam, B.; Ahmad, A.; Majid, A.; Siddique, M.I. Assessment of indoor radon doses received by dwellers of Balakot-NWFP Pakistan: A pilot study. Carpathian J. Earth Environ. Sci. 2011, 6, 133–140. [Google Scholar]
- Rafique, M.; Iqbal, J.; Shah, S.A.A.; Alam, A.; Lone, K.J.; Barkat, A.; Shah, M.A.; Qureshi, S.A.; Nikolopoulos, D. On fractal dimensions of soil radon gas time series. J. Atmos. Sol.-Terr. Phys. 2022, 227, 105775. [Google Scholar] [CrossRef]
- Nasir, T.; Rafique, M.; Rahman, S.U.; Khalil, M.; Anwar, N. Evaluation of radon induced lung cancer risk in occupants of the old and new dwellings of the Dera Ismail Khan City, Pakistan. J. Radio-Anal. Nucl. Chem. 2014, 300, 1209–1215. [Google Scholar] [CrossRef]
- Kearfott, K.J.; Whetstone, Z.D.; Rafique, M. Use of a geographic information system (GIS) for targeting radon screening programs in South Dakota. J. Radiat. Res. 2016, 57, 84–90. [Google Scholar] [CrossRef]
- Dempsey, S.; Lyons, S.; Nolan, A. High Radon Areas and Lung Cancer Prevalence: Evidence from Ireland. J. Environ. Radioact. 2017, 182, 12–19. [Google Scholar] [CrossRef]
- Sukanya, S.; Jacob, N.; Sabu, J. Application of radon (222Rn) as an environmental tracer in hydrogeological and geological investigations: An overview. Chemosphere 2022, 303, 135141. [Google Scholar] [CrossRef]
- Tareen, A.D.K.; Asim, K.M.; Kearfott, K.J.; Rafique, M.; Nadeem, M.S.A.; Talat, I.; Mir, A.A.; Çelebi, F.V.; Alsolai, H.; Qureshi, S.A.; et al. Anomalies Forecast in Radon Time Series for Earthquake Likelihood Using Machine Learning-Based Ensemble Model. IEEE Access 2022, 10, 37984–37999. [Google Scholar] [CrossRef]
- Firstov, P.; Makarov, E. Reaction in the field of subsoil gases to the preparation of the earthquake on March 16, 2021 with MW = 6.6 (Kamchatka, Russia). J. Phys. Conf. Ser. 2021, 2094, 052026. [Google Scholar] [CrossRef]
- Tiwari, R.C.; Jaishi, H.P.; Singh, S.; Tiwari, R.P. A study of soil radon and seismicity along active fault region in northeastern India. Arab. J. Geosci. 2023, 16, 253. [Google Scholar] [CrossRef]
- Orihara, Y.; Kamogawa, M.; Nagao, T. Preseismic Changes of the Level and Temperature of Confined Groundwater related to the 2011 Tohoku Earthquake. Sci. Rep. 2014, 4, 6907. [Google Scholar] [CrossRef]
- Hartmann, J.; Berner, Z.; Stüben, D.; Henze, N. A statistical procedure for the analysis of seismotectonically induced hydrochemical signals: A case study from the Eastern Carpathians, Romania. Tectonophysics 2005, 405, 77–98. [Google Scholar] [CrossRef]
- Hosono, T.; Yamada, C.; Shibata, T.; Tawara, Y.; Wang, C.Y.; Manga, M.; Rahman, A.T.M.S.; Shimada, J. Coseismic Groundwater Drawdown Along Crustal Ruptures During the 2016 Mw 7.0 Kumamoto Earthquake. Water Resour. Res. 2019, 55, 5891–5903. [Google Scholar] [CrossRef]
- D’Incecco, S.; Di Carlo, P.; Aruffo, E.; Chatzisavvas, N.; Petraki, E.; Priniotakis, G.; Voyiatzis, I.; Yannakopoulos, P.H.; Nikolopoulos, D. Fractal dimension analysis applied to soil CO2 fluxes in Campotosto’s Seismic Area, Central Italy. Geosciences 2020, 10, 233. [Google Scholar] [CrossRef]
- Omori, Y.; Nagahama, H.; Yasuoka, Y.; Muto, J. Radon degassing triggered by tidal loading before an earthquake. Sci. Rep. 2021, 11, 4092. [Google Scholar] [CrossRef]
- Huang, P.; Lv, W.; Huang, R.; Luo, Q.; Yang, Y. Earthquake precursors: A review of key factors influencing radon concentration. J. Environ. Radioact. 2024, 271, 107310. [Google Scholar] [CrossRef]
- Petraki, E.; Nikolopoulos, D.; Panagiotaras, D.; Cantzos, D.; Yannakopoulos, P.; Nomicos, C.; Stonham, J. Radon-222: A Potential Short-Term Earthquake Precursor. J. Earth Sci. Clim. Chang. 2015, 6, 282. [Google Scholar] [CrossRef]
- Kuo, T.; Chen, W.; Lewis, C.; Ho, C.; Kuochen, H. Precursory Behavior of Groundwater Radon in Southeastern Taiwan: Effect of Tectonic Setting in the Subduction Zone. Pure Appl. Geophys. 2020, 177, 2877–2887. [Google Scholar] [CrossRef]
- Chetia, T.; Baruah, S.; Dey, C.; Baruah, S.; Sharma, S. Seismic induced soil gas radon anomalies observed at multiparametric geophysical observatory, Tezpur (Eastern Himalaya), India: An appraisal of probable model for earthquake forecasting based on peak of radon anomalies. Nat. Hazards 2022, 111, 3071–3098. [Google Scholar] [CrossRef]
- Iwata, D.; Nagahama, H.; Muto, J.; Yasuoka, Y. Non-parametric detection of atmospheric radon concentration anomalies related to earthquakes. Sci. Rep. 2018, 8, 13028. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Sato, T.; Takahashi, H.A.; Tsunomori, F.; Hosono, T.; Takahashi, M.; Kitamura, Y. Changes in groundwater radon concentrations caused by the 2016 Kumamoto earthquake. J. Hydrol. 2020, 584, 124712. [Google Scholar] [CrossRef]
- Torkar, D.; Zmazek, B.; Vaupotić, J.; Koba, I. Application of artificial neural networks in simulating radon levels in soil gas. Chem. Geol. 2010, 270, 1–8. [Google Scholar] [CrossRef]
- Romano, D.; Sabatino, G.; Magazù, S.; Bella, M.D.; Tripodo, A.; Gattuso, A.; Italiano, F. Distribution of soil gas radon concentration in north-eastern Sicily (Italy): Hazard evaluation and tectonic implications. Environ. Earth Sci. 2023, 82, 273. [Google Scholar] [CrossRef]
- Jaishi, H.P.; Singh, S.; Tiwari, R.P.; Tiwari, R.C. Analysis of Subsurface Soil Radon with the Environmental Parameters and Its Relation with Seismic Events. J. Geol. Soc. India 2023, 99, 847–858. [Google Scholar]
- Chowdhury, S.; Deb, A.; Barman, C.; Nurujjaman, M.; Bora, D.K. Simultaneous monitoring of soil 222Rn in the Eastern Himalayas and the geothermal region of eastern India: An earthquake precursor. Nat. Hazards 2022, 112, 1477–1502. [Google Scholar] [CrossRef]
- Walia, V.; Kumar, A.; Chowdhury, S.; Lin, S.J.; Lee, H.F.; Fu, C.C. Earthquake precursory study using decomposition technique: Time series soil radon monitoring data from the San-Jie Station in Northern Taiwan. J. Radioanal. Nucl. Chem. 2023, 333, 3047–3054. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Eleftheriou, G.; Kafatos, M.; Tsinganos, K.; Tselentis, G.A.; Mouzakiotis, E.; Ouzounov, D. Observations on the stress related variations of soil radon concentration in the Gulf of Corinth, Greece. Sci. Rep. 2022, 12, 5442. [Google Scholar] [CrossRef]
- Manisa, K.; Erdogan, M.; Zedef, V.; Bircan, H.; Biçer, A. Variations of 222Rn concentrations over active fault system in Simav, Kütahya, Western Turkey: Possible causes for soil-gas 222Rn anomalies. Appl. Radiat. Isot. 2022, 190, 110484. [Google Scholar] [CrossRef]
- Galiana-Merino, J.J.; Molina, S.; Kharazian, A.; Toader, V.E.; Moldovan, I.A.; Gómez, I. Analysis of radon measurements in relation to daily seismic activity rates in the vrancea region, romania. Sensors 2022, 22, 4160. [Google Scholar] [CrossRef]
- Chowdhury, S.; Guha Bose, A.; Das, A.; Deb, A. A study of some research work on soil radon concentration and ionospheric total electron content as earthquake precursors. J. Radioanal. Nucl. Chem. 2024, 333, 1633–1659. [Google Scholar] [CrossRef]
- Eftaxias, K. Footprints of non-extensive Tsallis statistics, self-affinity and universality in the preparation of the L’Aquila earthquake hidden in a pre-seismic EM emission. Physica A 2010, 389, 133–140. [Google Scholar] [CrossRef]
- Planinić, J.; Radolić, V.; Lazanin, Z. Temporal variations of radon in soil related to earthquakes. Appl. Radiat. Isot. 2001, 55, 267–272. [Google Scholar] [CrossRef]
- Radolić, V.; Vuković, B.; Stanić, D.; Planinić, J. Radon chaotic regime in the atmosphere and soil. Fizika A 2005, 2, 195–206. [Google Scholar]
- Alam, A.; Wang, N.; Zhao, G.; Mehmood, T.; Nikolopoulos, D. Long-lasting patterns of radon in groundwater at Panzhihua, China: Results from DFA, fractal dimensions and residual radon concentration. Geochem. J. 2019, 53, 341–358. [Google Scholar] [CrossRef]
- Alam, A.; Wang, N.; Petraki, E.; Barkat, A.; Huang, F.; Shah, M.A.; Cantzos, D.; Priniotakis, G.; Yannakopoulos, P.H.; Papoutsidakis, M.; et al. Fluctuation Dynamics of Radon in Groundwater Prior to the Gansu Earthquake, China (22 July 2013: Ms = 6.6): Investigation with DFA and MFDFA Methods. Pure Appl. Geophys. 2021, 178, 3375–3395. [Google Scholar] [CrossRef]
- Stoulos, S.; Ioannidou, A. Time-series analysis of radon monitoring in soil gas in association with earthquakes in Stivos faulting, at Lagadas basin, North Greece. J. Radioanal. Nucl. Chem. 2023, 332, 4581–4590. [Google Scholar] [CrossRef]
- Zhou, H.; Wan, Y.; Su, H.; Li, C. Spatial–temporal evolution of soil gas Rn before two Ms ≥ 5.0 earthquakes in the mid-eastern of the Qilian fault zone (QLF). Sci. Rep. 2023, 13, 21491. [Google Scholar] [CrossRef]
- Al-Tamimi, M.H.; Abumura, K. Radon anomalies along faults in North of Jordan. Radiat. Meas. 2001, 34, 397–400. [Google Scholar] [CrossRef]
- Mogro-Campero, A.; Fleischer, R. Search for Long-Distance Migration of Subsurface Radon; US Department of Energy: Washington, DC, USA, 1979.
- Sadovsky, M.A.; Nersesov, I.L.; Nigmatullaev, S.K.; Latynina, L.A.; Lukk, A.A.; Semenov, A.N.; Simbireva, I.G.; Ulomov, V.I. The Processes Preceding Strong Earthquakes in Some Regions of Middle Asia. Tectonophysics 1972, 14, 295–307. [Google Scholar] [CrossRef]
- King, C.Y. Gas geochemistry applied to earthquake prediction: An overview. Geophys. Res. Solid Earth 1986, 91, 12269–12281. [Google Scholar] [CrossRef]
- Wakita, H.; Nakamura, Y.; Notsu, K.; Noguchi, M.; Asada, T. Radon anomaly: A possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science 1980, 207, 882. [Google Scholar] [CrossRef]
- Shapiro, M.H.; Melvin, J.D.; Tombrello, T.A.; Whitcomb, J.H. Automated radon monitoring at a hard-rock site in the southern California transverse ranges. Geophys. Res. Solid Earth 1980, 85, 3058–3064. [Google Scholar] [CrossRef]
- Hauksson, E. Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis. Geophys. Res. Solid Earth 1981, 86, 9397–9410. [Google Scholar] [CrossRef]
- Igarashi, G.; Saeki, S.; Takahata, N. Ground-water radon anomaly before the Kobe earthquake in Japan. Science 1995, 269, 60–61. [Google Scholar] [CrossRef] [PubMed]
- Ohno, M.; Wakita, H. Coseismic radon changes of the 1995 Hyogo-ken Nanbu earthquake. J. Phys. Earth 1996, 44, 391–395. [Google Scholar] [CrossRef]
- Virk, H.S.; Walia, V.; Kumar, N. Helium/radon pre- cursory anomalies of Chamoli earthquake, Garhwal Himalaya. India. J. Geodyn. 2001, 31, 201–210. [Google Scholar] [CrossRef]
- Baykara, O.; Dogru, M. Measurements of radon and uranium concentration in water and soil samples from East Anatolian Active Fault Systems (Turkey). Radiat. Meas. 2006, 41, 362–367. [Google Scholar] [CrossRef]
- Kuo, T.; Fan, K.; Kuochen, H.; Han, Y.; Chu, H.; Lee, Y. Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake. J. Environ. Radioact. 2006, 88, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Zmazek, B.; Todorovski, L.; Zivcic, M.; Dzeroski, S.; Vaupotic, J.; Kobal, I. Radon in a thermal spring: Identification of anomalies related to seismic activity. Appl. Radiat. Isot. 2006, 64, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, S.; Mahajan, S.; Bajwa, B.S.; Kalia, R.; Dhar, S. Earthquake precursory studies in Kangra Valley of North West Himalayas, India with special emphasis on radon emission. Appl. Radiat. Isot. 2009, 67, 1904–1911. [Google Scholar] [CrossRef]
- Kuo, T. Correlating Precursory Declines in Groundwater Radon with Earthquake Magnitude. Groundwater 2014, 52, 217–224. [Google Scholar] [CrossRef]
- Skelton, A.; Andrén, M.; Kristmannsdóttir, H.; Stockmann, G.; Mörth, C.M.; Sveinbjörnsdóttir, Á.; Jónsson, S.; Sturkell, E.; Guðrúnardóttir, H.R.; Hjartarson, H.; et al. Changes in groundwater chemistry before two consecutive earthquakes in Iceland. Nat. Geosci. 2014, 7, 752–756. [Google Scholar] [CrossRef]
- Nevinsky, I.; Tsvetkova, T.; Nevinskaya, E. Measurement of radon in ground waters of the Western Caucasus for seismological application. J. Environ. Radioact. 2015, 149, 19–35. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, Z.; Wang, G.; Yan, R.; Zhang, Z. Groundwater radon precursor anomalies identification by decision tree method. Appl. Geochem. 2020, 121, 104696. [Google Scholar] [CrossRef]
- Qiao, Z.; Wang, G.; Fu, H.; Hu, X. Identification of Groundwater Radon Precursory Anomalies by Critical Slowing down Theory: A Case Study in Yunnan Region, Southwest China. Water 2022, 14, 541. [Google Scholar] [CrossRef]
- Alam, A.; Wang, N.; Zhao, G.; Barkat, A. Implication of radon monitoring for earthquake surveillance using statistical techniques: A case study of Wenchuan earthquake. Geofluids 2020, 2020, 2429165. [Google Scholar] [CrossRef]
- Tarakçı, M.; Harmanşah, C.; Saç, M.M.; İçhedef, M. Investigation of the relationships between seismic activities and radon level in western Turkey. Appl. Radiat. Isot. 2014, 83 Pt A, 12–17. [Google Scholar] [CrossRef]
- Sandıkcıoğlu Gümüş, A. Investigation of the relationship between the decline in well waters radon anomalies and the earthquake magnitude (Mw). J. Radioanal. Nucl. Chem. 2024, 333, 2307–2320. [Google Scholar] [CrossRef]
- Jin, X.; Bu, J.; Qiu, G.; Ma, L.; Chen, Z.; Chen, T.; Wu, J.; Pan, B.; Ji, H.; Tian, J.; et al. Non-normal distribution of radon and residual radon and short-term abnormal precursors of residual radon before major earthquakes. Earth Sci. Inform. 2022, 15, 2495–2511. [Google Scholar] [CrossRef]
- Kandari, T.; Aswal, S.; Prasad, M.; Bourai, A.; Ramola, R. Estimation of annual effective dose from radon concentration along Main Boundary Thrust (MBT) in Garhwal Himalaya. J. Radiat. Res. Appl. Sci. 2016, 9, 228–233. [Google Scholar] [CrossRef]
- Fonollosa, E.; Peñalver, A.; Borrull, F.; Aguilar, C. Radon in spring waters in the south of Catalonia. J. Environ. Radioact. 2016, 151, 275–281. [Google Scholar] [CrossRef]
- Alonso, H.; Cruz-Fuentes, T.; Rubiano, J.G.; González-Guerra, J.; Cabrera, M.d.C.; Arnedo, M.A.; Tejera, A.; Rodríguez-Gonzalez, A.; Pérez-Torrado, F.J.; Martel, P. Radon in groundwater of the northeastern Gran Canaria aquifer. Water 2015, 7, 2575–2590. [Google Scholar] [CrossRef]
- Rahimi, M.; Abadi, A.A.M.; Koopaei, L.J. Radon concentration in groundwater, its relation with geological structure and some physicochemical parameters of Zarand in Iran. Appl. Radiat. Isot. 2022, 185, 110223. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.Q.; Khan, J.; Riaz, M.T.; Rafique, M.; Zaman, A.; Khan, S. Radon concentration in spring water as an indicator of seismic activity: A case study of the Muzaffarabad Fault in Pakistan. Environ. Monit. Assess. 2024, 196, 41. [Google Scholar] [CrossRef]
- Vogiannis, E.; Nikolopoulos, D. Modelling of radon concentration peaks in thermal spas: Application to Polichnitos and Eftalou spas (Lesvos Island-Greece). Sci. Total Environ. 2008, 405, 36–44. [Google Scholar] [CrossRef]
- Yan, X.; Shi, Z.; Wang, G.; Zhang, H.; Bi, E. Detection of possible hydrological precursor anomalies using long short-term memory: A case study of the 1996 Lijiang earthquake. J. Hydrol. 2021, 599, 126369. [Google Scholar] [CrossRef]
- Hayashi, K.; Yasuoka, Y.; Nagahama, H.; Muto, J.; Ishikawa, T.; Omori, Y.; Suzuki, T.; Homma, Y.; Mukai, T. Normal seasonal variations for atmospheric radon concentration: A sinusoidal model. J. Environ. Radioact. 2015, 139, 149–153. [Google Scholar] [CrossRef]
- Omori, Y.; Tohbo, I.; Nagahama, H.; Ishikawa, Y.; Takahashi, M.; Sato, H.; Sekine, T. Variation of atmospheric radon concentration with bimodal seasonality. Radiat. Meas. 2009, 44, 1045–1050. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Shinogi, M. Anomaly in atmospheric radon concentration: A possible precursor of the 1995 Kobe, Japan, earthquake. Health Phys. 1997, 72, 759–761. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Yasuoka, Y.; Nagahama, H.; Muto, J.; Omori, Y.; Ihara, H.; Mukai, T. Anomalous changes in atmospheric radon concentration before and after the 2011 northern Wakayama Earthquake (Mj 5.5). Rad. Prot. Dos. 2016, 174, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Kawada, Y.; Nagahama, H.; Omori, Y.; Yasuoka, Y.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Time-scale invariant changes in atmospheric radon concentration and crustal strain prior to a large earthquake. Nonlinear Process. Geophys. 2007, 14, 123–130. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Kawada, Y.; Nagahama, H.; Omori, Y.; Ishikawa, T.; Tokonami, S.; Shinogi, M. Preseismic changes in atmospheric radon concentration and crustal strain. Phys. Chem. Earth 2009, 34, 431–434. [Google Scholar] [CrossRef]
- Tsunogai, U.; Wakita, H. Precursory chemical changes in ground water: Kobe earthquake, Japan. Science 1995, 269, 61–63. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Nagahama, H.; Muto, J.; Mukai, T. The anomaly in atmospheric radon concentrations prior to the 2011 Tohoku-Oki earthquake in Japan. Radiat. Environ. Med. 2018, 7, 86–94. [Google Scholar]
- Draganov, A.B.; Inan, U.S.; Taranenko, Y.N. ULF magnetic signatures at the Earth surface due to ground water flow: A possible precursor to earthquakes. Geophys. Res. Lett. 1991, 18, 1127–1130. [Google Scholar] [CrossRef]
- Sasai, Y. Tectonomagnetic modeling on the basis of the linear piezomagnetic effect. Bull. Earthq. Res. Inst. Univ. Tokyo 1991, 66, 585–722. [Google Scholar]
- Fitterman, D.V. Electrokinetic and magnetic anomalies associated with dilatant regions in a layered Earth. Geophys. Res. Solid Earth 1978, 83, 5923–5928. [Google Scholar] [CrossRef]
- Varotsos, P.; Alexopoulos, K.; Nomicos, K.; Lazaridou, M. Earthquake prediction and electric signals. Nature 1986, 322, 120. [Google Scholar] [CrossRef]
- Mizutani, H.; Ishido, T. A New Interpretation of Magnetic Field Variation Associated with the Matsushiro Earthquakes. J. Geomagn. Geoelectr. 1976, 28, 179–188. [Google Scholar] [CrossRef]
- Jouniaux, L.; Pozzi, J.P. Streaming potential and permeability of saturated sandstones under triaxial stress: Consequences for electrotelluric anomalies prior to earthquakes. Geophys. Res. Solid Earth 1995, 100, 10197–10209. [Google Scholar] [CrossRef]
- Surkov, V.; Uyeda, S.; Tanaka, H.; Hayakawa, M. Fractal properties of medium and seismoelectric phenomena. J. Geodyn. 2002, 33, 477–487. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Springer Science: Berlin/Heidelberg, Germany, 1988. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Kawada, Y.; Omori, Y.; Nagahama, H.; Ishikawa, T.; Tokonami, S.; Hosoda, M.; Hashimoto, T.; Shinogi, M. Anomalous change in atmospheric radon concentration sourced from broad crustal deformation: A case study of the 1995 Kobe earthquake. Appl. Geochem. 2012, 27, 825–830. [Google Scholar] [CrossRef]
- Contoyiannis, Y.; Eftaxias, K. Tsallis and Levy statistics in the preparation of an earthquake. Nonlinear Process. Geophys. 2008, 15, 379–388. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Yannakopoulos, P.H.; Petraki, E.; Cantzos, D.; Nomicos, C. Long-Memory and Fractal Traces in kHz-MHz Electromagnetic Time Series Prior to the ML=6.1, 12/6/2007 Lesvos, Greece Earthquake: Investigation through DFA and Time-Evolving Spectral Fractals. J. Earth Sci. Clim. Chang. 2018, 9, 1–15. [Google Scholar]
- Scholz, C.; Sykes, L.; Agarwal, Y. Earthquake prediction: A physical basis. Science 1973, 181, 803–810. [Google Scholar] [CrossRef]
- Lay, T.; Williams, Q.; Garnero, E. The core-mantle boundary layer and deep Earth dynamic. Nature 1998, 392, 461–468. [Google Scholar] [CrossRef]
- Anderson, O.; Grew, P. Stress corrosion theory of crack propagation with applications to geophysics. Rev. Geophys. Space Phys. 1997, 15, 77–84. [Google Scholar] [CrossRef]
- Gregorić, A.; Zmazek, B.; Dźeroski, S.; Torkar, D.; Vaupotić, J. Radon as an Earthquake Precursor-Methods for Detecting Anomalies. In Earthquake Research and Analysis-Statistical Studies, Observation and Planning; D’Amico, S., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 9. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Matsoukas, C.; Yannakopoulos, P.H.; Petraki, E.; Cantzos, D.; Nomicos, C. Long-Memory and Fractal Trends in Variations of Environmental Radon in Soil: Results from Measurements in Lesvos Island in Greece. J. Earth Sci. Clim. Chang. 2018, 9, 460. [Google Scholar] [CrossRef]
- Talwani, P.; Chen, L.; Gahalaut, K. Seismogenic permeability, ks. J. Geophys. Res. 2007, 112, B7. [Google Scholar] [CrossRef]
- Awais, M.; Barkat, A.; Ali, A.; Rehman, K.; Ali Zafar, W.; Iqbal, T. Satellite thermal IR and atmospheric radon anomalies associated with the Haripur earthquake (Oct 2010; Mw 5.2), Pakistan. Adv. Space Res. 2017, 60, 2333–2344. [Google Scholar] [CrossRef]
- Barkat, A.; Ali, A.; Hayat, U.; Crowley, Q.G.; Rehman, K.; Siddique, N.; Haidar, T.; Iqbal, T. Time series analysis of soil radon in Northern Pakistan: Implications for earthquake forecasting. Appl. Geochem. 2018, 97, 197–208. [Google Scholar] [CrossRef]
- Jilani, Z.; Mehmood, T.; Alam, A.; Awais, M.; Iqbal, T. Monitoring and descriptive analysis of radon in relation to seismic activity of Northern Pakistan. J. Environ. Radioact. 2017, 172, 43–51. [Google Scholar] [CrossRef]
- Yonaiguchi, N.; Ida, Y.; Hayakawa, M.; Masuda, S. Fractal analysis for VHF electromagnetic noises and the identification of preseismic signature of an earthquake. J. Atmos. Sol. Ter. Phys. 2007, 69, 1825–1832. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ida, Y.; Gotoh, K. Multifractal analysis for the ULF geomagnetic data during the Guam earthquake. Electromagnetic Compatibility and Electromagnetic Ecology. In Proceedings of the IEEE 6th International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology, Saint Petersburg, Russia, 21–24 June 2005; pp. 239–243. [Google Scholar]
- Balasis, G.; Daglis, I.A.; Kapiris, P.; Mandea, M.; Vassiliadis, D.; Eftaxias, K. From pre-storm activity to magnetic storms: A transition described in terms of fractal dynamics. Ann. Geophys. 2006, 24, 3557–3567. [Google Scholar] [CrossRef]
- Balasis, G.; Potirakis, S.; Mandea, M. Investigating Dynamical Complexity of Geomagnetic Jerks Using Various Entropy Measures. Front. Earth Sci. 2016, 4, 71. [Google Scholar] [CrossRef]
- Cantzos, D.; Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Fractal Analysis, Information-Theoretic Similarities and SVM Classification for Multichannel, Multi-Frequency Pre-Seismic Electromagnetic Measurements. J. Earth Sci. Clim. Chang. 2016, 7, 8. [Google Scholar] [CrossRef]
- Cantzos, D.; Nikolopoulos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Earthquake precursory signatures in electromagnetic radiation measurements in terms of day-to-day fractal spectral exponent variation: Analysis of the eastern Aegean 13/04/2017–20/07/2017 seismic activity. J. Seismol. 2018, 22, 1499–1513. [Google Scholar] [CrossRef]
- de la Torre, F.C.; Ramirez-Rojas, A.; Pavia-Miller, C.; Angulo-Brown, F.; E, E.Y.; Peralta, J. A comparison between spectral and fractal methods in electrotelluric time series. Rev. Mex. Fis. 1999, 45, 298–302. [Google Scholar]
- de la Torre, F.C.; Gonzaalez-Trejo, J.; Real-Ramírez, C.; Hoyos-Reyes, L. Fractal dimension algorithms and their application to time series associated with natural phenomena. J. Phys. Conf. Ser. 2013, 475, 012002. [Google Scholar] [CrossRef]
- Gotoh, K.; Hayakawa, M.; Smirnova, N. Fractal analysis of the ULF geomagnetic data obtained at Izu Peninsula, Japan in relation to the nearby earthquake swarm of June-August 2000. Nat. Hazards Earth Sys. 2003, 3, 229–234. [Google Scholar] [CrossRef]
- Gotoh, K.; Hayakawa, M.; Smirnova, N.; Hattori, K. Fractal analysis of seismogenic ULF emissions. Phys. Chem. Earth 2004, 29, 419–424. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ida, Y.; Gotoh, K. Fractal (mono- and multi-) analysis for the ULF data during the 1993 Guam earthquake for the study of prefracture criticality. Curr. Dev. Theory Appl. Wavelets 2008, 2, 159–174. [Google Scholar]
- Ida, Y.; Hayakawa, M. Fractal analysis for the ULF data during the 1993 Guam earthquake to study prefracture criticality. Nonlinear Process. Geophys. 2012, 13, 409–412. [Google Scholar] [CrossRef]
- Ida, Y.; Yang, D.; Li, Q.; Sun, H.; Hayakawa, M. Fractal analysis of ULF electromagnetic emissions in possible association with earthquakes in China. Nonlinear Process. Geophys. 2012, 19, 577–583. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Petraki, E.; Cantzos, D.; Yannakopoulos, P.H.; Panagiotaras, D.; Nomicos, C. Fractal Analysis of Pre-Seismic Electromagnetic and Radon Precursors: A Systematic Approach. J. Earth Sci. Clim. Chang. 2016, 7, 376. [Google Scholar]
- Smirnova, N.; Hayakawa, M.; Gotoh, K. Precursory behavior of fractal characteristics of the ULF electromagnetic fields in seismic active zones before strong earthquakes. Phys. Chem. Earth 2004, 29, 445–451. [Google Scholar] [CrossRef]
- Smirnova, N.A.; Kiyashchenko, D.A.; Troyan, V.N.; Hayakawa, M. Multifractal Approach to Study the Earthquake Precursory Signatures Using the Ground-Based Observations. Rev. Appl. Phys. 2013, 2, 3. [Google Scholar]
- Karamanos, K. From symbolic dynamics to a digital approach: Chaos and Transcendence. Lect. Notes Phys. 2000, 550, 357–371. [Google Scholar]
- Karamanos, K. Entropy analysis of substitutive sequences revisited. J. Phys. A Math. Gen. 2001, 34, 9231–9241. [Google Scholar] [CrossRef]
- Karamanos, K.; Nicolis, G. Symbolic Dynamics and Entropy Analysis of Feigenbaum Limit Sets. Chaos Solitons Fractals 1999, 10, 1135–1150. [Google Scholar] [CrossRef]
- Karamanos, K.; Dakopoulos, D.; Aloupis, K.; Peratzakis, A.; Athanasopoulou, L.; Nikolopoulos, S.; P, P.K.; Eftaxias, K. Study of pre-seismic electromagnetic signals in terms of complexity. Phys. Rev. E 2006, 74, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, P.; Sarlis, N.; Skordas, E. Natural time analysis of critical phenomena. Chaos 2009, 19, 11361–11364. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E. Scale-specific order parameter fluctuations of seismicity in natural time before mainshocks. Europhys. Lett. 2011, 96, 59002. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E. Natural Time Analysis: The New View of Time. Precursory Seismic Electric Signals, Earthquakes and Other Complex Time-Series; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Self-organized criticality and earthquake predictability: A long-standing question in the light of natural time analysis. Europhys. Lett. 2020, 132, 29001. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Order Parameter and Entropy of Seismicity in Natural Time before Major Earthquakes: Recent Results. Geosciences 2022, 12, 225. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Cantzos, D.; Petraki, E.; Yannakopoulos, P.H.; Nomicos, C. Traces of long-memory in pre-seismic MHz electromagnetic time series-Part1: Investigation through the R/S analysis and time-evolving spectral fractals. J. Earth Sci. Clim. Chang. 2016, 7, 7. [Google Scholar]
- Pastén, D.; Pavez-Orrego, C. Multifractal time evolution for intraplate earthquakes recorded in southern Norway during 1980–2021. Chaos Solitons Fractals 2023, 167, 113000. [Google Scholar] [CrossRef]
- Telesca, L.; Lapenna, V.; Vallianatos, F. Monofractal and multifractal approaches in investigating scaling properties in temporal patterns of the 1983–2000 seismicity in the Western Corinth Graben, Greece. Phys. Earth Planet Int. 2002, 131, 63–79. [Google Scholar] [CrossRef]
- Telesca, L.; Lapenna, V.; Macchiato, M. Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences. Chaos Solitons Fractals 2004, 19, 1–15. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Alam, A.; Petraki, E.; Papoutsidakis, M.; Yannakopoulos, P.; Moustris, K.P. Stochastic and self-organisation patterns in a 17-year PM10 time series in Athens, Greece. Entropy 2021, 23, 307. [Google Scholar] [CrossRef] [PubMed]
- Morales, I.O.; Landa, O.; Fossion, R.; Frank, A. Scale invariance, self-similarity and critical behaviour in classical and quantum system. J. Phys. Conf. Ser. 2012, 380, 012020. [Google Scholar] [CrossRef]
- May, R.M. Simple mathematical models with very complicated dynamics. Nature 1976, 261, 459–467. [Google Scholar] [CrossRef]
- Sugihara, G.; May, R. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 1990, 344, 734–741. [Google Scholar] [CrossRef]
- Mandelbrot, B.B.; Ness, J.W.V. Fractional Brownian motions, fractional noises and applications. J. Soc. Ind. Appl. Math. 1968, 10, 422–437. [Google Scholar] [CrossRef]
- Musa, M.; Ibrahim, K. Existence of long memory in ozone time series. Sains Malays. 2012, 41, 1367–1376. [Google Scholar]
- Hurst, H. Long term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Hurst, H.; Black, R.; Simaiki, Y. Long-Term Storage: An Experimental Study; Constable: London, UK, 1965. [Google Scholar]
- Lopez, T.; Martınez-Gonzalez, C.; Manjarrez, J.; Plascencia, N.; Balankin, A. Fractal Analysis of EEG Signals in the Brain of Epileptic Rats, with and without Biocompatible Implanted Neuroreservoirs. AMM 2009, 15, 127–136. [Google Scholar] [CrossRef]
- Fujinawa, Y.; Takahashi, K. Electromagnetic radiations associated with major earthquakes. Phys. Earth Planet. Inter. 1998, 105, 249–259. [Google Scholar] [CrossRef]
- Hayakawa, M. VLF/LF radio sounding of ionospheric perturbations associated with earthquakes. Sensors 2007, 7, 1141–1158. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Moustris, K.; Petraki, E.; Koulougliotis, D.; Cantzos, D. Fractal and long-memory traces in PM10 time series in Athens, Greece. Environmnets 2019, 6, 29. [Google Scholar] [CrossRef]
- Katz, M. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Raghavendra, B.; Dutt, D.N. Computing Fractal Dimension of Signals using Multiresolution Box-counting Method. Nter. J. Elec. Comp. Ener. Electron. Commun. Eng. 2010, 4, 183–198. [Google Scholar]
- Higuchi, T. Approach to an irregular time series on basis of the fractal theory. Physic D 1988, 31, 277–283. [Google Scholar] [CrossRef]
- Sevcik, C. On fractal dimension of waveforms. Chaos Solitons Fractals 2006, 27, 579–580. [Google Scholar] [CrossRef]
- Rikitake, T. Earthquake Prediction; Elsevier Science Pub. Co.: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Talwani, P. An empirical earthquake prediction model. Phys. Earth Planet. Inter. 1979, 18, 288–302. [Google Scholar] [CrossRef]
- Guha, S. Premonitory Crustal Deformations, Strains and Seismotectonic Features (B-VALUES) Preceding Koyna Earthquakes. Dev. Geotecton. 1979, 13, 549–559. [Google Scholar] [CrossRef]
- Dobrovolsky, I.; Zubkov, S.; Miachkin, V. Estimation of the size of earthquake preparation zones. Pure Appl. Geophys. 1979, 117, 1025–1044. [Google Scholar] [CrossRef]
- Fleischer, R.L. Dislocation model for radon response to distant earthquakes. Geophys. Res. Lett. 1981, 8, 477–480. [Google Scholar] [CrossRef]
- Fleischer, R.L.; Mogro-Campero, A. Association of subsurface radon changes in Alaska and the northeastern United States with earthquakes. Geochim. Cosmochim. Acta 1985, 49, 1061–1071. [Google Scholar] [CrossRef]
- Virk, H.S. A critique of emperical scaling relationship between earthquake magnitude, epicentral distance and precursor time for interpretation of radon data. J. Earthq. Predict. Res. 1996, 5, 574–583. [Google Scholar]
- Warwick, J.W.; Stoker, C.; Meyer, T.R. Radio emission associated with rock fracture: Possible application to the Great Chilean Earthquake of May 22, 1960. Geophys. Res. Solid Earth 1982, 87, 2851–2859. [Google Scholar] [CrossRef]
- Smith, B.E.; Johnston, M.J.S. A tectonomagnetic effect observed before a magnitude 5.2 earthquake near Hollister, California. J. Geophys. Res. 1976, 81, 3556–3560. [Google Scholar] [CrossRef]
- Yulin, Z.; Fuye, Q. Geoelectric precursors to strong earthquakes in China. Tectonophysics 1994, 233, 99–113. [Google Scholar] [CrossRef]
- Wallace, R.; Teng, T. Forecast of the Sungpan-Pingwu earthquakes, 1976. Bull. Seismol. Soc. Am. 1980, 70, 1199–1223. [Google Scholar] [CrossRef]
- Gershenzon, N.; Gokhberg, M. On the origin of electrotelluric disturbances prior to an earthquake in Kalamata, Greece. Tectonophysics 1993, 224, 169–174. [Google Scholar] [CrossRef]
- Serebryakova, O.; Bilichenko, S.; Chmyrev, V.; Parrot, M.; Rauch, J.L.; Lefeuvre, F.; Pokhotelov, O.A. Electromagnetic ELF radiation from earthquake regions as observed by low-altitude satellites. Geophys. Res. Lett. 1992, 19, 91–94. [Google Scholar] [CrossRef]
- Dea, J.; Hansen, P.; Boerner, W. Long-term EMF background noise measurements, the existence of window regions and applications to earthquake precursor emission studies. Phys. Earth Planet Inter. 1993, 77, 109–125. [Google Scholar] [CrossRef]
- Shalimov, S.; Gokhberg, M. Lithosphere–ionosphere coupling mechanism and its application to the earthquake in Iran on June 20, 1990. A review of ionospheric measurements and basic assumptions. Phys. Earth Planet. Inter. 1998, 105, 211–218. [Google Scholar] [CrossRef]
- Ruzhin, Y.; Nomicos, C. Radio VHF precursors of earthquakes. Nat. Hazards 2005, 40, 573–583. [Google Scholar]
- Smirnova, N.; Hayakawa, M. Fractal characteristics of the ground-observed ULF emissions in relation to geomagnetic and seismic activities. J. Atmos. Sol. Terr. Phys. 2007, 69, 1833–1841. [Google Scholar] [CrossRef]
- Maeda, K.; Tokimasa, N. Decametric radiation at the time of the Hyogo-ken Nanbu Earthquake near Kobe in 1995. Geophys. Res. Lett. 1996, 23, 2433–2436. [Google Scholar] [CrossRef]
- Bernard, P.; Pinettes, P.; Hatzidimitriou, P.M.; Scordilis, E.M.; Veis, G.; Milas, P. From precursors to prediction: A few recent cases from Greece. Geophys. J. Int. 1997, 131, 467–477. [Google Scholar] [CrossRef]
- Eftaxias, K.; Kapiris, P.; Polygiannakis, J.; Bogris, N.; Kopanas, J.; Antonopoulos, G.; Peratzakis, A.; Hadjicontis, V. Signature of pending earthquake from electromagnetic anomalies. Geophys. Res. Lett. 2001, 28, 3321–3324. [Google Scholar] [CrossRef]
- Eftaxias, K.; Kapiris, P.; Dologlou, E.; Kopanas, J.; Bogris, N.; Antonopoulos, G.; Peratzakis, A.; Hadjicontis, V. EM Anomalies before the Kozani Earthquake: A Study of Their Behavior through Laboratory Experiments. Geophys. Res. Lett. 2002, 29, 69-1–69-4. [Google Scholar] [CrossRef]
- Kapiris, P.G.; Eftaxias, K.A.; Chelidze, T.L. Electromagnetic Signature of Prefracture Criticality in Heterogeneous Media. Phys. Rev. Lett. 2004, 92, 065702. [Google Scholar] [CrossRef]
- Contoyiannis, Y.F.; Diakonos, F.K.; Kapiris, P.G.; Peratzakis, A.S.; Eftaxias, K.A. Intermittent dynamics of critical pre-seismic electromagnetic fluctuations. Phys. Chem. Earth 2004, 29, 397–408. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Eftaxias, K.; Lazaridou, M.; Bogris, N.; Makris, J.; Abdulla, A.; Kapiris, P. Prediction of the 6.6 Grevena-Kozani earthquake of May 13, 1995. Phys. Chem. Earth A 1999, 24, 115–121. [Google Scholar] [CrossRef]
- Varotsos, P.A.; Sarlis, N.V.; Skordas, E.S. Electric Fields that “Arrive” before the Time Derivative of the Magnetic Field prior to Major Earthquakes. Phys. Rev. Lett. 2003, 91, 148501. [Google Scholar] [CrossRef] [PubMed]
- Varotsos, P.; Sarlis, N.; Skordas, E.; Lazaridou, M. Electric pulses some minutes before earthquake occurrences. Appl. Phys. Lett. 2007, 90, 064104. [Google Scholar] [CrossRef]
- Enomoto, Y.; Tsutsumi, A.; Yukio, F.; Kasahara, M.; Hashimoto, H. Candidate precursors: Pulse-like geoelectric signals possibly related to recent seismic activity in Japan. Geophys. J. Int. 1997, 131, 485–494. [Google Scholar] [CrossRef]
- Biagi, P.; Ermini, A.; Kingsley, S. Disturbances in LF radio signals and the Umbria-Marche (Italy) seismic sequence in 1997–1998. Phys. Chem. Earth C 2001, 26, 755–759. [Google Scholar] [CrossRef]
- Karakelian, D.; Klemperer, S.; Fraser-Smith, A.; Thompson, G. Ultra-low frequency electromagnetic measurements associated with the 1998 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors. Tectonophysics 2002, 359, 65–79. [Google Scholar] [CrossRef]
- Eftaxias, K.A.; Kapiris, P.G.; Balasis, G.T.; Peratzakis, A.; Karamanos, K.; Kopanas, J.; Antonopoulos, G.; Nomicos, K.D. Unified approach to catastrophic events: From the normal state to geological or biological shock in terms of spectral fractal and nonlinear analysis. Nat. Hazards Earth Syst. Sci. 2006, 6, 205–228. [Google Scholar] [CrossRef]
- Nikolopoulos, S.; Kapiris, P.; Karamanos, K.; Eftaxias, K. A unified approach of catastrophic events. Nat. Hazards Earth Syst. Sci. 2004, 4, 615–631. [Google Scholar] [CrossRef]
- Kapiris, P.; Nomicos, K.; Antonopoulos, G.; Polygiannakis, J.; Karamanos, K.; Kopanas, J.; Zissos, A.; Peratzakis, A.; Eftaxias, K. Distinguished seismological and electromagnetic features of the impending global failure: Did the 7/9/1999 M5.9 Athens earthquake come with a warning? Earth Planet Space 2005, 57, 215–230. [Google Scholar] [CrossRef]
- Kalimeri, M.; Papadimitriou, C.; Balasis, G.; Eftaxias, K. Dynamical complexity detection in pre-seismic emissions using non-additive Tsallis entropy. Phys. A 2008, 387, 1161–1172. [Google Scholar] [CrossRef]
- Chuo, Y.; Liu, J.; Pulinets, S.; Chen, Y. The ionospheric perturbations prior to the Chi-Chi and Chia-Yi earthquakes. J. Geodyn. 2002, 33, 573–583. [Google Scholar] [CrossRef]
- Saroso, S.; Hattori, K.; Ishikawa, H.; Ida, Y.; Shirogane, R.; Hayakawa, M.; Yumoto, K.; Shiokawa, K.; Nishihashi, M. ULF geomagnetic anomalous changes possibly associated with 2004–2005 Sumatra earthquakes. Phys. Chem. Earth 2009, 34, 343–349. [Google Scholar] [CrossRef]
- Balasis, G.; Mandea, M. Can EM disturbances related to the recent great earthquakes be detected by satellite magnetometers? Tectonophysics 2007, 431, 173–195. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ohta, K.; Maekawa, S.; Yamauchi, T.; Ida, Y.; Gotoh, T.; Yonaiguchi, N.; Sasaki, H.; Nakamura, T. Electromagnetic precursors to the 2004 Mid Niigata Prefecture earthquake. Phys. Chem. Earth 2006, 31, 356–364. [Google Scholar] [CrossRef]
- Varotsos, P.; Sarlis, N.; Skordas, E.; Lazaridou, M. Identifying sudden cardiac death risk and specifying its occurrence time by analyzing electrocardiograms in natural time. Appl. Phys. Lett. 2007, 91, 064106. [Google Scholar] [CrossRef]
- Akpan, A.E.; Ibanga, J.I.; George, N.J.; Ekanem, A.M. Assessing seismo-ionospheric disturbances using Vanuatu and Honshu earthquakes of March 25, 2007, employing DEMETER and GPS data. Int. J. Environ. Sci. Technol. 2019, 16, 7187–7196. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Zhang, X.; Shen, X. Indications of Ground-based Electromagnetic Observations to A Possible Lithosphere–Atmosphere–Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan MS 8.0 Earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef]
- Tachema, A.; Nadji, A. Contribution of ionospheric TEC anomalies to detecting the seismic precursors related to the 2008 Oran-Algeria event. Adv. Space Res. 2020, 65, 2559–2572. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; De Santis, A.; Perrone, L.; Xiong, P.; Zhang, X.; Du, X. Lithosphere-atmosphere-ionosphere coupling associated with four Yutian earthquakes in China from GPS TEC and electromagnetic observations onboard satellites. J. Geodyn. 2023, 155, 101943. [Google Scholar] [CrossRef]
- Argunov, V.V.; Gotovcev, M.R. Study of Ionospheric Effects and Earthquake Precursors Using Radio Engineering Methods. IOP Conf. Ser. Earth Environ. Sci. 2021, 720, 012087. [Google Scholar] [CrossRef]
- Shi, K.; Guo, J.; Zhang, Y.; Li, W.; Kong, Q.; Yu, T. Multi-Dimension and Multi-Channel Seismic-Ionospheric Coupling: Case Study of Mw 8.8 Concepcion Quake on 27 February 2010. Remote Sens. 2021, 13, 2724. [Google Scholar] [CrossRef]
- Choi, B.K.; Lee, S.J. Anomalous ionospheric disturbances over South Korea prior to the 2011 Tohoku earthquake. Adv. Space Res. 2016, 57, 302–308. [Google Scholar] [CrossRef]
- He, Y.; Zhao, X.; Yang, D.; Wu, Y.; Li, Q. A study to investigate the relationship between ionospheric disturbance and seismic activity based on Swarm satellite data. Phys. Earth Planet. Inter. 2022, 323, 106826. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Yu, T.; Deng, Z.; Yan, X.; Yang, N. Middle-Scale Ionospheric Disturbances Observed by the Oblique-Incidence Ionosonde Detection Network in North China after the 2011 Tohoku Tsunamigenic Earthquake. Sensors 2021, 21, 1000. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Singh, R.P. Effect of VLF electric field changes associated with major shallow earthquakes (M = 5.6–5.9) occurred in Indian subcontinent, on the atmosphere. Indian J. Phys. 2023, 97, 3367–3378. [Google Scholar] [CrossRef]
- Joshi, S.; Madhusudhanarao, K. Ultra-Low Frequency Geomagnetic Variations before Dholavira Earthquake M = 5.1 on the 20th of June 2012 in Kachchh Region, Gujarat, India. Geotectonics 2021, 55, 633–645. [Google Scholar] [CrossRef]
- Gavrilov, B.G.; Poklad, Y.V.; Rybnov, Y.S.; Ryakhovsky, I.A.; Sanina, I.A. Geomagnetic Effects of Remote Earthquakes. Geomagn. Aeron. 2021, 61, 108–116. [Google Scholar] [CrossRef]
- Meng, X.; Ravanelli, M.; Komjathy, A.; Verkhoglyadova, O.P. On the North-South Asymmetry of Co-Seismic Ionospheric Disturbances During the 16 September 2015 Illapel M8.3 Earthquake. Geophys. Res. Lett. 2022, 49, e2022GL098090. [Google Scholar] [CrossRef]
- Cahyadi, M.N.; Arisa, D.; Muafiry, I.N.; Muslim, B.; Rahayu, R.W.; Putra, M.E.; Wulansari, M.; Setiadi, B.; Arisal, A.; Razi, P.; et al. Directivity of Coseismic Ionospheric Disturbances Propagation Following the 2016 West Sumatra Earthquake Using Three-Dimensional Tomography GNSS-TEC. Atmosphere 2022, 13, 153. [Google Scholar] [CrossRef]
- Song, R.; Hattori, K.; Zhang, X.; Sanaka, S. Seismic-ionospheric effects prior to four earthquakes in Indonesia detected by the China seismo-electromagnetic satellite. J. Atmos. Sol.-Terr. Phys. 2020, 205, 105291. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Shen, X.; Campuzano, S.A.; Perrone, L.; Piscini, A.; Di Giovambattista, R.; Jin, S.; Ippolito, A.; Cianchini, G.; et al. Possible Lithosphere-Atmosphere-Ionosphere Coupling effects prior to the 2018 Mw=7.5 Indonesia earthquake from seismic, atmospheric and ionospheric data. J. Asian Earth Sci. 2020, 188, 104097. [Google Scholar] [CrossRef]
- Jia, D.; Yu, H.; Zhao, B.; Ma, Y. Geothermal Anomalies and Coupling with the Ionosphere before the 2020 Jiashi Ms6.4 Earthquake. Appl. Sci. 2023, 13, 3019. [Google Scholar] [CrossRef]
- Raleigh, B.; Bennett, G.; Craig, H.; Hanks, T.; Molnar, P.; Nur, A.; Savage, J.; Scholz, C.; Turner, R.; Wu, F. Prediction of the Haicheng earthquake. Eos Trans. AGU 1977, 58, 236–272. [Google Scholar]
- Teng, T. Ground Water Radon Content as an Earthquake Precursor; Open-File Reports; U.S. Geological Survey: Reston, VA, USA, 1980; pp. 357–360.
- Wang, C.Y. Some aspects of the Tangshan (China) earthquake of 1976. Chin. Geophys. 1978, 1, 157–172. [Google Scholar]
- Allegri, L.; Bella, F.; Della Monica, G.; Ermini, A.; Improta, S.; Sgrigna, V.; Biagi, P.F. Radon and rilt anomalies detected before the Irpinia (south Italy) earthquake of November 23, 1980 at great distances from the epicenter. Geophys. Res. Lett. 1983, 10, 269–272. [Google Scholar] [CrossRef]
- Igarashi, G.; Wakita, H. Groundwater radon anomalies associated with earthquakes. Tectonophysics 1990, 180, 237–254. [Google Scholar] [CrossRef]
- Humanante, B.F.; Giroletti, E.; Idrovo, J.; Monnin, M.; Pasinetti, R.; Seidel, J.L. Radon signals related to seismic activity in Ecuador, March 1987. Pure Appl. Geophys. 1990, 132, 505–520. [Google Scholar] [CrossRef]
- Virk, H.S.; Singh, B. Radon recording of Uttarkashi earthquake. Geophys. Res. Lett. 1994, 21, 737–740. [Google Scholar] [CrossRef]
- Walia, V.; Virk, H.S.; Bajwa, B.S. Radon Precursory Signals for Some Earthquakes of Magnitude > 5 Occurred in N-W Himalaya: An Overview. Pure Appl. Geophys. 2006, 163, 711–721. [Google Scholar] [CrossRef]
- Richon, P.; Sabroux, J.C.; Halbwachs, M.; Vandemeulebrouck, J.; Poussielgue, N.; Tabbagh, J.; Punongbayan, R. Radon anomaly in the soil of Taal volcano, the Philippines: A likely precursor of the M 7.1 Mindoro earthquake (1994). Geophys. Res. Lett. 2003, 30, 1481. [Google Scholar] [CrossRef]
- Yasuoka, Y.; Ishii, T.; Tokonami, S.; Ishikawa, T.; Narazaki, Y.; Shinogi, M. Radon anomaly related to the 1995 Kobe earthquake in Japan. Int. Congr. Ser. 2005, 1276, 426–427. [Google Scholar] [CrossRef]
- Ilic, R.; Rusov, V.; Pavlovych, V.; Vaschenko, V.; Hanzic, L.; Bondarchuk, Y. Radon in Antarctica. Radiat. Meas. 2005, 40, 415–422. [Google Scholar] [CrossRef]
- Das, N.K.; Choudhury, H.; Bhandari, R.; Ghose, D.; Sen, P.; Sinha, B. Continuous monitoring of 222Rn and its progeny at a remote station for seismic hazard surveillance. Radiat. Meas. 2006, 41, 634–637. [Google Scholar] [CrossRef]
- Jaishi, H.P.; Singh, S.; Tiwari, R.P.; Tiwari, R.C. Temporal variation of soil radon and thoron concentrations in Mizoram (India), associated with earthquakes. Nat. Hazards 2014, 72, 443–454. [Google Scholar] [CrossRef]
- Deb, A.; Gazi, M.; Barman, C. Anomalous soil radon fluctuations—signal of earthquakes in Nepal and eastern India regions. J. Earth Syst. Sci. 2016, 125, 1657–1665. [Google Scholar] [CrossRef]
Location | Magnitude | Date(s) | Emission Type | Measurement Frequency | Instrumentation | Method(s) | Precursory Time | ED | Reference |
---|---|---|---|---|---|---|---|---|---|
Chile | 9.5 | 22/05/1960 | Radio | 18 MHz | Radioastronomy receiver | Visual observation | 6 days | Worldwide | [292] |
Hollister, California | 5.2 | 28/11/1974 | ULF magnetic | Array of 7 proton magnetometers | Visual observation | 7 weeks–several months | 11 km | [293] | |
Tangshan, China | 7.8 | 28/07/1976 | Resistivity | Visual observation | 2–3 years | <150 km | [294] | ||
Tangshan, China | 7.8 | 28/07/1976 | Self-potential and magnetotelluric | Visual observation | 3 months | <120 km | [294] | ||
Sungpan-Pingwu, China | 7.2 | 16/08/1976 | Telluric currents | Visual observation | 1 month | <200 km | [295] | ||
Sungpan-Pingwu, China | 6.8 | 22/08/1976 | Telluric currents | Visual observation | 1 month | <200 km | [295] | ||
Sungpan-Pingwu, China | 7.2 | 23/08/1976 | Telluric currents | Visual observation | 1 month | <200 km | [295] | ||
Kyoto, Japan | 7.0 | 31/03/1980 | LF electric | 81 kHz | Electric antenna | Visual observation | 0.5 h | 250 km | [43] |
Tokyo, Japan | 5.3 | 25/09/1980 | LF electric | 81 kHz | Electric antenna | Visual observation | 1 h | 55 km | [43] |
Tokyo, Japan | 5.5 | 28/01/1981 | LF electric | 81 kHz | Electric antenna | Visual observation | 3/4 h | 50 km | [43] |
Kalamata, Greece | 6.2 | 13/09/1986 | Electric | Visual observation | 3–5 days | 200 km | [296] | ||
Spitak, Armenia | 6.9 () | 07/12/1988 | ULF magnetic | 0.01–1 Hz | 3-Axis magnetometers | Visual observation, statistical analysis | 4 h | 128 km | [7] |
Spitak, Armenia | 6.9 () | 07/12/1988 | ULF magnetic | 0.005–1 Hz | 3-Axis magnetometers | Visual observation, statistical analysis | 4 h | 120 km, 200 km | [65] |
Loma Prieta, California | 7.1 () | 18/11/1989 | ULF magnetic | 0.01 Hz | Visual observation, statistical analysis | 3 h | 7 km | [65] | |
Loma Prieta, California | 7.1 () | 19/11/1989 | ULF, HF electromagnetic | 0.01 Hz, 32 kHz | Ground-based magnetometers | Visual observation | 3 h | 52 km | [58] |
Spitak, Armenia | 6.9 () | 23/01/89 | LF to HF electromagnetic | 140, 450, 800, 4500, 15,000 Hz | COSMOS-1809 satellite with 12 satellite orbits of f < 450 Hz | Visual observation, FFT | <3 h | [297] | |
Upland, California | 4.3 | 17/04/1990 | ULF magnetic | 3–4 Hz | Vertical magnetic sensor | Power law, FFT | 1 day | 160 km | [298] |
West Iran | 7.5 | 20/06/1990 | Ionospheric radiowave | 0–8 kHz, 10–14 kHz | INTERCOSMOS-19 satellite | Visual observation, modelling | 16 days | 250–2000 km | [299] |
Watsonville, California | 4.3 | 23/03/1991 | ULF magnetic | 3.0–4.0 Hz | North–south magnetic sensor | Statistical analysis, power law with FFT | Data averaged over 2 days | 600 km | [298] |
Watsonville, California | 4.3 | 23/03/1991 | ULF magnetic | 3.0–4.0 Hz | Vertical magnetic sensor | Power law-FFT | Data averaged over 2 days | 600 km | [298] |
NW Crete, Greece | 6.0 | 21/11/1992 | HF electric | 41, 53 MHz | Electric dipole antennas | Visual observation | 1–3 days | 20–150 km | [300] |
Coalinga, California | 4.0 | 15/01/1992 | ULF magnetic | 3.0–4.0 Hz | Vertical magnetic sensor | Power law–FFT | Data averaged over 2 days | 400 km | [298] |
Hokkaido, Japan | 7.8 | 12/07/1993 | foF2 ionospheric | Visual observation, statistical analysis | 3 days | 290 km, 780 km, 1280 km | [135] | ||
Guam | 7.1 () | 08/08/1993 | ULF magnetic | 0.02–0.05 Hz | 3-Axis ring core type fluxgate magnetometers | Fractal analysis, FFT | 1 month | 65 km | [60,301] |
Guam | 8.3 () | 08/08/1993 | ULF magnetic | 0.02–0.05 Hz | 3-Axis ring core type, fluxgate magnetometers | Multifractal Detrended Fluctuation Analysis | 1 month | 65 km | [241] |
Hokkaido, Japan | 8.2 (MJMA) | 07/12/1993 | SES | ≤1 Hz | Electric antennas | Natural time analysis | 1 month | lat and long < 30 | [79] |
Hokkaido-Toho Oki, Japan | 8.1 () | 04/10/1994 | HF electric | Borehole antenna | Visual observation | 20 min | >1000 km | [278] | |
Hokkaido, Japan | 7.6 (MJMA) | 04/10/1994 | SES | ≤1 Hz | Electric antennas | Natural time analysis | 1 month | lat and long < 30 | [79] |
Hokkaido, Japan | 7.4 (MJMA) | 28/12/1994 | SES | ≤1 Hz | Electric antennas | Natural time analysis | 1 month | lat, long < 30 | [79] |
Hyogo-ken Nanbu (Kobe), Japan | 7.2 (MJMA) | 17/01/1995 | HF electric | 22.2 MHz | Phase-switched interferometer polarized antennas | 1 h | 77 km | [302] | |
NE Samos, Greece | 5.0 | 07/05/1995 | HF electric | 41, 53 MHz | Electric dipole antennas | Visual observation | 1–3 days | 20–150 km | [300] |
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | HF electric, LF magnetic | 2 weeks | 70 km, 200 km | [303] | |||
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | HF electric | 41, 54 MHz, magnetic 3, 10 kHz | Electric dipole and magnetic loop antennas | Fractal analysis | 20 h | 284 km | [304,305] |
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | HF electric | 41, 54 MHz, magnetic 3, 10 kHz | Electric dipole and magnetic loop antennas | Fractal analysis and statistical methods. | 20 h | 284 km | [305] |
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | HF electric | 41, 54 MHz, magnetic 3 kHz | Electric dipole and magnetic loop antennas | Fractal analysis and statistical methods. | 20 h | 284 km | [84] |
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | HF electric | 41 MHz | Electric dipole and magnetic loop antennas | Fractal analysis and statistical methods. | 20 h | 284 km | [306] |
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | HF electric and LF magnetic | 41, 54 MHz and 3, 10 kHz | Electric dipole and magnetic loop antennas | Intermittent dynamics of critical fluctuations | 20 h | 284 km | [307] |
Kozani-Grevena, Greece | 6.6 () | 13/05/1995 | SES | ≤1 Hz | Electric antennas | Visual and mathematical analysis | 4 weeks | 70–80 km | [308,309] |
Kozani-Grevena, Greece | 6.8 () | 13/05/1995 | SES | ≤1 Hz | Electric antennas | Visual and mathematical analysis | 24, 25 days | 70–80 km | [309] |
Kozani-Grevena, Greece | 6.8 () | 13/05/1995 | SES | ≤1 Hz | Electric antennas | Visual and mathematical analysis | 22 min | 70–80 km | [310] |
SE Crete, Greece | 5.0 | 29/07/1995 | HF electric | 41, 53 MHz | Electric dipole antennas | Visual observation | 1–3 days | 20–150 km | [300] |
Hyogo-ken Nanbu (Kobe), Japan | 7.2 (MJMA) | 11/06/1996 | DC potential, LF radio waves and MF and HF | 223 Hz and 77.1 MHz and 1–20 kHz, 163 kHz | LF Omega transmitter and receiver | Visual, statistical analysis | <7 days | >100 km | [311] |
Hyogo-ken Nanbu (Kobe), Japan | 7.2 (MJMA) | 11/06/1996 | HF radio waves | 10.2 kHz | LF Omega transmitter and receiver | Statistical analysis, modelling | 2 days | 70 km | [7] |
Akita-ken Nairiku-nanbu, Japan | 5.9 | 11/08/1996 | LF and HF electric | 10 kHz and 1 MHz | Vertical-dipole ground electrodes | Visual analysis and analysis of related parameters | 6 days | <100 km | [311] |
Chiba-ken Toho-oki, Japan | 6.6 | 11/09/1996 | Electric | 10 kHz, 1 MHz | Vertical-dipole ground electrodes | Visual analysis and analysis of related parameters | 3 days | 320 and 430 km | [311] |
Umbria–Marche, Italy | 5.5 | 26/03/1998 | LF radiowaves, | 0.006 Hz | Radio wave vertical antenna | 1.5 months | 818 km | [312] | |
San Juan Bautista, California | 5.1 () | 12/08/1998 | UHF magnetic | 0.01–10 Hz | 3-Component magnetic field inductor coils | Power spectrum analysis | 2 h | 3 km | [313] |
Egio, Eratini, Greece | 6.6 () | 07/09/1999 | LF electric and HF magnetic | 41, 54 MHz and 3, 10 kHz | Electric dipole, magnetic loop antennas | Fractal analysis, block entropy | 12–17 h | <300 km | [314] |
Athens, Greece | 5.9 () | 07/09/1999 | SES and LF electric and HF magnetic | 1 Hz and 41, 54, 135 MHz and 3, 10 kHz | ULF, electric dipole and magnetic loop antennas | Fractal analysis, block entropy | <3 h | 247 km | [90] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Delay times method, block entropy, spectral fractal analysis | 12–17 h | 247 km | [315] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Fractal analysis | 12–17 h | 247 km | [316] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Symbolic dynamics | 12–17 h | 247 km | [316] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 3, 10 kHz, HF electric 41, 54 MHz | Electric dipole antennas, magnetic loop antennas | Wavelet power spectrum analysis | 12–17 h | 247 km | [304,305] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 10 kHz | Electric dipole antennas, magnetic loop antennas | Block entropy | 12–17 h | 247 km | [259] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Block entropy | 12–17 h | 247 km | [316] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 3, 10 kHz, electric 154 MHz | Electric dipole and magnetic loop antennas | Intermittent dynamics of critical fluctuations | 20 h | 247 km | [307] |
Athens, Greece | 5.9 () | 07/09/1999 | LF electric and HF magnetic | 135 MHz and 3, 10 kHz, | Electric dipole and magnetic loop antennas | Intermittent dynamics of critical fluctuations | >3 h | 247 km | [307] |
Athens, Greece | 5.9 () | 07/09/1999 | HF magnetic | 10 kHz | Magnetic loop antennas | Tsallis entropy | 12–17 h | 247 km | [317] |
Chi-Chi, Taiwan | 7.6 () | 20/09/1999 | foF2 ionospheric | IPS-42 ionosonde | Visual observation | 3–4 days | 120 km | [318] | |
Chia-Yii, Taiwan | 6.4 () | 22/10/1999 | foF2 ionospheric | IPS-42 ionosonde | Visual observation | b1–3 days | 179 km | [318] | |
Izu-Penisula, Japan | 6.4 (MJMA) | 01/07/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, Higuchi, Bulgara–Klein methods | <1 month | 80 km–1160 km | [249] |
Izu-Penisula, Japan | 6.4 (MJMA) | 01/07/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, fractal dimension | <1 month | 80 km–1160 km | [254] |
Izu-Penisula, Japan | 6.1 (MJMA) | 09/07/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, Higuchi, Bulgara–Klein methods | <1 month | 80 km–1160 km | [249] |
Izu-Penisula, Japan | 6.1 (MJMA) | 09/07/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, fractal dimension | <1 month | 80 km-1160 km | [254] |
Izu-Penisula, Japan | 6.3 (MJMA) | 15/07/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, Higuchi, Bulgara–Klein methods | <1 month | 80 km–1160 km | [249] |
Izu-Penisula, Japan | 6.3 (MJMA) | 15/07/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, fractal dimension | <1 month | 80 km–1160 km | [249] |
Izu-Penisula, Japan | 6.4 (MJMA) | 18/08/2000 | ULF magnetic | 0.001–1 Hz | 3-Axis ring core-type fluxgate magnetometers | Fractal analysis with FFT, Higuchi, Bulgara–Klein methods | <1 month | 80 km–1160 km | [254] |
Lefkas, Greece | 5.9 () | 14/06/2003 | LF electric and HF magnetic | 41, 54 MHz and, 3, 10 kHz | Electric dipole and magnetic loop antennas | Fractal analysis, block entropy | 12–17 h | <300 km | [314] |
Andaman, Sumatra, Indonesia | 9.0 () | 26/12/2004 | ULF magnetic | 1 Hz | 3-Axis ring core-type, fluxgate magnetometers | Spectral density ratio analysis, transfer functions analysis, fractal dimension | <1.5 month | <750 km | [319] |
Andaman, Sumatra, Indonesia | 8.7 | 26/12/2004 | ULF magnetic | 1 Hz | CHAMP satellite vector magnetic antennas | Wavelet power spectrum analysis | 2 h | 700 km | [320] |
Nias, Sumatra, Indonesia | 8.7 () | 28/03/2005 | ULF magnetic | 1 Hz | 3-Axis ring core-type, fluxgate magnetometers | Spectral density ratio analysis, transfer functions analysis, fractal dimension | <1.5 month | <750 km | [319] |
Nias, Sumatra, Indonesia | 8.7 () | 28/03/2005 | ULF magnetic | 1 Hz | CHAMP satellite vector magnetic antennas | Wavelet power spectrum analysis | 2 h | 700 km | [320] |
Miyagi-ken oki, Japan | 7.2 () | 16/08/2005 | Electric | 49.5 MHz | Discon-type antenna from 25–1300 MHz | Multifractal Detrended Fluctuation Analysis | 2–3 weeks, few days for Kunimi station | 90–140 km | [240] |
Mid Niigata prefecture | 6.8 (MJMA) | 16/08/2005 | DC and ULF magnetic and HF electromagnetic | 0.02–0.05 Hz and 40 kHz | 3-Axis ring core-type fluxgate magnetometers, Discon-type antennas from 25–1300 MHz | Signal analysis with FFT | 17–21, 5–7 days | <220 km | [321] |
Greece | 5.2 () | 18/01/2007 | SES | ≤1 Hz | Electric and magnetic antennas | Natural time analysis | 3 min | <150 km | [322] |
Greece | 5.8 () | 03/02/2007 | SES | ≤1 Hz | Electric and magnetic antennas | Natural time analysis | 22 min | <150 km | [322] |
Vanuatu, Japan | 7.1 (MJMA) | 25/03/2007 | TEC | DEMETER satellite | Statistical analysis | 15 days | [323] | ||
Honshu, Japan | 6.7 (MJMA) | 25/03/2007 | TEC | DEMETER satellite | Statistical analysis | 15 days | [323] | ||
Lesvos, Greece | 6.1 () | 12/06/2007 | LF electric and HF magnetic | 41, 54 MHz and 3, 10 kHz | Electric dipole and magnetic loop antennas | DFA, power law | 10–12 days | 30 km | [230] |
Wenchuan, China | 8.0 () | 12/05/2008 | DC, ULF | ≤1 Hz | Cr18Ni9C electrodes | Visual observations | 3 days | 1000 km | [324] |
Greece | 6.4 () | 08/06/2008 | SES | ≤1 Hz | Electric and antennas | Natural time analysis | <30 km | [261] | |
L’Aquila, Italy | 6.3 | 06/04/2009 | LF electric and HF magnetic | 41, 54 MHz and 3, 10 kHz | Electric dipole and magnetic loop antennas | Fractal analysis, block entropy, DFA, R/S analysis, Hurst analysis, | <3 h | 816 km | [1,82] |
Oran, Algeris | 5.5 () | 06/06/2008 | Rinex, disturbances, TEC | Geodetic stations | Seismological, spectral analysis | Several days | [325] | ||
Tokachi, Japan | 8.0 (MsMA) | 26/09/2003 | SES | ≤1 Hz | Electric antennas | Natural time analysis | 1 month | lat, long < 30 | [79] |
Yutian, China | 7.3 () | 20/03/2008 | TEC and ULF electric field data | Onboard DEMETER, Swarm and China’s seismo-electromagnetic satellites | Statistical, visual analysis | 3 min–2 days | [326] | ||
Lake Baikal, Siberia | 6.3 | 27/08/2008 | Electromagnetic signals from thunderstorms | VLF range | Single-point lightning direction finder-rangefinder | Visual observations | Hours | [327] | |
Indonesia | 5.0 | 07/01/2009 | Electromagnetic signals from thunderstorms | VLF range | Single-point lightning direction finder-rangefinder | Visual observations | 7 days | [327] | |
Chichi-jima, Japan | 7.8 (MJMA) | 22/10/2010 | SES | ≤1 Hz | Electric antennas | Natural time analysis | 1 month | lat, long < 30 | [79] |
Conception, Chile | 8.8 () | 27/02/2010 | ionospheric anomalies | FORMOSAT-3/COSMIC satellite | Kriging interpolation, global map | 5 h | epicentre area | [328] | |
Tohoku, Japan | 9.0 (MJMA) | 11/3/2011 | SES | ≤1 Hz | Electric antennas | Natural time analysis | 1 month | lat, long < 30 | [79] |
Tohoku, Japan | 9.0 (MJMA) | 11/3/2011 | GPS TEC | Modified single layer mapping function at the ionospheric pierce points at 350 km | GPS satellites (PRN 18, PRN26) | 40–50 min | 500–600 km | [329,330] | |
Tohoku, Japan | 9.0 (MJMA) | 11/03/2011 | Ionospheric measurements | HF 3–25 MHz | Ionosonde detection network combined with Digisondes and COSMIC satellite | HF Doppler, planar ionospheric disturbances | 6 h after | 2000 km | [331] |
Japan | 6.0 | 14/03/2012 | Electromagnetic signals from thunderstorms | VLF range | Single-point lightning direction finder-rangefinder | Visual observations | 10 days | 3000 km | [327] |
India | 5.6 | 25/04/2012 | HF electric field | 3.012 kHz | GPS terrestrial vertical antenna | Visual observations | 1–13 days | 2671 km | [332] |
India | 5.6 | 27/04/2012 | HF electric field | 3.012 kHz | GPS terrestrial vertical antenna | Visual observations | 1–13 days | 3284 km | [332] |
Dholavira, India | 5.1 () | 20/06/2012 | ULF magnetic and , data | 0.001–0.5 Hz | Digital fluxgate magnetometer | Visual and fractal dimensions | 7 days | around, above epicentre | [333] |
Yutian, China | 6.3 () | 12/08/2012 | ULF electric field data, TEC | ≤1 Hz | Onboard DEMETER, Swarm and China’s seismo-electromagnetic satellites | Statistical, visual analysis | 10–20 days | [326] | |
India | 5.9 | 22/07/2013 | HF electric field | 3.012 kHz | GPS terrestrial vertical antenna | Visual observations | 1–13 days | 2642 km | [332] |
India | 5.7 | 20/09/2013 | HF electric field | 3.012 kHz | GPS terrestrial vertical antenna | Visual observations | 1–13 days | 1905 km | [332] |
India | 5.7 | 02/10/2013 | HF electric field | 3.012 kHz | GPS terrestrial vertical antenna | Visual observations | 1–13 days | 2766 km | [332] |
Yutian, China | 7.3 () | 12/02/2014 | TEC and ULF electric field data | Onboard DEMETER, Swarm and China’s seismo-electromagnetic satellites | Statistical, visual analysis | Same days | [326] | ||
Greece | 6.9 | 24/05/2014 | SES and geomagnetic signals | 0.5–40 Hz and 0.0001–100 kHz | Mikhnevo GPO (seismometric, radiophysical, magnetometric, electrical) equipment | [334] | |||
Ileia, Greece | 4.4 () | 30/08/2015 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Fractal analysis | 3 days | 24 km | [35] |
Illapel, Chile | 8.3 () | 16/09/2015 | Co-seismic ionospheric TEC | 0.1–1 Hz | Global Navigation Satellite System | Wave perturbation ionosphere model with seismic source | 1500 km | [335] | |
Ileia, Greece | 4.5 () | 12/12/2015 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Fractal analysis | 3 days | 24 km | [35] |
Sumatra | 7.8 () | 02/03/2016 | TEC | 3.012 kHz | GPS terrestrial vertical antenna | 3D tomography method | 11–16 min after | , 75 km | [336] |
Afghanistan | 6.6 | 10/04/2016 | Seismic, geomagnetic and acoustic signals | 0.5–40 Hz and 0.0001–100 kHz and –20 Hz | Mikhnevo observatory, LEMI-018 triaxial fluxgate magnetometer | Visual observations | 2000–3000 km | [334] | |
Italy | 6.6 | 30/06/2016 | Seismic, geomagnetic and acoustic signals | 0.5–40 Hz and 0.0001–100 kHz and –20 Hz | Mikhnevo observatory, LEMI-018 triaxial fluxgate magnetometer | Visual observations | 2000–3000 km | [334] | |
Chiapas, Mexico | M8.2 | 06/07/2017 | SES | ≤1 Hz | Natural time analysis | Few hours | [64] | ||
Greece | 6.6 | 20/07/2017 | Seismic, geomagnetic and acoustic signals | 0.5–40 Hz and 0.0001–100 kHz and –20 Hz | Mikhnevo observatory, LEMI-018 triaxial fluxgate magnetometer | Visual observations | 2000–3000 km | [334] | |
Mexican flat slab | M7.1 | 19/09/2017 | SES | ≤1 Hz | Natural time analysis | Several hours | [64] | ||
Iraq | 7.3 | 12/11/2017 | Seismic, geomagnetic and acoustic signals | 0.5–40 Hz and 0.0001 Hz–100 kHz and –20 Hz | Mikhnevo observatory, LEMI-018 triaxial fluxgate magnetometer | Visual observations | 2000–3000 km | [334] | |
Ileia, Greece | 4.5 () | 07/05/2018 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Fractal analysis | 3 days | 24 km | [35] |
Lombok, Indonesia | 6.4 | 28/07/2018 | Ne, Te and TEC | Onboard sensors | China’s seismo-electromagnetic satellites | , Statistical analysis | 1–5 days | 2000 km | [337] |
Lombok, Indonesia | 6.8 | 05/08/2018 | Ne, Te and TEC | Onboard sensors | China’s seismo-electromagnetic satellites | , Statistical analysis | 1–5 days | 2000 km | [337] |
Lombok, Indonesia | 5.9 | 09/08/2018 | Ne, Te data and TEC | Onboard sensors | China’s seismo-electromagnetic satellites | , Statistical analysis | 1–5 days | 2000 km | [337] |
Lombok, Indonesia | 6.9 | 19/08/2018 | Ne, Te data and TEC | Onboard sensors | China’s seismo-electromagnetic satellites | , Statistical analysis | 1–5 days | 2000 km | [337] |
Indonesia | 7.5 () | 28/09/2018 | Physical properties of atmosphere and NeTe, ionospheric disturbances | China’s seismo-electromagnetic satellites | Seismological, climatological analysis | 3.7, 6 months and 2.7 months | [338] | ||
Zakynthos, Greece | 6.6 () | 25/10/2018 | LF electric and HF magnetic | 41, 54 MHz and 3, 10 kHz | Electric dipole and magnetic loop antennas | Fractal analysis, block entropy, DFA, R/S analysis, Hurst analysis | Post-activity | 40 km | [34] |
Ileia, Greece | 4.3 () | 04/02/2019 | HF magnetic | 3, 10 kHz | Magnetic loop antennas | Fractal analysis | 3 days | 24 km | [35] |
Ridgecrest, Mexico | M7.1 | 06/072019 | SES | ≤1 Hz | Natural time analysis | Several hours | [64] | ||
Indonesia | 6.9 () | 07/07/2019 | VLF | 48.83–366.21 Hz | Electric field detector of China’s seismo-electromagnetic satellites | Electric field PSD | Before and after | near the epicentre | [14] |
Indonesia | 7.2 () | 14/07/2019 | VLF | 48.83–366.21 Hz | Electric field detector of China’s seismo-electromagnetic satellites | Electric field PSD | Before and after | near the epicentre | [14] |
Laiwui, Indonesia | 7.2 () | 14/07/2019 | TEC, plasma, global ionospheric map | China’s seismo-electromagnetic satellites | Cross-validation analysis and moving-mean method | 1, 3, 8 days | [335] | ||
Jiashi, China | 6.4 () | 19/01/2020 | Electron density and rock temperature | Zhangheng-1 electromagnetic satellite | Visual observations | 15 days | 150 km | [339] | |
Yutian, China | 6.5 () | 25/06/2020 | ULF, TEC, Global ionospheric Map | ≤1 Hz | Onboard DEMETER, Swarm and China’s seismo-electromagnetic satellites | Statistical, visual analysis | Same days | [326] | |
Turkey | 7.8 () | 06/02/2023 | TEC | Global Navigation Satellite System, ionosondes | Statistical, visual analysis | 22–25 min after | 750 km | [16] | |
Turkey | 7.5 () | 06/02/2023 | TEC | Global Navigation Satellite System, ionosondes | Statistical, visual analysis | 22–25 min after | 750 km | [16] |
Location | Magnitude | Date(s) | RA | AD (days) | Instrumentation | Methodology | Precursory Time | ED | Reference |
---|---|---|---|---|---|---|---|---|---|
Pohai Bay, China | 7.4 | 18/07/1969 | 60% | 170 days | Instruments of Kutzan station for radon in water | Visual observations | 200 km | [188] | |
Szechwan Luhuo, China | 7.9 | 06/02/1973 | 120% | 9 days | Instruments of Tangku station for radon in water | Visual observations | 170 km | [186,188] | |
Markansu, Russian Federation | 7.3 | 04/02/1975 | 38% and 17% | 270 days and 50 days | Instruments of Alma-Ata station for radon in water | Visual observations | 530 km | [188] | |
Liaoning, Haicheng, China | 7.3 | 04/02/1975 | 38% and 17% | 270 days and 50 days | Instruments of Tangangzi station for radon in soil | Visual observations | 50 km | [188,340] | |
Liaoning, Haicheng, China | 7.3 | 04/02/1975 | 10% | 1 day | Instruments of Liaoyang station for radon in soil | Visual observations | 85 km | [188,341] | |
Gazli, Russian Federation | 7.3 | 17/05/1976 | 220% | 4 days | Instruments of Tashkent station for radon in water | Visual observations | 470 km | [188] | |
Yunnan Lungling, China | 7.5 | 29/05/1976 | 20% | 510 days | Instruments of Lungling station for radon in soil | Visual observations | 190 km | [186,188] | |
Yunnan Lungling, China | 7.5 | 29/05/1976 | 8% | 160 days | Instruments of Erhyuan station for radon in soil | Visual observations | 470 km | [186,188] | |
Szechwan Songpan Pingwu, China | 7.2 | 16/08/1976 | 29% | 480 days | Instruments of Erhyuan for radon in soil | Visual observations | 40 km | [186,188] | |
Szechwan Songpan Pingwu, China | 7.2 | 16/08/1976 | 70% | 7 days | Instruments of Kutzan station for radon in soil | Visual observations | 320 km | [188,341] | |
Hopeh Tangshan, China | 7.8 | 27/07/1976 | 30% | 5 days | Instruments of Tangshan station for radon in water | Visual observations | 5 km | [188,342] | |
Hopeh Tangshan, China | 7.8 | 27/07/1976 | 50% | 15 days | Instruments of Antze station for radon in water | Visual observations | 100 km | [188,342] | |
Isferi Batnen, Russian Federation | 6.6 | 31/01/1977 | −30% | 60 days | Instruments of Tashkent station for radon in water | Visual observations | 190 km | [188] | |
Hopeh Chienan, China | 6.0 | 04/03/1977 | 70% | 3 days | Instruments of Peking station for radon in water | Visual observations | 200 km | [188,341] | |
Hopeh Lutai, China | 6.7 | 12/03/1977 | 30% | 1 day | Instruments of Tungchao station for radon in water | Visual observations | 115 km | [188,341] | |
Isferi Batnen, Russian Federation | 6.6 | 24/03/1977 | −20% | 125 days | Instruments of H-O-Garm station for radon in water | Visual observations | 200 km | [188] | |
Alma-Ata, Russian Federation | 7.1 | 04/02/1978 | 32% | 50 days | Instruments of Alma-Ata station for radon in water | Visual observations | 65 km | [188] | |
Zaslai, Russian Federation | 6.7 | 01/11/1978 | −30% | 470 days | Instruments of Obi-Garm station for radon in water | Visual observations | 270 km | [188] | |
Zaslai, Russian Federation | 6.7 | 01/11/1978 | −40% | 470 days | Instruments of Yavros station for radon in water | Visual observations | 300 km | [188] | |
Izu-Oshima, Japan | 6.8 | 14/01/1978 | 7% | 230 days | Instruments of SKE-1 station for radon in water | Visual observations | 25 km | [186,188] | |
Izu-Oshima, Japan | 6.8 | 14/01/1978 | −8% | 7 days | Instruments of SKE-1 station for radon in water | Visual observations | 25 km | [186,188] | |
Imperial valley, California, USA | 6.6 | 15/10/1979 | 400% | 116 days and 50 days | Instruments of KPAS station | Radon in water | 335 km | [187,188] | |
Irpinia, Italy | 6.5 | 23/11/1980 | 170% | 5–6 months | Instruments of Rieti station for radon in groundwater | Visual observations | 4 months | 150 km | [343] |
Japan | 7.9 | 06/03/1984 | few days | Instruments for radon in groundwater | Bayesian statistics, ±2 | 1 week | 1000 km | [344] | |
Japan | 6.7 | 06/02/1987 | few days | 4 | Instruments for radon in groundwater | Bayesian statistics, ±2 | 3 days | 130 km | [344] |
Equador | 6.9 | 06/03/1987 | 230% | 30 days | Radon in soil, SSNTDs | Visual observations | 50 days | 200 km | [345] |
Uttarkashi, India | 7.0 () | 20/10/1991 | 180% | 7 days | Radon in soil, SSNTDs | Visual observations | 1 week | 450, 330 km | [346,347] |
Mindoro, Philippines | 7.1 | 11/04//1994 | 600% | 7 days | BARASOLVDG | Visual observations | 22 days | 48 km | [348] |
Kobe, Japan | 7.2 | 1/17/1995 | −2% | 4 months | Radon in atmosphere, flow ionisation chamber at 18 m | Daily min data analysis | 4 to 0 months | 130 km | [29,214,349] |
Chamoli, India | 6.5 () | 29/03/1999 | 200% | 2 days | Radon in soil, water with emanometric technique | ±2 | 1–7 days | 393 km | [347] |
Hiwacho-Mitsugaichi, Shobara, Japan | 7.3 (MJMA) | 06/10/2000 | 16–20% | >6 months | Gas flow ionisation chamber | Residual analysis | 207 km | [215] | |
Scotia sea, Antarctica | 7.5 () | 04/08/2003 | 400–700% | 16 days | CR-39, TASTRAK | Visual, power law | 6 | 1176 km | [350] |
Chengkung, Taiwan | 6.8 | 10/12/2003 | −13% | 6 months | Radon in water, liquid scintillation counter, wells 167–187 m deep | 30 km | 65 days | 20 km | [193] |
Yura, Hidaka, Japan | 7.4 (MJMA) | 05/10/2004 | 16–20% | >6 months | Gas flow ionisation chamber | Residual analysis | 22 km | [215] | |
Indonesia | 9.1 | 26/12/2004 | 60% | 4–6 days | Radon and progeny in gases from thermal springs at Bakreswar, India | ±2, visual observations | 2275 km | [351] | |
Middle Kurils, Simushir Island, Kamchatka Peninsula | 8.1() | 20/04/2006 | 33–35% | Gas-discharge counter for radon progeny | Visual observations | 8 months–3 years | 800 km | [153] | |
Olutorsk, Kamchatka Peninsula | 7.6 () | /20/04/2006 | 33–35% | 33–35% | Gas-discharge counter for radon progeny | Visual observations | 8 months–3 years | 1035 km | [153] |
Middle Kurils Kamchatka Peninsula Simushir Island, Pacific Ocean | 8.3 () | 13/01/2007 | 33–35% | Gas-discharge counter for radon progeny | Visual observations | 8 months–3 years | 800 km | [153] | |
Wenchuan, China | 8 () | 12/05/2008 | 10 times the baseline | 12 days | SD-3 A, automatic radon instrument, Guzan station | Statistical analysis | 155 km | [204] | |
Wenchuan, China | 8 () | 12/05/2008 | 5 times the baseline | Scattered days | FD-125, ZnS(Ag) | Sliding window power law, DFA, fractal dimension, 13-method combination analysis | 1–2 months | 150–500 km | [36] |
Kato Achaia, Peloponnese, Greece | 6.5 () | 06/08/2008 | 20 times the baseline | 12 h | Alpha GUARD, CR-39, radon in in soil | Sliding window power law, statistics, outliers | 2 months | 40 km | [2] |
Kato Achaia, Peloponnese, Greece | 6.5 () | 06/08/2008 | 20 times the baseline | 12 h | Alpha GUARD radon in in soil | Sliding window power law, DFA, spectrogram, scalogram | 2 months | 40 km | [23] |
Kato Achaia, Peloponnese, Greece | 6.5 () | 06/08/2008 | 20 times the baseline | 12 h | Alpha GUARD radon in in soil | Sliding window fractal dimension analysis, Hurst exponents | 2 months | 40 km | [23] |
Kato Achaia, Peloponnese, Greece | 6.5 () | 06/08/2008 | 20 times the baseline | 12 h | Alpha GUARD radon in in soil | Sliding window , DFA and block entropy analysis, R-L, variogram methods, fractal dimensions | 2 months | 40 km | [21] |
Aegean Sea, Lesvos area, Greece | 5.0 () | 19/03/2008 | 20 times the baseline | 1 h | Alpha GUARD radon in soil | Sliding window , DFA and block entropy analysis, R-L, variogram methods, fractal dimensions | 3 months | 40–70 km | [21] |
Tohoku, Japan | 9.0 (MJMA) | 11/03/2011 | 80–160 times the baseline | >16 days | Radon, thoron instrumentation at Seongryu Cave | Statistical, visual analysis | 1 month | [204] | |
PhekN agaland, India | 5.8 | 29/07/2012 | 2–3 times the baseline | 1 month | LR-115 in soil | ±2, visual observations | 16–31 days | 224 km | [352] |
Myanmar, India | 6.0 | 29/07/2012 | 2–3 times the baseline | 1 month | LR-115 in soil | ±2, visual observations | 16–31 days | 132 km | [352] |
Awaji Island, Japan | 6.7 (MJMA) | 13/04/2013 | 16–20% | >6 months | Gas flow ionisation chamber | Residual analysis | 44 km | [215] | |
Luhsan, Cina | 7 () | 20/04/2013 | 10 times the baseline | 20 days | SD-3 A, automatic radon instrument, Guzan station | Statistical analysis | 82 km | [204] | |
Gansu, China | 6.6 () | 22/07/2013 | 10–20% | 2 months | FD-125 instrument, radon in groundwater | Monofractal, multifractal DFA | 688 km | [179] | |
Evia Island, Greece | 5.0 () | 15/11/2014 | −5 times the baseline | 10 min | VDG BARACOL, radon in soil | Sliding window , DFA, scalograms | 10–12 days | 100 km | [32] |
Nepal | 7.8 | 25/04/2015 | 4 times the baseline | 15 days | LR-115 in soil | ±2, visual observations | 5 days | 722 km | [353] |
West Bengal, India | 7.8 | 26/04/2015 | 3.5 times the baseline | 15 days | LR-115 in soil | ±2, visual observations | 6 days | 612 km | [353] |
Kalamei, Nepal | 7.8 | 12/05/2015 | 3 times baseline | 15 days | LR-115 in soil | ±2, visual observations | 5 days | 618 km | [353] |
Lesvos Island, Greece | 4.1 () | 10/09/2015 | 8–20 times the baseline | Alpha GUARD radon in soil | Sliding window , DFA, scalograms | 50 km | [235] | ||
Lesvos Island, Greece | 4.6 () | 26/10/2015 | 8–20 times the baseline | Alpha GUARD radon in soil | Sliding window , DFA, scalograms | 50 km | [235] | ||
Zhupanovo, Kamchatka Peninsula | 7.2 () | 30/01/2016 | 33–35% | Gas-discharge counter for radon progeny | Visual observations | 8 months–3 years | 110 km | [153] | |
Jiuzhaigou | 7 () | 08/08/2017 | ±3 times | >2 months | SD-3 A, automatic radon instrument, Songpan station | Statistical analysis | 67 km | [204] | |
Uglovoye Podnyatiye, Kamchatka Peninsula | 7.3 () | 20/12/2018 | 33–35% | Gas-discharge counter for radon progeny | Visual observations | 8 months–3 years | 490 km | [153] | |
North Kurils, Kamchatka Peninsula | 7.5 () | 25/03/2020 | 33–35% | Gas-discharge counter for radon progeny | Visual observations | 8 months–3 years | 449 km | [153] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolopoulos, D.; Cantzos, D.; Alam, A.; Dimopoulos, S.; Petraki, E. Electromagnetic and Radon Earthquake Precursors. Geosciences 2024, 14, 271. https://doi.org/10.3390/geosciences14100271
Nikolopoulos D, Cantzos D, Alam A, Dimopoulos S, Petraki E. Electromagnetic and Radon Earthquake Precursors. Geosciences. 2024; 14(10):271. https://doi.org/10.3390/geosciences14100271
Chicago/Turabian StyleNikolopoulos, Dimitrios, Demetrios Cantzos, Aftab Alam, Stavros Dimopoulos, and Ermioni Petraki. 2024. "Electromagnetic and Radon Earthquake Precursors" Geosciences 14, no. 10: 271. https://doi.org/10.3390/geosciences14100271
APA StyleNikolopoulos, D., Cantzos, D., Alam, A., Dimopoulos, S., & Petraki, E. (2024). Electromagnetic and Radon Earthquake Precursors. Geosciences, 14(10), 271. https://doi.org/10.3390/geosciences14100271