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Abstract: Earthquake forecasting is arguably one of the most challenging tasks in Earth sciences owing
to the high complexity of the earthquake process. Over the past 40 years, there has been a plethora of
work on finding credible, consistent and accurate earthquake precursors. This paper is a cumulative
survey on earthquake precursor research, arranged into two broad categories: electromagnetic
precursors and radon precursors. In the first category, methods related to measuring electromagnetic
radiation in a wide frequency range, i.e., from a few Hz to several MHz, are presented. Precursors
based on optical and radar imaging acquired by spaceborne sensors are also considered, in the
broad sense, as electromagnetic. In the second category, concentration measurements of radon
gas found in soil and air, or even in ground water after being dissolved, form the basis of radon
activity precursors. Well-established mathematical techniques for analysing data derived from
electromagnetic radiation and radon concentration measurements are also described with an emphasis
on fractal methods. Finally, physical models of earthquake generation and propagation aiming at
interpreting the foundation of the aforementioned seismic precursors, are investigated.
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1. Introduction

Earthquakes are inevitable disastrous phenomena. Not only are they unavoidable,
but the incredible difficulty in forecasting them renders these disasters even more hazardous
and catastrophic. Finding an accurate seismic precursor is one of the greatest challenges for
the scientific community worldwide. Seismic forecasting research dates back more than fifty
years and, arguably, earthquake forecast still lacks in terms of accuracy and reliability. There
is evidence that pre-seismic electromagnetic radiation and radon concentration observations
can be utilised in earthquake prediction, taking into account specific measurable features
of the associated earthquake process. More specifically, if such observations are made
near the geological rupture, some measurable precursory activity prior to the seismic
event can be expected. However, the reader should note that it is difficult to establish any
direct correlation between prior observations and earthquake occurrences, especially in
short-term forecasting [1,2].

Reducing the uncertainty in the estimation of the occurrence time and location or
even the size of a forthcoming massive seismic event is the main goal of earthquake
forecasting [3]. Seismic forecasting usually falls into four categories [4]: long term (10 years);
intermediate term (1 year); short term (10−1 to 10−2 years); and immediate term (10−3 years
or less). Hayakawa and Hobara [5] classify earthquake forecasting into three categories:
long term (time scale of 10 to 100 years); intermediate term (time scale of 1 to 10 years) and
short term (from several weeks to a few hours). Each forecast category relies on different
data sources (e.g., instrument measurements for short-term forecasting, historical records
and geological studies for long-term forecasting) and is dictated by the public need for
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earthquake preparedness, which includes an array of safety procedures for each level of
forecast [1].

In seismic-prone countries, short-term early warning in a time window of weeks,
days, or hours is deemed most important but is inherently more difficult than long-term
forecasting. Short-term earthquake forecasting involves the study of short-term precursory
activity based on observations of physical quantity irregularities acquired near and before
earthquake events and can be further supported by serendipitous findings in observa-
tions not purposed for earthquake monitoring but that are nonetheless acquired near the
earthquake location [6]. Abnormalities in electromagnetic fields, anomalous variations
in radon concentration in the soil, groundwater, surface water and atmosphere, erratic
gas emissions, uneven surface distortions caused by pressure differentials, ionospheric
perturbations and anomalies detected by satellite and remote sensory devices are among
these physical quantity irregularities [6].

Observations of pre-seismic electromagnetic disturbances (in the radiofrequency–RF
range) are one of the most promising tools for short-term earthquake forecasting. The re-
lated subject is termed seismo-electromagnetism [7]. As it has been shown by many
studies (see, e.g., the reviews [5,6,8–11] and the references therein), pre-seismic electro-
magnetic emissions occur in a wide frequency range, i.e., for frequencies below 10 Hz
(Ultra-Low Frequencies—ULFs), frequencies in the kHz range and up to several MHz
(High Frequencies—HFs) and frequencies between 100 MHz and 300 MHz (Very High
Frequencies—VHFs). The research originated back in the 1970s, when the first successful
seismic forecast was reported for an earthquake of magnitude M = 2.6, occurring on 3
August 1973, near Blue Mountain Lake, New York [12]. Following this, the M = 7.4 He-
icheng earthquake of 4 February 1975 was correctly anticipated by seismologists, boosting
the prospect that credible earthquake forecasting may be feasible. This forecast led to the
issuance of a warning within a period of 24 h before the primary shock, perhaps avoiding
more casualties than the 1328 deaths that the event resulted in. A major setback to the
earthquake forecast endeavour was the 1976 M = 7.8 Tangshan earthquake, which struck
18 months later and was not anticipated. The number of deaths caused by this earthquake
reached the hundreds of thousands [6,8]. Research has recently focused on short-term
forecasting rather than long-term forecasting [13]. Pre-seismic electromagnetic observations
and abnormality recordings have been documented by several study teams throughout
the globe as precursors of earthquakes. Electromagnetic variations are recorded by ground
stations, remote sensory devices [14,15] and satellites [14,16].

Radon precursors of pre-seismic activity are also intriguing. Due to its importance,
research on radon monitoring has become a rapidly growing topic in the search for warning
signs before earthquakes [2,6,8,17–25]. This is due to the fact that radon may travel great
distances from the host emitting rocks [26] and can be detected at very low levels [27].
Anomalous radon concentration variations in the soil, groundwater and atmosphere
may be observed prior to earthquakes [6,17,19,24,28,29]. Before earthquakes, anoma-
lous radon fluctuations are addressed in the soil, groundwater, atmosphere and thermal
spas [6,17,19,24,28,29]. The time series features, such as the range, length, number of radon
anomalies, precursory time and epicentral distance, vary greatly [6,17,30,31]. However,
radon emissions are influenced by seasonal variations, rainfall and barometric pressure
alterations [6,8,21,23,26,30,31] and for this reason, radon time series are preprocessed ac-
cordingly [6,17,21–23]. The majority of the associations between radon and earthquakes
involves events of small and intermediate magnitudes. Large magnitudes earthquake
associations with radon observations also exist [2,32–36].

Ionospheric studies, satellite measurements and remote sensing measurements have
recently gained significant interest in earthquake precursor research following the pub-
lication of the Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) [37]. Due to the
widespread availability of GPS data, many studies report GPS-based total electron content
(TEC) data of the ionosphere, providing valuable information and convincing evidence of
precursory activity [38–42]. Other researchers have studied the lower ionosphere exten-
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sively in relation to earthquakes by exploring possible ionospheric perturbations in the
upper and lower regions [43–47].

Despite continuous research efforts, the understanding of the fracturing mechanisms
of the crust remains limited [1,6,8,18–22,48–56]. Given that the fracture of heterogeneous
materials has still not adequately been explained, despite significant effort at the theoretical
and experimental level [1], the interpretation of earthquake generation is still problematic.
In addition, each earthquake is unique with its own spatial and temporal distribution and
any candidate precursor cannot be generalised to other earthquakes in a straightforward
manner. Eftaxias et al. [1] stated that before the final catastrophe, several seismic, geo-
chemical, hydrological and electromagnetic changes occur as the earthquake’s preparatory
process unfolds. This suggests that a credible earthquake precursor should be derived
on the basis of an acceptable physical model which adequately explains the earthquake
process [6] and especially its preparatory stage, and this further complicates the search for
earthquake precursors.

2. Electromagnetic Precursors
2.1. ULF Emissions

In 1964, seismogenic electromagnetic emissions with frequencies lower than 10 Hz
were first observed [57]. It has been found that ground electric potential variations, at-
mospheric ULF electromagnetic waves and other related phenomena occur prior to earth-
quakes [8–10,58–62]. Monitoring and recording ULF emissions on the ground, arising
directly from the lithosphere, is one of the several widely used seismo-electromagnetic
methods. This is because ULFs ( f = 0.01 Hz–10 Hz) have great skin depth, low attenuation,
less contamination and less penetration through the magnetosphere and ionosphere [63]
and as a result, ULF waves can travel up to an observation point close to the Earth’s
surface with little attenuation [5]. Although most ULF precursors are electric, nowadays,
researchers also study magnetic ULF precursors [6,8,9]. Nevertheless, it should be noted
that concerns on the existence of a direct relation between ULF signals and impending
earthquakes have also been raised [9].

The VAN method (from Varotsos, Alexopoulos, Nomicos) for ULF emissions has a
long track record of more than forty years [10,61,62]. The method introduced the concept of
Seismic Electric Signals (SES). SES are ULF disturbances of frequencies f < 1 Hz. The most
significant physical property of SES is selectivity [8–10], which means that SES prefer
specific paths and consequently, a ULF station is sensitive to SES from certain seismic areas
only, namely from specific focal areas. The map showing these potential areas is called the
selectivity map of a station. Due to their selectivity, SES can be detected even from hundred
kilometres away from the epicentre. By installing two dipoles of length 50 m, 100 m, 200 m
and preferably 1000 m in a cross configuration, magnetotelluric variations are discriminated
from anthropogenic disturbances. The VAN method has successfully forecasted seismic
events within a precursory window of some days or weeks in both Greece [61,62] and
Japan [5,10]. Nowadays, SES (among other signals) are incorporated in the natural time
method (see Section 5), which has demonstrated improved forecasting potential on several
earthquakes (e.g., [64] and references therein). Nevertheless, the applicability of the VAN
method has divided the scientific community into those supporting [10] and those rejecting
it [6].

The 1988 Spitak M = 6.9 earthquake [65], the 1993 Guam M = 8.0 earthquake [59],
the 1996 Hetian M = 7.1 event [66] and the 1997 Kagoshima M = 6.5 earthquake [67] were
successfully forecasted using ULF electromagnetic emissions. Using the cumulative daily
sum of the local energy of the earthquakes weighted by the squared distance from the
measurement station, a method was suggested by Hattori et al. [68,69] for ULF-based
forecasting of earthquakes. Employing this method, Han et al. [70] reported an increased
probability of ULF magnetic anomalies 1–2 weeks before medium and strong shallow
earthquakes, hence confirming previous findings published by Hattori et al. [69] and
emphasising additionally that the perturbations were better associated with stronger and
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closer earthquakes. According to data gathered from 17 stations in Japan, statistically
significant diurnal geomagnetic anomalies were found two months before the Mw = 9.0
2011 Tohoku earthquake. Comparable estimations were published by Han et al. [71] and
Xu et al. [72]. Prior to the catastrophic earthquakes that occurred in September 2015 at
Coquimbo, Chile, September 2017 at Chiapas, Mexico, and September 2020 at Vrancea,
Romania, ground-based stations recorded pre-seismic ULF anomalous geomagnetic dis-
turbances [64,73–79]. Pre-seismic perturbations in the spectral density ratio between the
horizontal and vertical ULF components were reported by Hirano and Hattori [80] and
Ouyang et al. [81]. ULF magnetic field emissions were continuously measured in Agra
station in India with the help of three-component coil magnetometers with promising
forecasting results [63]. ULF geomagnetic data from the Panagjurishte and Surlari stations
in Romania were successfully utilised for the forecast of a Mw = 6.4 earthquake which
occurred in the coastal zone of Albania on 26 November 2019 [78].

2.2. HF Emissions

In the range between a few kHz to several MHz, a number of HF emission disruptions
prior to earthquakes have been reported [1,23,34,35,82–87]. As stated by Hayakawa and
Hobara [5], there are two methods to detect the seismic precursors, i.e., a direct measure-
ment of the electromagnetic emissions radiated from the hypocentre of earthquakes in the
lithosphere, or the indirect detection of anomalous propagation disturbances in the atmo-
sphere and ionosphere caused by transmitter signals already in place. The identification
of HF electromagnetic disturbances can aid in determining the source of seismic activity.
According to Eftaxias et al. [1,82], the various frequencies of the HF electromagnetic precur-
sors, in conjunction with the detected time lag between events and impending earthquakes,
indicate distinct stages and mechanisms of the earthquake preparation processes. It is
also believed that cracking and faulting events at different length scales occur prior to an
earthquake, as an abrupt mechanical breakdown of the Earth’s heterogeneous crust, thus
the complex operations that occur may be the initial source of numerous electromagnetic
precursors [1,82,86].

Several publications (e.g., [1,34,82,83,86] and references therein) suggest that the high
persistency and organisation in an electromagnetic time sequence points to the development
of a positive feedback mechanism regulating the sudden fracto-electromagnetic process
that occurs during earthquake preparation. There is increasing evidence that such a
feedback mechanism might be a sign of the earthquake fracture process. However, HF
electromagnetic precursors have not been fully understood yet. There is still much to
be done to comprehensively delineate the HF electromagnetic precursors. Separating
two events that happened at different times, like an earthquake and its potential HF
electromagnetic precursor, is a challenging task. New methods may provide more data that
would enable one to acknowledge the seismogenic source of detected HF electromagnetic
abnormalities and connect them to the pivotal phase of the earthquakes production.

Apart from persistency, the strong antipersistent properties of an electromagnetic time
series, as well as the change between persistency and antipersistency, are also evidence of an
underlying nonlinear feedback of the system initiating the crack-opening process that leads
the system to be out of equilibrium ([34,35,88] and references therein). The reader should
note that according to Eftaxias et al. [1], the antipersistent behaviour is comparable to that
of systems that experience a continuous phase transition at equilibrium. Stationary-like
features possibly observed in antipersistent sections of preseismic electromagnetic time
series might also be attributed to the heterogeneous part of the fracturing media. According
to Contoyiannis et al. [89], Kapiris et al. [84,85] and Eftaxias et al. [90,91], the precursory
electromagnetic antipersistent anomalies are associated with a continuous thermal phase
transition with strong critical characteristics. Although observing an HF anomaly is a
necessary condition for the anticipation of a forthcoming event, it is far from considering it
as a sufficient condition, i.e., as a prerequisite for the occurrence of this event [1,88]. Notably,
it is important to rule out any potential relationship of these anomalies with magnetic
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storms, artificial electromagnetic sources or solar flares [1], with the note that the latter
may trigger seismicity and impact the earthquake preparation zone [92]. In relation with
this, Anagnostopoulos et al. [93] considered that the sun was an agent provoking seismic
activity through coronal holes driven by high-speed solar wind streams.

2.3. VHF Emissions

VHF emissions have also been employed in the search for electromagnetic earthquake
precursors. According to Pullinets [94], one of the two authors of the LAIC model [37], LAIC
describes a system made up of subsystem interactions and a synergy of several processes,
one of which is the electromagnetic emissions which may alter the characteristics of the
atmosphere and ionosphere. Although some scientists dispute the precursory usability of
VHF emissions (e.g., [8] and references therein), recent scientific interest has been stimulated
by this subject. For example, Sorokin et al. [95] report a theoretical physical model that
explains the over-horizon propagation of pulsed VHF radiation and the origin of the related
seismic phenomena in association with the troposphere’s origins, the thermal effects, the
associated IR emissions and the modification of the distribution of plasma in D, E and F
ionospheric layers. Ouzunov et al. [96] report atmospheric variations in the intensity of
broadband wireless signal propagation correlated with pre-earthquake processes. Since
2012, these authors have continued to conduct ground observations in Bulgaria in the
VHF band between 1.8 GHz and 3.5 GHz, discovering phenomena related to a signal’s
amplification days or hours before the seismic occurrences, with notable examples the
M = 5.6 earthquake of 22 May 2012 in Bulgaria, M = 5.1 earthquake of 12 August 2018
in Albania, the M = 4.1 earthquake of 2 August 2018 in Southern Bulgaria and the M = 5.5
earthquake of 28 October 2018 in Romania. A VHF early warning system is utilised
among other systems in Mexico [97]. Moriya et al. [98], on the basis of designing a data-
collection system, report several anomalous VHF-band radio-wave propagation events
prior to earthquakes, with the most significant being the Tokachi-oki earthquake (Mj = 8.0,
Mj being a magnitude defined by the Japan Meteorological Agency) on September 26
2003 and the southern Rumoi sub-prefecture earthquake (Mj = 6.1) on 14 December 2004.
Devi et al. [99] states that the VHF emissions indicate unusual atmospheric parameters
brought on by earthquake precursor processes, which may allow for the reception of VHF
communications at distances of more than 1000 km. According to the authors, the lower
VHF TV transmissions of less than 70 MHz are linked to modifications in the tropospheric
environment and the ionospheric mode of propagation. According to Erickson [100],
anthropogenic electromagnetic emissions are primarily caused by mobile communications,
car ignition systems, industrial equipment and radio and television broadcasting stations.
Eftaxias et al. [101] report VHF disturbances prior to earthquakes in Greece showing
that the related features are possibly correlated with the fault model characteristics of the
associated earthquake and the degree of geotectonic heterogeneity within the focal zone.

2.4. Remote Sensing and Satellite Techniques

The application of spaceborne remote sensing has grown in popularity and effec-
tiveness within the field of natural disasters [102]. Improved quality data with repeated
spatio-temporal coverage over large areas in rough geomorphological and geological con-
ditions can be obtained through the development of geospatial technologies and advanced
data processing [103–105]. The post-disaster visualisation of remote sensing images helps
in knowledge production, emergency intervention thinking and decision-making during
earthquakes [106]. Consequently, seismo-electromagnetic research has entered a new phase
with the development of remote sensing tools. It is now possible to simultaneously monitor
a number of locations throughout the globe, including seismic occurrences taking place
in tectonic systems with differing geomagnetic conditions. That is essential to the related
research. For the remote sensing data to yield reliable findings, a worldwide coverage with
sufficient spatial and temporal resolution is needed [8].
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The remote sensing of the co-seismic effects of earthquakes is of importance. Co-
seismic effects occur as around 100 m long Earth’s cracks, which are followed by landslides,
lateral spreading and changes to urban and suburban areas, which, in turn, may cause
human casualties and affect agriculture and the food supply chain. For instance, landslides
and substantial lateral spreading were noted following the earthquakes in Kashmir in
2005 and Mirpur in 2019 [107,108]. The seismically generated structural, stratigraphic
and hydrogeological side effects are a subject of remote sensing and satellite studies. For
example, the Landsat satellite imagery has been used to study the dynamic relationship
between observed seismicity and lineament density [109]. Ground-based remote sensing
techniques are efficient non-destructive geophysical methods that provide high-resolution
subsurface images to detect several co-seismic features. Remote sensing data from a number
of satellites and sensors are also useful tools for co-seismic mapping.

Synthetic Aperture Radar (SAR) is among the best remote sensing techniques for
mapping the co-seismic changes. Interferometric SAR (InSAR) is one of the most powerful
remote sensing technique of the SAR family used to detect several surface deformations
over large areas with high accuracy [110]. InSAR allows low-speed surface deformations to
be detected over vast areas with centimetre to millimetre precision [111]. The permanent
Scatterers InSAR is a robust remote sensing technique for mapping co-seismic deformation
and movements of urban infrastructures [112,113] for which the spaceborne remote sensing
techniques are less effective because they cannot provide complete near-surface information
needed for such estimations.

The Ground Penetrating Radar (GPR) remote sensing technique has been applied to
shallow subsurface seismic investigations due to its high-resolution, time and cost-effective
nature [114–116]. GPR has gained popularity in studies related to the detection of faults
and fracture networks [117], slope instabilities [116] and landslides [118]. GPR is a reliably
accurate mapping tool to study a single site and a localised subsurface deformation but is
difficult to perform over extensive earthquake’s Karst depression–landslide-affected areas.
However, only a few studies using field GPR measurements report data regarding the
co-seismic liquefaction and the related ground failure [119,120].

2.5. TEC

Total Electron Content, or TEC, is the electron density of a 1 m2 cylinder that is
vertically stacked from a ground point to the ionosphere [121,122]. One TECU is the TEC
measurement unit and equals 1016 electrons per square meter vertically arranged up to
the ionosphere. By definition, TEC is associated with the LAIC model. GPS receivers
and ionosondes are used to continuously monitor TEC at various locations across the
world [122]. The corresponding data are accessible through a number of repositories and
URLs [122–126] via the Ionosphere Exchange (IONEX) data file structure [127].

To investigate seismically generated TEC fluctuations in the ionosphere, researchers
have used a variety of schemes and approaches [39,122,128–133]. There has been much
discussion about the anomalous variations in the ionospheric F2 peak electron density NmF2
(plasma frequency foF2), which are recorded by ionosondes and TEC, which, in turn, are
determined by ground-based GPS receivers and appear prior to earthquakes [39]. Based on
184 M ≥ 5.0 earthquakes which occurred in Taiwan over a 6-year period between 1994 and
1999, Liu et al. [39] conducted a statistical investigation that showed anomalous decreases
in the ionospheric NmF2 in the afternoon within 1–5 days prior to the earthquakes and
pronounced reductions in the ionospheric GPS TEC in the afternoon and late afternoon
periods within 5 days prior to 20 M ≥ 6.0 earthquakes in Taiwan.

According to Liu et al. [129], while pre-earthquake ionospheric anomalies may oc-
cur almost at any local time, TEC over a possible epicentre region typically decreases or
increases significantly in the afternoon and/or evening periods, one to six days prior to
the occurrence of an earthquake. According to these authors, during the period of earth-
quake preparation, the generated seismoelectric fields may permeate the ionosphere and
induce TEC variations within it, hence affecting the seismo-electromagnetic environments
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surrounding the epicentre. A few days prior to the 12 May 2008 Mw = 7.9 Wenchuan
earthquake, Zhao et al. [134], Liu et al. [39] and Pulinets and Ouzounov [37] reported
that ionospheric GPS TEC enhancement and/or reduction in anomalies simultaneously
appeared above the epicentre and its magnetic conjugate point.

Increased ionosphere observations from space and on Earth clearly show that there is
a coupling mechanism between lithosphere-based seismic activity and ionosphere-based
deviations or disturbances in electron concentrations, particularly prior to major earth-
quakes [121,122,124]. The measurements include variability in the critical frequency of the
F2 layer, foF2 and TEC [124,135]. Compared to costly and sparse foF2 observations using
Earth- or space-based ionosondes, TEC measurements are more readily acquired with the
use of global GPS TEC [124]. The impact of the earthquakes on the ionosphere is bigger
for earthquakes with higher magnitudes and greater depths, hence affecting the relative
density of TEC anomalies, within an radius area of 1000 km around the earthquake’s
hypocentre [125]. Gulaeva and Arikan [125] suggest that the number of positive TEC
storm anomalies is twice that of non-storm values, and that this observation supports
dominant post-earthquake TEC enhancement with the ionosphere peak decreasing for 12 h
during daytime but growing by night-time 6 h after the earthquake, followed by a gradual
recovery afterwards.

According to Sorokin et al. [95], there are two possible causes for the TEC ionospheric
anomalies: variations brought on by acoustic gravity waves and variations created by
electric fields. Variations in the density of TEC are caused by a variety of natural events,
including dust storms, thunderstorms, solar radiation, volcanic activity, radioactive gases
and thunderstorms [136–138]. For instance, TEC increased during the 2014–2015 high-solar-
radiation cycle, which was caused on by high-energy solar particles interacting with the
Earth’s ionosphere resulting in TEC shifting [121]. Therefore, these parameters should be
taken into account when studying TEC ionospheric variations.

3. Radon Precursors
3.1. Radon Properties

Radon (222Rn) is a natural radioactive noble gas. It is produced when radium (226Ra)
decays. According to Nazaroff and Nero [26], there are thirty-nine known isotopes of
radon, ranging from 193Rn to 231Rn. Radon has a half-life of 3.823 days and is the most
stable isotope. 220Rn, or thoron, has a half-life of 54.5 s. Due to its short half-life, thoron
decays rapidly and because of this, it is often detected at low concentrations. However, that
depends on the concentration of its parent nucleus (224Ra), especially in comparison to that
of 226Ra. Radon is primarily responsible for the radioactivity present in the atmosphere at
sea level [139].

Radon emissions mostly originate from soil [26]. About 10% of the radon that is
diluted in soil gets released into the atmosphere [139]. In addition to soil, radon may be
found in surface and underground waters, as well as fragmented rock [139,140]. While all
radon atoms produced are diluted in fluids, only a portion of radon emerges from porous
media and fractured rock, enters the volume of the pores and dissolves within the pore’s
fluid [140]. Once there, either convection, advection or molecular diffusion can cause a
macroscopic transport [26]. Interconnected pores and water aquifers allow this movement
to appear [140]. Radon dissolves into the water present in the pores of soil and rock and
is carried away by it [26]. The most crucial elements for these processes are the pressure
differentials, the temperature gradients, and the permeability of soil [6].

Radon is a significant radiological risk factor since it contributes to over the half of the
effective dose equivalent of the population’s exposure to natural sources and is the leading
natural cause of lung cancer [141–143]. Due to this, radon is a subject of extensive research
worldwide [141–150]. In addition to the above health risks, radon offers several beneficial
uses in a variety of applications. In meteorology, the amount of uranium is calculated
from the changes of radon’s emission in soil, and the obtained information is then utilised
to monitor air masses. When assessing how accurate chemical transport models are in
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estimating greenhouse gas emissions, radon can be a helpful tracer for understanding
how the atmosphere functions [151]. Radon has been employed in hydrological studies
and for faults identification [152–154]. The shift in radon concentrations near faults and
the anomalous variations in groundwater levels [155,156] have been employed as well,
because the corresponding concentration variations reflect the water–rock interactions [157]
and the pathways generated by active faults [158]. Radon has also been studied for
co-seismic effects and tidal strain [159]. Radon’s half-life in association with its inert
nature provides it with the ability to travel long distances without significant loss [27].
Because of this, radon has been extensively used to study tectonic activity [6,8,17,160,161].
Under this perspective, radon is the best among the various hydrogeological tracers for
earthquake forecast.

Radon combines hydrological, geological and environmental properties. Hydrologi-
cally, it dilutes in water [26] molecules and water aquifers. It is present in surface and, most
importantly, underground waters [139,140]. Geologically, it is easily transferred within
soil and rock reaching areas away [2]. Environmentally, it is naturally emitted and present
in atmosphere, soil and rock, surface and ground water. It is easily detected. All these
properties combined have made radon one of the best precursors of seismic activity and
the one with the longest history in earthquake-related studies [8,17,86,160,161].

3.2. Pre-Seismic Radon Anomalies

Abnormal radon changes before earthquakes have been found in groundwater, soil
gas, atmosphere and thermal spas (e.g., [6,8,17,29,52,147,160–173]) and recently, have been
associated with TEC variability (please see Section 2.5) [131–133,174]. There are consider-
able variations in the relationships between magnitude, precursory time and epicentral
distance in connection with the range and number of radon anomalies and other features of
the associated time series (e.g., [6,8,17,30,31]). For instance, the epicentral distances of earth-
quakes identified with the aid of radon vary from 10 km to 100 km, whereas the recorded
precursory durations span from three months to a few days before the earthquake’s occur-
rence. Comparable ranges have also been published by Cicerone et al. [6], Ghosh et al. [17],
Petraki et al. [161], Conti et al. [8] and Huang et al. [160]. Several precursory signals have
been obtained with passive techniques (no external power needed), which offer rough time
series estimations, since these methods integrate the radon concentrations over extended
periods of time (of at least > 1 week), necessitated for the measurement. This coarseness
poses significant bias to the precursory estimations. Nowadays, radon precursory signals
are monitored with active techniques (external power required). The active techniques
are implemented with portable monitors which allow for high sampling rates (typically
between 1 min−1 and 1 h−1). As a consequence, these techniques offer detailed signals
of radon and fine estimations (e.g., [2,6,8,17,160,161]). It is crucial to mention that addi-
tional factors influence the estimates of radon and earthquakes. For instance, seasonal
fluctuations, geological and geophysical conditions, rainfall and changes in barometric
pressure all have an impact on radon concentration levels [6,21–23,26,30,31,139,160]. Be-
cause of this, the associated time series data are typically shown alongside the precursory
signals of radon. Most of the correlations between radon and earthquakes are based on
small-to-intermediate-sized magnitudes. This further limits the calculations since as of
right now, neither for mild earthquakes nor for powerful earthquakes does there exist a
universal radon model that can be used to explain a particular impending seismic event
([1,35,82,83,175] and references therein).

3.2.1. Soil

The release of radon from soil is important for research on earthquake forecasting.
Because of this, one of the key elements in forecasting strong earthquakes is the monitoring
of radon emissions, and this is accomplished by various research groups [2,19,24,25,27,31,36,
48,51,52,54,147,162–174,176–181]. The variability of radon’s emission linked to the seismic
occurrences at a monitoring station determines how successful these investigations are.
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Radon concentration in soil depends on a number of parameters and thus varies between
different natural environments. The objectives of the detection of radon pre-earthquake
precursors are guided by the certain prospects of each region [49,50,161,182]. Traditionally,
because of well-investigated relationships between radon and environmental parameters,
any radon concentration deviations are believed to be indicative of changes brought by
tectonic force during the earthquake preparation. In general, twice the standard deviation
or more from the average soil radon concentration at a site of observation is thought to
reflect appreciable anomalies. The radon anomalies are attributed to earthquake-related
stress–strain changes underneath the Earth’s crust, but this has been a subject of significant
argumentation [2,8]. Two approaches have been taken towards the study of soil radon as
an earthquake precursor: one involves simulation experiments in the lab and the other
involves monitoring the concentration of radon in soil gas over an extended period of time,
in comparison to unusual emission changes with respect to seismic occurrences. In order to
understand the gas dynamics underlying the ascent of radon from deep below the Earth’s
crust to the surface, a number of in situ and laboratory experiments as well as models have
been suggested [6,8,17,161].

Based on observations and conclusions drawn from all of the aforementioned studies,
it has been determined that radon gas, which originates from the decay of radium in
rocks inside the crust, partly stays in the crustal matrix, while the remainder migrates
away through interconnected pores and aquifers using diffusion, fluid flow and alpha
recoil. Changes in the strain field are caused by the accumulation of tectonic stress before
an earthquake. According to Fleischer and Mogro-Campero [183], the deformation of
rock mass under stress creates new channels that allow deep Earth gasses to ascend to
the surface.

3.2.2. Groundwater

Although the idea that radon anomalies in groundwater may be connected to earth-
quakes was initially put up in 1927, the Great Tashkent earthquake of 1966 produced the
first indication of an abnormally high radon concentration in groundwater [184]. Subse-
quently, a number of groups employed the concentration of radon in groundwater to study
earthquakes [20,28,30,162,185–200]. Groundwater radon concentrations frequently increase
before earthquakes (e.g., [36,178,179,193,201]). However, in some cases, the amount of
radon in groundwater decreased [20,186,187,193]. Significant earthquakes may be related
to groundwater radon’s peculiar behaviour as it offers information about subsurface dy-
namics [179], particularly in areas where high-stress build-up occurs in the crust [202]. The
processes driving seismic activity can be better understood by examining the links between
seismicity and geochemical signal variability [179].

The route that groundwater follows underground, or the kinds of rocks and soil it
encounters, determines the amount of radon that is present in the groundwater [203] or es-
capes from it [204]. The measurement of the underground water baseline is crucial because
radon gas permeates the water from these rocks and soils and alters the amount of radon in
these waters. Baseline radon concentrations in groundwater vary greatly. According to Kan-
dari et al. [205], radon concentrations in 15 water samples from the Dehradun region, which
is close to an active fault, ranged from 1.70 Bq L−1 to 7.57 Bq L−1. In southern Catalonia,
15 hot springs had groundwater radon levels ranging from 1.4 Bq L−1 to 105 Bq L−1 [206].
Using an AlphaGUARD system, Spanish researchers measured 28 groundwater samples
collected from northeastern Gran Canaria (Canary Islands, Spain). They found that the
highest and lowest levels of dissolved radon concentration were 76.9 Bq L−1 and 0.3 Bq L−1,
respectively [207]. More range values are provided globally [141–143,208]. Significantly more
radon is found in groundwater in thermal spas [139,209,210].

The seasonal fluctuation in groundwater radon concentrations may be attributed to
temperature, precipitation, and other climatic conditions, but its anomalies may also be
linked to shifts in tectonic stress [199,211]. While it is now well accepted that radon anoma-
lies may be associated with earthquakes, anomalies are typically exceedingly hard to locate
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since variations in radon concentration frequently exhibit the features of nonlinear dynamic
fluctuations. Thus, the development of efficient identification techniques is necessary.
To some extent, the conventional statistical techniques are erroneous and subjective. A few
data mining techniques, such as artificial neural networks and machine learning, have had
some success recently [166,199,200,211].

3.2.3. Atmosphere

The primary source of atmospheric radon concentration is the exhalation from the
Earth and to a lesser extent the escape from surface and subsurface water [26]. Numerous
processes are involved, and meteorological elements have a significant impact on them [143].
Therefore, detecting anomalies in air radon in relation with earthquakes is significantly
more challenging than detecting them in groundwater or soil radon. Prior studies computed
anomalies in atmospheric radon concentrations by establishing a threshold level for the
anomalies based on a normal variation period and removing the seasonal component
anticipated from a sinusoidal model [164,212]. The results of these conventional methods
depend on how the seasonal component is determined because the assessment is based on
departures from the assumed sinusoidal model and the selected normal period of average
fluctuations [213].

Japan is the primary source of studies on earthquake forecasting using atmospheric
radon. Iwatata et al. [164] reported that anomalies in the atmospheric radon concentration
were linked to the moment releases of large earthquakes based on ten years of continuous
observation of the concentration over north-eastern Japan and Hokkaido. Yasuoka and
Shinogi [214] reported that two months before the main shock of the 1995 Kobe earthquake
(Mw = 6.9; 17 January 1995, 34.6◦ N, 135.0◦ E), an increase in atmospheric radon concentra-
tion was noticed at Kobe Pharmaceutical University. Goto et al. [215] reported anomalous
atmospheric radon concentrations associated with a shallow inland earthquake (Mj = 5.5,
depth = 7 km; 5 July 2011, 34.0◦ N, 135.2◦ E) in northern Wakayama. Yasuoka et al. [29]
reported that the residual values for each day could be fitted very well to a log-periodic
oscillation model by applying the exponential smoothing method to the fluctuations in
the residual values. The authors stated that the residual values stopped increasing on
31 December 1994, and they concluded that this corresponded to the critical point of the
best-fit model. These authors stated that rather than the main direct stresses causing the
Kobe earthquake, the local stresses were responsible for the unusual 222Rn fluctuation
as well. Using the irreversible thermodynamic model, Kawada et al. [216] proposed
that the preseismic radon shift was caused by a small change in crustal strain. Further-
more, a quantitative study by Omori et al. [213] revealed that the unusually high radon
concentration (about 10 Bq m−3) before the Kobe earthquake increased air conductivity
and was sufficient to produce ionospheric disturbances. Yasuoka et al. [217] claimed
that further mechanically induced precursors were seen prior to the Kobe earthquake.
Igarashi et al. [189], for instance, described such precursory variations in groundwater
radon concentration. Tsunogai and Wakita [218] documented further preseismic variations
in crustal strain, groundwater discharge rate and chloride ion content in groundwater.
Because of the mechanical behaviour of the crust, these preseismic fluctuations should be
related to one another [29,189,216]. The fact that the temporal change in atmospheric radon
concentration has not been compared with that in other preseismic events was noted by
Igarashi et al. [189]. The linkage between preseismic fluctuations in the subsurface, atmo-
sphere and ionosphere could have been substantially verified if radon activity had been
clearly linked to the earthquake preparation process [189]. Additionally, current research
supports the link between atmospheric radon and the Kobe earthquake [215,219].
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4. Models
4.1. Electromagnetic Precursors Models
4.1.1. Models for the ULF Precursors

There are three main models that have been proposed for the interpretation of the
magnetic component of the preseismic ULF disturbances:

1. Magneto-hydrodynamic model [220]: According to this model, an electrically con-
ducting fluid flowing through a magnetic field causes an additional induced field to
be created. If B is the magnetic field, Maxwell’s equations indicate that the induced
magnetic field Bi can be given by the equation Bi = Rm · B, where Rm is the mag-
netic Reynolds number, comparable to the hydrodynamic Reynolds number, which
determines the relative significance of the convective and diffusive components.

2. Piezomagnetic model [221]: this model suggests that an applied stress causes ferro-
magnetic rocks to shift in magnetisation, which in turn, induce a secondary mag-
netic field.

3. Electrokinetic model [222]: this model suggests that electric currents flowing in the
Earth due to electrified interfaces present at solid–liquid boundaries induce mag-
netic fields.

Varotsos et al. [223] proposed a theory about the current produced by charged dis-
tortions and currents induced by piezo-electric effects. The electrokinetic theory served
as the foundation for this theory. In water-saturated media with fluid-filled channels,
electrokinetic currents can be found [224,225]. In order to model the parameters of these
electrokinetic currents, Surkov et al. [226] assumed that an earthquake hypocentre was
surrounded by water-saturated porous rocks with fluid-filled pore channels, where cations
from the fluid were adsorbed by the walls of pores and cracks in the solid material. Accord-
ing to this author, the fluid moving along the channel carries anions and as a consequence
produces an extrinsic electric current between the fluid and the surrounding walls.

When an earthquake is imminent, the seismic hypocentre within the Earth’s crust
is surrounded by cracks and fractured material, where new fractures are continuously
produced forming the so-called fracture zone. The fracture zone can range in size from a
few hundred metres to several kilometres. Feder [227] postulated that there was a fractal
structure present in the pore’s space within the fracture zone. Newly developed cracks are
sealed off as soon as they arise under reduced pressure, as a result of the pressure release
that is caused by cracking. This, in turn, allows water from the uncracked outside zone
to enter as soon as a network of linked channels or fractal clusters is formed. This can be
seen, alternatively, as a grid of new cracks that are closed as the water sinks from the nearby
locations of greater pressure. According to Surkov et al. [226], during cluster formation, the
porosity and permeability of rocks decrease from the centre of the fracture zone towards
the perimeter. An interior area manages to surpass the percolation threshold and due
to this, the permeability outside the fracture zone tends to zero. In actuality, there is a
limited permeability since crustal rocks have a large variety of interconnectible small cracks.
Furthermore, the rock’s conductivity together with the surface and bulk conductivities
of the tiny fluid-filled cracks contribute to the non-zero conductivity of the surrounding
space. However, according to Surkov et al. [226], the conductivity beyond the fracture
zone is minimal. This indicates that because of the recently formed fluid-filled cracks,
the conductivity’s value is more closely tied to the conductivity of the percolation threshold.
It is important to note that only the percolation hypothesis can adequately explain the range
of fracture diameters. Surkov et al. [226] limited the study by using a basic percolation
hypothesis that ignored the crack-channel size distribution. The correlation length ξ is
ξ = 1 |p − pc| ν with p being the probability that a channel can conduct the fluid, pc is the
critical probability in the percolation threshold and ν = 0.88.

The aforementioned three ULF models have successfully described major earthquakes
identified with ULF data: the Mw = 9.0 earthquake at Tohoku, Japan; the Mw = 8.3 earth-
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quake at Coquimbo, Chile; the Mw = 8.1 earthquake at Chiapas, Mexico; and the Vrancea
seismicity in Romania [29,49,165,186,189,190,214,217,219,228].

4.1.2. Models for the HF Precursors

The behaviour of a stressed rock is comparable to that of an electromagnetically
strained rock [175]. The crack propagation is the basic process responsible for the material’s
failure [83]. The release of photons, electrons, ions, and neutral particles is observed when
fracture, deformation, wearing and peeling cause new surface characteristics to appear in
various materials [1,82,83,90,229]. The total of these emissions are collectively referred to
as fracto-emissions [83]. The significant charge separation brought on by the rupture of
the inter-atomic ionic bonds is the source of the electric charge between the micro-crack
faces. An electric dipole or a more intricate system is created by the electric charges on the
surfaces of freshly developed micro-cracks. It has been shown that a dynamical instability
controlling the oscillations in the velocity and shape of a crack on the fracture surface
controls the crack’s mobility [83].

According to experimental data, micro-fracturing events repeat and intensify until
a multi-crack state occurs, indicating that local branching is the instability mechanism at
work. It is important to note that laboratory research has identified strong fracto-emissions
during unstable crack propagation [22,23,34,83,230]. Because of the intense wall vibrations
of the cracks during the micro-branching instability stage, the cracked material functions
as an efficient emitter. As a result, the opening of cracks in a material can be seen as a
potential precursor of general fracture because electromagnetic emissions occur in a wide
frequency range from kHz to MHz when the material is stretched. These electromagnetic
precursor are detected during in-field measurement and in laboratories under controlled
conditions [1,34,82,90,91,175]. Consequently, the main technique for forecasting earth-
quakes is to record the electromagnetic emissions from potential microfractures in the focal
region prior to the final break-up [1].

As stated in several papers (e.g., [82,89,175,229] and references therein), a “symmetry
breaking” is linked to a thermal second-order phase transition. For non-equilibrium
irreversible processes, the evolution of the “symmetry breaking” with time was reported
in order to obtain an understanding of the catastrophic nature of the fracture events.
The investigation revealed that the system’s balance was progressively lost. This allowed
for the estimation of the duration beyond which the process responsible for the preseismic
electromagnetic emissions could continue as a non-equilibrium instability.

The analysis indicated three key periods: (i) the crucial epoch, also known as the
critical window, in which the short-range correlations transit to long-range ones; (ii) the
“symmetry breaking” epoch; and (iii) the integration of the “symmetry breaking.” It is
widely acknowledged that a notable rise in localisation and directionality occurs at the
terminal phase of the earthquake preparedness procedure. Therefore, it is critical to identify
distinctive epochs in the precursory electromagnetic activity progression and to connect
these to the corresponding final phases of the earthquake preparation process.

Tracing “symmetry-breaking” could indicate that the focal area’s heterogeneous com-
ponent, which encircles the fault plane’s strong asperities’ backbone, has reached the point
of microfracture propagation completion. At this point, the rupture becomes blocked at the
boundary of the strong asperities’ backbone. Asperities are already under “siege” [83].

4.2. Radon Precursors Models

Scholz et al. [231] presented the Dilatancy–Diffusion model, which connects anoma-
lous radon changes to the mechanical crack development rate in the volume of a dilatancy,
so as to simulate the underlying dynamics of radon prior to earthquakes. This model states
that the first medium is a porous, fractured, submerged rock. Favourably placed fractures
open when tectonic forces grow because the cracks expand and disengage close to the pores.
As a result, the preparation zones’ overall pore pressure decreases, allowing water from the
surrounding medium to enter the zone. Radon emission may fluctuate suddenly as a result
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of the pore pressure returning and the number of cracks growing. The crack-avalanche
model [176,232] states that the increase in tectonic stress forms a fractured focal rock zone.
This zone gradually changes in volume and form over time. According to the hypothesis of
stress corrosion [233], the slow crack propagation, which is controlled by stress corrosion
in the rock matrix saturated by groundwater, may be linked to the unusual behaviour of
radon concentration. The LAIC model [37,94] also describes radon’s stress accumulation in
the ground. This is attributed to the relative movement of tectonic blocks, which, in turn,
lead to the formation of micro-cracks, cracks, and fractures. Radon gas released from
microfractures combines with water and travels via various media to the earth. Water and
carrier gases are often responsible for the transportation of radon from the Earth’s deep
strata to the surface [234].

Nikolopoulos et al. [2,21,32,35,235], Petraki et al. [22,23], Alam et al. [36,178,179,201]
and Petraki [86] proposed the asperity model [83] (please see Section 4.1.2) to explain
radon emanation during the preparation of earthquakes. Preseismic radon anomalies are
attributed to variations in fractional Brownian (fBm) profile movements. In the views
described in Section 4.1.2, the focal area consists of a backbone of strong and large as-
perities that sustain the system and a strongly heterogeneous medium which surrounds
it. The fracture of the heterogeneous system in the focal area obstructs the backbone of
asperities. As the fracture becomes persistent, strong antipersistent radon concentration
anomalies occur interchangeably. This has been associated with several earthquakes in
Greece and China.

Other aspects have been expressed by other investigators. For example, Talwani et al. [236]
reported that the anomalous behaviour of radon gas could be because of the opening of
pores’ spaces during rock fracturing as a result of seismic events. Explosion tests were
performed to identify the relationship between the dynamic loading effect and the ob-
served concentrations of radon [18]. The experimental results revealed that the increase
in radon values was a consequence of seismic waves applied to the rock. According to
other investigators [237–239], crustal activities have been identified as one of the reasons
for radon emission.

5. Analysis Methods

Several investigations on earthquake forecast have been based on visual obser-
vations [6,11,161]. Despite providing some indications, the visual observations are
not enough to support the preseismic nature of the derived signals (e.g., [2,86] and
references therein). Due to this, the analysis nowadays rely on the physical back-
ground of the related earthquake processes. The mainstream analysis comprises fractal
methods [1,34–36,55,60,84,85,90,91,101,147,158,178,230,235,240–255], methods based on the
theory of information and entropy [82,89,175,229], symbolic dynamics [21,23,86,256–259]
and natural time methods [64,260–264]. Within the above framework, several metrics
have been utilised as adequate for the related analysis. These metrics comprise exponents
from the spectral power law (e.g., [34,84,254]), Detrended Fluctuation Analysis (DFA)
(e.g., [1,235]), Rescaled-Range Analysis (R/S) (e.g., [265]), Multifractal Detrended Fluc-
tuation Analysis (MFDFA) (e.g., [36,55]), fractal dimensions from Katz’s, Sevcik’s and
Higuchi’s methods [34,147], Hurst exponents and entropy values from (i) entropy per letter;
(ii) conditional entropy; (iii) entropy of the source; (iv) t-entropy; (v) Tsallis entropy; (vi) per-
turbation entropy; (vii) normalised Tsallis entropy and parameters for critical phenomena
(e.g., [1,82]).

Spectral power-law analysis and Hurst exponent analysis have been utilised in all ULF,
HF and radon precursors. DFA, fractal dimensions from Katz’s, Sevcik’s and Higuchi’s
methods and the R/S analysis have been used with success both for HF and radon pre-
cursors. Symbolic dynamics with entropy per letter, Tsallis entropy and normalised Tsallis
entropy have also been employed for both HF and radon precursors but to a lesser degree.
Natural time has been employed mainly in ULF signals. The remaining techniques and
metrics have been used mainly for HF precursors. Multifractal Detrended Fluctuation



Geosciences 2024, 14, 271 14 of 42

Analysis (MFDFA) has been employed in all types of precursors [55,179,241,255,266–268]
but is not presented here due to its complicated interpretation [269].

Due to their importance in both electromagnetic and radon precursors, the important
properties of fractal behaviour, long memory and Hurst exponent analysis are first given
in the following sub-sections. Then, DFA is presented because it is a robust method that
has been used in both LF, HF and radon precursors. The fractal dimension calculations
through Katz’s, Sevcik’s and Higuchi’s methods are given next because they have been
utilised both in HF electromagnetic and radon precursors and finally, the R/S analysis,
because it is the main direct method to calculate Hurst exponents and has been employed
both in HF electromagnetic and radon precursors.

5.1. Important Properties: Fractal Behaviour, Long Memory and Hurst Exponents
5.1.1. Fractal Behaviour

Many physical systems in nature display a fractal behaviour, which is reflected when
these systems are stretched, translated or rotated in space. Based on their mathemati-
cal characteristics, these systems are classified as either self-similar or self-affine. These
systems are fractals because each component of the system is a large-scale imitation or
representation of the system as a whole due to the self-affinity and self-similarity that
define all system components. This characteristic allows for the investigation of fractal
systems through a part-by-part analysis. System fractals can exhibit self-similarity or self-
affinity. While self-affine systems behave almost in this way, self-similar systems have exact
inter-parts representations.

The system’s complexity [270], which indicates whether the system is driven by linear
mechanisms and order [271,272], is also connected with the scaling and fractal behaviour.
The correlations are strong because a system’s complex behaviour may be predicted by its
fractal behaviour and vice versa.

5.1.2. Long Memory

The long memory [270,273,274] of a system can show if the system has long-range
interactions or is random. Specifically, it may reveal if a geo-system has strong persistent
and antipersistent behaviour or if the long-range interactions are rather loose. If a system
exhibits long memory, then the past, present and future states of the system are linked
together in a manner that the present state of the system is not only derived from its past
(Markovian behaviour) but also defines its future (non-Markovian behaviour) [82,175].
This behaviour is characteristically seen when the fracture of the Earth’s crust yield to
the inevitable general breakdown during the unstoppable approaching of an ensuing
earthquake [1,83,90,91]. Precisely there, the past determines the presence and also the
inevitable future breakdown of the system.

5.1.3. Hurst Exponent

Because it may depict enduring connections in space or time, the Hurst exponent (H)
provides a straightforward technique for assessing a system’s long memory [275,276]. Time-
evolving fractal events may be identified with the Hurst exponent, and the corresponding
time series’ roughness can be evaluated [277]. Important details about the time series are
revealed by the Hurst exponent’s value [241,275,276,278,279]:

(i) The series has positive long-range autocorrelation if 0.5 < H ≤ 1. A series’ high value
is followed by another high value and vice versa. High Hurst exponents suggest
persistent interactions that are anticipated to remain until the series’ remote future;

(ii) Low values of the time series follow high values if 0 ≤ H < 0.5, and vice versa. In the
future of the time series, there is a persistent transition between low and high values
for low H values (antipersistency);

(iii) If H = 0.5, the time series is completely uncorrelated, i.e., the related processes are random.
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5.2. Significant Analysis Methods for Electromagnetic and Radon Precursors
5.2.1. Power-Law Analysis

In the event that a temporal fractal is present in the time series, the power spectral
density, S( f ), exhibits a power-law behaviour:

S( f ) = a · f−β (1)

In Equation (1), a represents the spectral density amplification, f denotes a transform’s
frequency, and β is the power-law exponent, which measures the strength of the power-
law associations. This transform can be the wavelet transform [84] or the FFT of the
signal [254,255]. Given its perceived benefits, the wavelet transform based on the Morlet
base function is the most frequently employed [2,34,82,84,175,230,235,245]. In particular, f
represents the central frequency of the Morlet wavelet.

Equation (1)’s logarithmic transformation yields:

log S( f ) = log a + β · log f (2)

Given that Equation (1) is a straight line, β and a may be found by using the least-
squares approach to fit the associated data.

The technique has been utilised mostly in sliding windows of various lengths moved
one sample forward. Independent windows are also utilised as well, under the restriction
that the square of Spearman’s (r2) coefficient in each window should have r2 ≥ 0.95 for the
power-law fit to be acceptable.

5.2.2. DFA

The original time signal is first integrated in order to apply DFA. Then, within a window
of size n, the integrated signal’s fluctuations, F(n), are found. The linear log(F(n))− log(n)
transformation is then fitted using least squares to obtain the integrated time series’ scal-
ing exponent (self-similarity parameter), α. Depending on the dynamics of the system,
the log(F(n))− log(n) line may show one crossover at a scale n where the slope displays
an abrupt shift, two crossovers at two distinct scales n1 and n2 [86] or nothing at all.

The following process may be used to construct the DFA of a one-dimensional temporal
signal yi, (i = 1, . . . , N) [34,86,280]:

(i) First, the original time series is integrated:

y(k) =
k

∑
i=1

(y(i)− ⟨y⟩) (3)

In Equation (3), the symbols <. . . > represent the total average value of the time series,
whereas k represents the different time scales.

(ii) Next, the integrated time series y(k) is divided into equal-length bins, n, which do
not overlap.

(iii) The trend in the bin is subsequently expressed by the function y(k), which is then
fitted. Simple linear trends or polynomials of order two or a higher order may be used.
The notation yn(k) indicates the y coordinate of this linear function in each box n.

(iv) Next, each box of length n is detrended in the integrated time series y(k) by subtracting
the local linear trend, yn(k). In this way, and for every bin, the detrended time series
yn

d(k) is calculated as follows:

yn
d(k) = y(k)− yn(k) (4)
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(v) Next, for each bin of size n, the root-mean-square (rms) of the integrated and detrended
time series fluctuations is calculated as

F(n) =

√√√√ 1
N

N

∑
k=1

{
y(k)− yn

d(k)
}2 (5)

where F(n) are the rms fluctuations in the detrended time series yn
d(k).

(vi) The technique steps (i)–(v) are repeated for different sizes (n) of the scale boxes. This indi-
cates the precise of a kind of relationship that exists between F(n) and n. An exponential
relationship exists between F(n) and n if the time series contains long-term associations.

F(n)∼nα (6)

The DFA scaling exponent α of Equation (6) assesses the strength of the time series
long-term relationships.

(vii) Equation (4)’s logarithmic translation yields a linear relationship between logF(n) and
log(n). A strong linear relationship implies that the accompanying fluctuations have a
long memory since they are long-lasting. This study used the square of the Spearman’s
(r2) to assess the linear fit’s accuracy. According to Nikolopoulos et al. [34,230,235,280],
good linear fits are considered as having r2 ≥ 0.95 or higher.

As with Section 5.2.1, DFA has also been utilised in sliding windows of various lengths
moved one sample forward.

5.2.3. Fractal Dimension Analysis with Katz’s Method

The transpose array [s1, s2, . . . , sN ]
⊺ of the series si, i = 1, 2, . . . , N, is first determined

in accordance with Katz’s method, where si = (ti, yi) and yi are the measured series values
at the time instances ti [281,282]. This process yields the fractal dimension D.

The two subsequent points of the time series (si and si+1) are represented by the value
pairs (ti, yi) and (ti+1, yi+1), for which the Euclidean distance is:

dist(si, si+1) =

√(
t2
i − t2

i+1

)
+

(
y2

i − y2
i+1

)
(7)

The distances in Equation (7) add up in a curve whose total length is:

L =
i=N

∑
i=1

dist(si, si+1) (8)

This curve stretches in the planar to d, if it does not cross itself, where d is as follows:

d = max(dist(si, si+1)), i = 2, 3, . . . , N (9)

By combining Equations (7)–(9), the Katz fractal dimension, D, becomes

D =
log(n)

log(n) + log(d/L)
(10)

where n = L/a, and a is the average value of the distances of the points.

5.2.4. Fractal Dimension Analysis with Higuchi’s Method

To determine a time series’ fractal dimension, D,

y(1), y(2), y(3), . . . , y(N) (11)
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recorded at i = 1, 2 . . . N intervals, the following is the construction of a new sequence,
yk

m [246,247,283]:

yk
m : y(m), y(m + k), y(m + 2k), . . . , y(m +

[
N − m

k

]
k) (12)

The length of the curve associated with the time series is given by [283]:

Lm(k) =
1
k

[ N−m
k ]

∑
i=1

y(m + ik)− y(m + (i − 1)k)


 N − 1[

N−m
k

]k

 (13)

In both equations, m and k are integers that specify the time interval between the series
samples and are connected by the formula m = 1, 2 . . . k, where [. . . ] is the Gauss notation,
namely, the bigger integer part of the included value.

The following normalisation factor is inserted.

N − 1[
N−m

k

]k (14)

The lengths of Equation (14) show an average value, ⟨L(k)⟩, that displays a power law
of the following form:

⟨L(k)⟩ ∝ k−D (15)

Higuchi’ s fractal dimension, D, is finally calculated by the slope of the linear re-
gression of the logarithmic transformation of ⟨L(k)⟩ versus k, where k = 1, 2, . . . , kmax. It
must be noted that the time intervals are k = 1, . . . , kmax for kmax ≤ 4, i.e., k = 1, 2, 3, 4,
for kmax = 4 and k =

[
2(j−1)/4

]
, j = 11, 12, 13 . . . , for k > 4 (kmax > 4). Again, [. . . ] is the

Gauss notation [282].

5.2.5. Fractal Dimension Analysis with Sevcik’s Method

Using Sevcik’s approach [284], the fractal dimension of a time series is estimated from
the Hausdorff dimension, Dh, as [282].

Dh = lim
ϵ→0

[
− log(N(ϵ))

log(ϵ)

]
(16)

where N(ϵ) is the total number of ϵ-length segments that together form a curve related to
the time series. N(ϵ) = L/2ϵ [282] and Dh are as follows if the length of the curve is L:

Dh = lim
ϵ→0

[
− log(L)− log(2ϵ)

log(ϵ)

]
(17)

The N points of the curve L can be mapped to a unit square of N × N cells of the
normalized metric space by twice performing a linear transformation. Equation (18) yields
Sevcik’s fractal dimension with this transformation [282,284]:

Dh = lim
N→∞

[
1 +

log(L)− log(2ϵ)

log(2(N − 1))

]
(18)

The calculation improves as N → ∞.

5.2.6. Rescaled Range Analysis

In order to identify trends that could recur in the future, the R/S analysis uses two
variables: the range, R, and the standard deviation, S, of the data [275,276]. In accordance
with the R/S technique, the average, ⟨x⟩N = 1

N ∑N
n=1 x(n), over a period of N time units
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transforms a time series X(N) = x(1), x(2), . . . , x(N) into a new variable y(n, N) in a
specific time period n, (n = 1, 2, . . . , N). The so-called cumulative deviation of the time
series, y(n, N), has the following formula:

y(n, N) =
n

∑
i=1

(x(i)− ⟨x⟩N) (19)

The rescaled range is calculated as [86,275,276]:

R/S =
R(n)
S(n)

(20)

The distance between the lowest and largest value of y(n, N) defines the range R(n) in:

R(n) = max
1⩽n⩽N

y(n, N)− min
1⩽n⩽N

y(n, N) (21)

The standard deviation S(n) is calculated as follows:

S(n) =

√√√√ 1
N

N

∑
n=1

(x(n)− ⟨x⟩N)2 (22)

R/S exhibits a power-law dependence on the bin size n

R(n)
S(n)

= C · nH (23)

where H is the Hurst exponent, and C is a proportionality constant.
The final equation’s log transformation is a linear relationship:

log(
R(n)
S(n)

) = log(C) + H · log(n) (24)

This is used to directly calculate the Hurst exponent H, which is the slope of the best
line fit. It is important to note that the only direct method to calculate Hurst exponents is
via the R/S analysis.

6. Precursors and Earthquake-Related Parameters

Several attempts have been made to link earthquake-related parameters and data
derived from precursors. There is a variety of empirical relationships between earth-
quake magnitudes, preparation zone areas, precursory time and other earthquake-related
characteristics. Some of these empirical relations are given in the following.

Rikitake [285] proposed a model showing the relations between anomaly, the precur-
sory time T in days, the magnitude of an earthquake m and distance from epicentre R in
km. According to this model:

logT = 0.76·M − 1.83 (25)

Talwani [286] suggested an empirical earthquake forecast model as follows:

ML = logD − 0.07 (26)

where ML is the local magnitude of an earthquake, and D is the forecasting period in days.
Guha [287] provided another model associating the precursory time T in days and the

magnitude m of an earthquake:
logT = A + B·M (27)

where A and B are statistically determined coefficients.
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Dobrovolsky et al. [288] proposed an empirical relationship for the calculation of the
earthquake preparation zone RD (km) and the magnitude (m) of the ensuing earthquake:

RD = 100.43·M (28)

Fleischer [289] suggested that the epicentral distance D in km and the magnitude m of
an earthquake were associated as follows:

D = (1/1.66)·10A·M (29)

where A = 0.813 for m < 3 and A = 0.480 for m > 3.
Fleischer and Morgo Campero [290] suggested that

XM = 100.48·M (30)

where xM is the dislocation range in km, and m is the magnitude of an earthquake, where
M ≥ 3.

Virk [291] proposed a different relation that combined the epicentral distance D in km
and the magnitude m of an earthquake:

D = 10A·M (31)

where A = 0.32 for 10 km < D < 50 km, A = 0.43 for 50 km < D < 100 km, A = 0.56 for
100 km < D < 500 km and A = 0.63 for 500 km < D < 1250 km.

The epicentral distance, RE, in km between a monitoring site and the earthquake’s
epicentre can be calculated by

RE = D·R (32)

where R is the Earth’s radius (6370 km) and

D = cosαi·cosαj + sinαi·sinαj·(cos(βi − β j) (33)

where (αi, βi) are the coordinates of the earthquake, and (αj, β j) are the coordinates of the
monitoring station [179].

Chetia et al. [163] used multiple linear regressions to examine the greatest variability
caused by pressure, temperature and rainfall in soil gas radon. They suggested that
the precursory time T (days), epicentral distance D (km) and magnitude m (Mw) were
connected with the relationship

log(DT) = 0.79·M + b (34)

where b equals 0.18, a is approximately 3.51, and D equals roughly to D 100.58M.
The reader may recall in relation to the estimations given in this section that there is

no one-to-one correspondence between recorded anomalies and occurrence of an earth-
quake [1]. Moreover, the earthquake generation processes are multi-facet [1] and therefore,
a combination of techniques is needed [1,34,36,82,269] to increase the scientific evidence.
In view of these references, the estimations presented in this section have significant limita-
tions. On the other hand, several papers of the previous decades, but also modern ones,
make use of these estimations. For several scientist, these are considered as adequate
and sufficient.

7. Table of Papers

Table 1 presents a collection of papers for electromagnetic precursors. Table 2 shows
the paper collection for radon precursors. The papers in both tables are presented chrono-
logically and relatively old events are also included. To avoid unessential records, historical
earthquakes are limited to very strong and extremely strong ones. Although the knowledge
and methodologies have evolved, the techniques addressing older earthquakes are defi-
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nitely not new, but their publication time is contemporary with the investigated earthquakes.
The historical electromagnetic precursors also include the great papers that pioneered and
were breakthroughs in seismic analysis. Especially for the radon precursors, the table
also includes the traditional treatment of radon anomalies which refers to the statistical
dislocation of radon’s concentration with respect to the corresponding baseline values and
the duration of the anomaly, since both are still used nowadays. Modern methods include
in both cases fractal behaviour and self-organisation analysis.

The collection of papers is the most significant part of this review, because it gathers
the knowledge and may assist the related research. Due to the great number of papers,
a special presentation approach was selected according to which every row presents all
the data of each earthquake and the maximum available information. Since every paper
is special and the published information is not uniform, a variety exists in the data of the
papers presented in both Tables as column entries. Because of this, effort was put to present
specific information as well. All papers were accessed from the site of each journal and the
available information was downloaded as a BibTEX file, or converted to BIB format from
the corresponding RIS record of each journal. Digital Object Identification (doi) data were
also searched and inserted wherever available.

In the next pages both tables are given. Tables 1 and 2 support the view that the
majority of publications are based on visual observations of collected data and a subsequent
statistical analysis. This can be explained by the fact that it is very difficult to collect data
by several nearby stations. As mentioned by Cicerone et al. [6], it is a serendipitous finding
to have a strong earthquake and a station which collects data during the seismic rupture
and is installed in the broader epicentral area. As mentioned in several publications and
expressed collectively in Eftaxias [175], there is no one-to-one correspondence between
an earthquake occurrence and an anomaly detection. Moreover, even the most advanced
methods fail to deliver a very effective forecasting of earthquakes. These facts complicate
the analysis even today (2024).

The most advantageous methods seem nowadays to reflect the fractal and self-
organisation nature of the rupturing crust of the Earth during the preparation of earth-
quakes. A very robust method is the natural time analysis, which produces promising
results. Satellites are now numerous and can be accessed conveniently. This provides new
insights into the related research. Remote sensing and SAR techniques are very powerful
as well, not neglecting the great number of installed stations worldwide. These new tools
boost modern approaches which are also multi-facet and necessitate the collaboration of
different groups.

Historically, radon gas claims the majority of publications in relation to earthquakes
with many radon papers suggesting associations with very strong earthquakes. Nowadays,
there is a balance between radon and electromagnetic precursors, with the latter providing
more options due to the different frequency bands and the remote sensing and satellite
methods. Radon has also led to new approaches, and therefore, both precursors are very
significant. In fact electromagnetic and radon precursors seem to be the subject of many
papers to date.

The collaboration between scientists and the use of multilevel approaches with differ-
ent methodologies will be the key point for seismic research in the following years. This
research is ongoing and in a continuous search for credible and powerful precursors.
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Table 1. Papers on electromagnetic precursors. The papers are presented in chronological order from the oldest to the newest. The precursory time also includes the
aftershock data presented in some papers. ED is the effective-sensitive distance between the monitoring site and the epicentre of the earthquake. Blank cells indicate
there is no information available in the reference(s).

Location Magnitude Date(s) Emission Type Measurement
Frequency Instrumentation Method(s) Precursory Time ED Reference

Chile 9.5 22/05/1960 Radio 18 MHz Radioastronomy receiver Visual observation 6 days Worldwide [292]

Hollister, California 5.2 28/11/1974 ULF magnetic Array of 7 proton magnetometers Visual observation 7 weeks–several
months 11 km [293]

Tangshan, China 7.8 28/07/1976 Resistivity Visual observation 2–3 years <150 km [294]

Tangshan, China 7.8 28/07/1976 Self-potential and
magnetotelluric Visual observation 3 months <120 km [294]

Sungpan-Pingwu,
China 7.2 16/08/1976 Telluric currents Visual observation 1 month <200 km [295]

Sungpan-Pingwu,
China 6.8 22/08/1976 Telluric currents Visual observation 1 month <200 km [295]

Sungpan-Pingwu,
China 7.2 23/08/1976 Telluric currents Visual observation 1 month <200 km [295]

Kyoto, Japan 7.0 31/03/1980 LF electric 81 kHz Electric antenna Visual observation 0.5 h 250 km [43]
Tokyo, Japan 5.3 25/09/1980 LF electric 81 kHz Electric antenna Visual observation 1 h 55 km [43]
Tokyo, Japan 5.5 28/01/1981 LF electric 81 kHz Electric antenna Visual observation 3/4 h 50 km [43]
Kalamata, Greece 6.2 13/09/1986 Electric Visual observation 3–5 days 200 km [296]

Spitak, Armenia 6.9 (Ms) 07/12/1988 ULF magnetic 0.01–1 Hz 3-Axis magnetometers Visual observation,
statistical analysis 4 h 128 km [7]

Spitak, Armenia 6.9 (Ms) 07/12/1988 ULF magnetic 0.005–1 Hz 3-Axis magnetometers Visual observation,
statistical analysis 4 h 120 km, 200 km [65]

Loma Prieta,
California 7.1 (Ms) 18/11/1989 ULF magnetic 0.01 Hz Visual observation,

statistical analysis 3 h 7 km [65]

Loma Prieta,
California 7.1 (Ms) 19/11/1989 ULF, HF electromagnetic 0.01 Hz, 32 kHz Ground-based magnetometers Visual observation 3 h 52 km [58]

Spitak, Armenia 6.9 (Ms) 23/01/89 LF to HF electromagnetic 140, 450, 800, 4500,
15,000 Hz

COSMOS-1809 satellite with
12 satellite orbits of f < 450 Hz Visual observation, FFT <3 h [297]

Upland, California 4.3 17/04/1990 ULF magnetic 3–4 Hz Vertical magnetic sensor Power law, FFT 1 day 160 km [298]

West Iran 7.5 20/06/1990 Ionospheric radiowave 0–8 kHz, 10–14 kHz INTERCOSMOS-19 satellite Visual observation,
modelling 16 days 250–2000 km [299]

Watsonville,
California 4.3 23/03/1991 ULF magnetic 3.0–4.0 Hz North–south magnetic sensor Statistical analysis, power

law with FFT
Data averaged over
2 days 600 km [298]

Watsonville,
California 4.3 23/03/1991 ULF magnetic 3.0–4.0 Hz Vertical magnetic sensor Power law-FFT Data averaged over

2 days 600 km [298]

NW Crete, Greece 6.0 21/11/1992 HF electric 41, 53 MHz Electric dipole antennas Visual observation 1–3 days 20–150 km [300]

Coalinga, California 4.0 15/01/1992 ULF magnetic 3.0–4.0 Hz Vertical magnetic sensor Power law–FFT Data averaged over
2 days 400 km [298]

Hokkaido, Japan 7.8 12/07/1993 foF2 ionospheric Visual observation,
statistical analysis 3 days 290 km, 780 km,

1280 km [135]

Guam 7.1 (Ms) 08/08/1993 ULF magnetic 0.02–0.05 Hz 3-Axis ring core type fluxgate
magnetometers Fractal analysis, FFT 1 month 65 km [60,301]

Guam 8.3 (MJ ) 08/08/1993 ULF magnetic 0.02–0.05 Hz 3-Axis ring core type, fluxgate
magnetometers

Multifractal Detrended
Fluctuation Analysis 1 month 65 km [241]

Hokkaido, Japan 8.2 (MJMA) 07/12/1993 SES ≤1 Hz Electric antennas Natural time analysis 1 month δlat and δlong < 30 [79]
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Table 1. Cont.

Location Magnitude Date(s) Emission Type Measurement
Frequency Instrumentation Method(s) Precursory Time ED Reference

Hokkaido-Toho Oki,
Japan 8.1 (MW ) 04/10/1994 HF electric Borehole antenna Visual observation 20 min >1000 km [278]

Hokkaido, Japan 7.6 (MJMA) 04/10/1994 SES ≤1 Hz Electric antennas Natural time analysis 1 month δlat and δlong < 30 [79]
Hokkaido, Japan 7.4 (MJMA) 28/12/1994 SES ≤1 Hz Electric antennas Natural time analysis 1 month δlat, δlong < 30 [79]
Hyogo-ken Nanbu
(Kobe), Japan 7.2 (MJMA) 17/01/1995 HF electric 22.2 MHz Phase-switched interferometer

polarized antennas 1 h 77 km [302]

NE Samos, Greece 5.0 07/05/1995 HF electric 41, 53 MHz Electric dipole antennas Visual observation 1–3 days 20–150 km [300]
Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 HF electric, LF magnetic 2 weeks 70 km, 200 km [303]

Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 HF electric 41, 54 MHz,

magnetic 3, 10 kHz
Electric dipole and magnetic
loop antennas Fractal analysis 20 h 284 km [304,305]

Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 HF electric 41, 54 MHz,

magnetic 3, 10 kHz
Electric dipole and magnetic
loop antennas

Fractal analysis and
statistical methods. 20 h 284 km [305]

Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 HF electric 41, 54 MHz,

magnetic 3 kHz
Electric dipole and magnetic
loop antennas

Fractal analysis and
statistical methods. 20 h 284 km [84]

Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 HF electric 41 MHz Electric dipole and magnetic

loop antennas
Fractal analysis and
statistical methods. 20 h 284 km [306]

Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 HF electric and LF

magnetic
41, 54 MHz and 3,
10 kHz

Electric dipole and magnetic
loop antennas

Intermittent dynamics of
critical fluctuations 20 h 284 km [307]

Kozani-Grevena,
Greece 6.6 (MW ) 13/05/1995 SES ≤1 Hz Electric antennas Visual and mathematical

analysis 4 weeks 70–80 km [308,309]

Kozani-Grevena,
Greece 6.8 (MS) 13/05/1995 SES ≤1 Hz Electric antennas Visual and mathematical

analysis 24, 25 days 70–80 km [309]

Kozani-Grevena,
Greece 6.8 (MS) 13/05/1995 SES ≤1 Hz Electric antennas Visual and mathematical

analysis 22 min 70–80 km [310]

SE Crete, Greece 5.0 29/07/1995 HF electric 41, 53 MHz Electric dipole antennas Visual observation 1–3 days 20–150 km [300]

Hyogo-ken Nanbu
(Kobe), Japan 7.2 (MJMA) 11/06/1996 DC potential, LF radio

waves and MF and HF

223 Hz and
77.1 MHz and
1–20 kHz, 163 kHz

LF Omega transmitter and
receiver Visual, statistical analysis <7 days >100 km [311]

Hyogo-ken Nanbu
(Kobe), Japan 7.2 (MJMA) 11/06/1996 HF radio waves 10.2 kHz LF Omega transmitter and

receiver
Statistical analysis,
modelling 2 days 70 km [7]

Akita-ken
Nairiku-nanbu,
Japan

5.9 11/08/1996 LF and HF electric 10 kHz and 1 MHz Vertical-dipole ground electrodes Visual analysis and analysis
of related parameters 6 days <100 km [311]

Chiba-ken Toho-oki,
Japan 6.6 11/09/1996 Electric 10 kHz, 1 MHz Vertical-dipole ground electrodes Visual analysis and analysis

of related parameters 3 days 320 and 430 km [311]

Umbria–Marche,
Italy 5.5 26/03/1998 LF radiowaves, 0.006 Hz Radio wave vertical antenna 1.5 months 818 km [312]

San Juan Bautista,
California 5.1 (MW ) 12/08/1998 UHF magnetic 0.01–10 Hz 3-Component magnetic field

inductor coils Power spectrum analysis 2 h 3 km [313]

Egio, Eratini, Greece 6.6 (MW ) 07/09/1999 LF electric and HF
magnetic

41, 54 MHz and 3,
10 kHz

Electric dipole, magnetic loop
antennas

Fractal analysis, block
entropy 12–17 h <300 km [314]

Athens, Greece 5.9 (MW ) 07/09/1999 SES and LF electric and
HF magnetic

1 Hz and 41, 54,
135 MHz and 3,
10 kHz

ULF, electric dipole and
magnetic loop antennas

Fractal analysis, block
entropy <3 h 247 km [90]

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 3, 10 kHz Magnetic loop antennas
Delay times method, block
entropy, spectral fractal
analysis

12–17 h 247 km [315]
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Table 1. Cont.

Location Magnitude Date(s) Emission Type Measurement
Frequency Instrumentation Method(s) Precursory Time ED Reference

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 3, 10 kHz Magnetic loop antennas Fractal analysis 12–17 h 247 km [316]
Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 3, 10 kHz Magnetic loop antennas Symbolic dynamics 12–17 h 247 km [316]

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 3, 10 kHz, HF electric
41, 54 MHz

Electric dipole antennas,
magnetic loop antennas

Wavelet power spectrum
analysis 12–17 h 247 km [304,305]

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 10 kHz Electric dipole antennas,
magnetic loop antennas Block entropy 12–17 h 247 km [259]

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 3, 10 kHz Magnetic loop antennas Block entropy 12–17 h 247 km [316]

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 3, 10 kHz, electric
154 MHz

Electric dipole and magnetic
loop antennas

Intermittent dynamics of
critical fluctuations 20 h 247 km [307]

Athens, Greece 5.9 (MW ) 07/09/1999 LF electric and HF
magnetic

135 MHz and 3,
10 kHz,

Electric dipole and magnetic
loop antennas

Intermittent dynamics of
critical fluctuations >3 h 247 km [307]

Athens, Greece 5.9 (MW ) 07/09/1999 HF magnetic 10 kHz Magnetic loop antennas Tsallis entropy 12–17 h 247 km [317]
Chi-Chi, Taiwan 7.6 (MW ) 20/09/1999 foF2 ionospheric IPS-42 ionosonde Visual observation 3–4 days 120 km [318]
Chia-Yii, Taiwan 6.4 (MW ) 22/10/1999 foF2 ionospheric IPS-42 ionosonde Visual observation b1–3 days 179 km [318]

Izu-Penisula, Japan 6.4 (MJMA) 01/07/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
Higuchi, Bulgara–Klein
methods

<1 month 80 km–1160 km [249]

Izu-Penisula, Japan 6.4 (MJMA) 01/07/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
fractal dimension <1 month 80 km–1160 km [254]

Izu-Penisula, Japan 6.1 (MJMA) 09/07/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
Higuchi, Bulgara–Klein
methods

<1 month 80 km–1160 km [249]

Izu-Penisula, Japan 6.1 (MJMA) 09/07/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
fractal dimension <1 month 80 km-1160 km [254]

Izu-Penisula, Japan 6.3 (MJMA) 15/07/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
Higuchi, Bulgara–Klein
methods

<1 month 80 km–1160 km [249]

Izu-Penisula, Japan 6.3 (MJMA) 15/07/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
fractal dimension <1 month 80 km–1160 km [249]

Izu-Penisula, Japan 6.4 (MJMA) 18/08/2000 ULF magnetic 0.001–1 Hz 3-Axis ring core-type fluxgate
magnetometers

Fractal analysis with FFT,
Higuchi, Bulgara–Klein
methods

<1 month 80 km–1160 km [254]

Lefkas, Greece 5.9 (MW ) 14/06/2003 LF electric and HF
magnetic

41, 54 MHz and, 3,
10 kHz

Electric dipole and magnetic
loop antennas

Fractal analysis, block
entropy 12–17 h <300 km [314]

Andaman, Sumatra,
Indonesia 9.0 (MW ) 26/12/2004 ULF magnetic 1 Hz 3-Axis ring core-type, fluxgate

magnetometers

Spectral density ratio
analysis, transfer functions
analysis, fractal dimension

<1.5 month <750 km [319]

Andaman, Sumatra,
Indonesia 8.7 26/12/2004 ULF magnetic 1 Hz CHAMP satellite vector

magnetic antennas
Wavelet power spectrum
analysis 2 h 700 km [320]

Nias, Sumatra,
Indonesia 8.7 (MW ) 28/03/2005 ULF magnetic 1 Hz 3-Axis ring core-type, fluxgate

magnetometers

Spectral density ratio
analysis, transfer functions
analysis, fractal dimension

<1.5 month <750 km [319]

Nias, Sumatra,
Indonesia 8.7 (MW ) 28/03/2005 ULF magnetic 1 Hz CHAMP satellite vector

magnetic antennas
Wavelet power spectrum
analysis 2 h 700 km [320]

Miyagi-ken oki,
Japan 7.2 (MW ) 16/08/2005 Electric 49.5 MHz Discon-type antenna from

25–1300 MHz
Multifractal Detrended
Fluctuation Analysis

2–3 weeks, few days
for Kunimi station 90–140 km [240]
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Location Magnitude Date(s) Emission Type Measurement
Frequency Instrumentation Method(s) Precursory Time ED Reference

Mid Niigata
prefecture 6.8 (MJMA) 16/08/2005 DC and ULF magnetic

and HF electromagnetic
0.02–0.05 Hz and
40 kHz

3-Axis ring core-type fluxgate
magnetometers, Discon-type
antennas from 25–1300 MHz

Signal analysis with FFT 17–21, 5–7 days <220 km [321]

Greece 5.2 (ML) 18/01/2007 SES ≤1 Hz Electric and magnetic antennas Natural time analysis 3 min <150 km [322]
Greece 5.8 (ML) 03/02/2007 SES ≤1 Hz Electric and magnetic antennas Natural time analysis 22 min <150 km [322]
Vanuatu, Japan 7.1 (MJMA) 25/03/2007 TEC DEMETER satellite Statistical analysis 15 days [323]
Honshu, Japan 6.7 (MJMA) 25/03/2007 TEC DEMETER satellite Statistical analysis 15 days [323]

Lesvos, Greece 6.1 (ML) 12/06/2007 LF electric and HF
magnetic

41, 54 MHz and 3,
10 kHz

Electric dipole and magnetic
loop antennas DFA, power law 10–12 days 30 km [230]

Wenchuan, China 8.0 (Ms) 12/05/2008 DC, ULF ≤1 Hz Cr18Ni9C electrodes Visual observations 3 days 1000 km [324]
Greece 6.4 (MW ) 08/06/2008 SES ≤1 Hz Electric and antennas Natural time analysis <30 km [261]

L’Aquila, Italy 6.3 06/04/2009 LF electric and HF
magnetic

41, 54 MHz and 3,
10 kHz

Electric dipole and magnetic
loop antennas

Fractal analysis, block
entropy, DFA, R/S analysis,
Hurst analysis,

<3 h 816 km [1,82]

Oran, Algeris 5.5 (Mw) 06/06/2008 Rinex, F2 disturbances,
TEC Geodetic stations Seismological, spectral

analysis Several days [325]

Tokachi, Japan 8.0 (MsMA) 26/09/2003 SES ≤1 Hz Electric antennas Natural time analysis 1 month δlat, δlong < 30 [79]

Yutian, China 7.3 (Ms) 20/03/2008 TEC and ULF electric
field data

Onboard DEMETER, Swarm and
China’s seismo-electromagnetic
satellites

Statistical, visual analysis 3 min–2 days [326]

Lake Baikal, Siberia 6.3 27/08/2008 Electromagnetic signals
from thunderstorms VLF range Single-point lightning direction

finder-rangefinder Visual observations Hours [327]

Indonesia 5.0 07/01/2009 Electromagnetic signals
from thunderstorms VLF range Single-point lightning direction

finder-rangefinder Visual observations 7 days [327]

Chichi-jima, Japan 7.8 (MJMA) 22/10/2010 SES ≤1 Hz Electric antennas Natural time analysis 1 month δlat, δlong < 30 [79]

Conception, Chile 8.8 (MW ) 27/02/2010 Nm f2 ionospheric
anomalies FORMOSAT-3/COSMIC satellite Kriging interpolation, global

Nm f2 map 5 h epicentre area [328]

Tohoku, Japan 9.0 (MJMA) 11/3/2011 SES ≤1 Hz Electric antennas Natural time analysis 1 month δlat, δlong < 30 [79]

Tohoku, Japan 9.0 (MJMA) 11/3/2011 GPS TEC
Modified single layer mapping
function at the ionospheric pierce
points at 350 km

GPS satellites (PRN 18,
PRN26) 40–50 min 500–600 km [329,330]

Tohoku, Japan 9.0 (MJMA) 11/03/2011 Ionospheric
measurements HF 3–25 MHz

Ionosonde detection network
combined with Digisondes and
COSMIC satellite

HF Doppler, planar
ionospheric disturbances 6 h after 2000 km [331]

Japan 6.0 14/03/2012 Electromagnetic signals
from thunderstorms VLF range Single-point lightning direction

finder-rangefinder Visual observations 10 days 3000 km [327]

India 5.6 25/04/2012 HF electric field 3.012 kHz GPS terrestrial vertical antenna Visual observations 1–13 days 2671 km [332]
India 5.6 27/04/2012 HF electric field 3.012 kHz GPS terrestrial vertical antenna Visual observations 1–13 days 3284 km [332]

Dholavira, India 5.1 (Mw) 20/06/2012 ULF magnetic and Kp ,Dst
data 0.001–0.5 Hz Digital fluxgate magnetometer Visual and fractal

dimensions 7 days around, above
epicentre [333]

Yutian, China 6.3 (Ms) 12/08/2012 ULF electric field data,
TEC ≤1 Hz

Onboard DEMETER, Swarm and
China’s seismo-electromagnetic
satellites

Statistical, visual analysis 10–20 days [326]

India 5.9 22/07/2013 HF electric field 3.012 kHz GPS terrestrial vertical antenna Visual observations 1–13 days 2642 km [332]
India 5.7 20/09/2013 HF electric field 3.012 kHz GPS terrestrial vertical antenna Visual observations 1–13 days 1905 km [332]
India 5.7 02/10/2013 HF electric field 3.012 kHz GPS terrestrial vertical antenna Visual observations 1–13 days 2766 km [332]

Yutian, China 7.3 (Ms) 12/02/2014 TEC and ULF electric
field data

Onboard DEMETER, Swarm and
China’s seismo-electromagnetic
satellites

Statistical, visual analysis Same days [326]
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Table 1. Cont.

Location Magnitude Date(s) Emission Type Measurement
Frequency Instrumentation Method(s) Precursory Time ED Reference

Greece 6.9 24/05/2014 SES and geomagnetic
signals

0.5–40 Hz and
0.0001–100 kHz

Mikhnevo GPO (seismometric,
radiophysical, magnetometric,
electrical) equipment

[334]

Ileia, Greece 4.4 (ML) 30/08/2015 HF magnetic 3, 10 kHz Magnetic loop antennas Fractal analysis 3 days 24 km [35]

Illapel, Chile 8.3 (Mw) 16/09/2015 Co-seismic ionospheric
TEC 0.1–1 Hz Global Navigation Satellite

System

Wave perturbation
ionosphere model with
seismic source

1500 km [335]

Ileia, Greece 4.5 (ML) 12/12/2015 HF magnetic 3, 10 kHz Magnetic loop antennas Fractal analysis 3 days 24 km [35]
Sumatra 7.8 (Mw) 02/03/2016 TEC 3.012 kHz GPS terrestrial vertical antenna 3D tomography method 11–16 min after 1◦ , 75 km [336]

Afghanistan 6.6 10/04/2016 Seismic, geomagnetic and
acoustic signals

0.5–40 Hz and
0.0001–100 kHz and
10−4–20 Hz

Mikhnevo observatory, LEMI-018
triaxial fluxgate magnetometer Visual observations 2000–3000 km [334]

Italy 6.6 30/06/2016 Seismic, geomagnetic and
acoustic signals

0.5–40 Hz and
0.0001–100 kHz and
10−4–20 Hz

Mikhnevo observatory, LEMI-018
triaxial fluxgate magnetometer Visual observations 2000–3000 km [334]

Chiapas, Mexico M8.2 06/07/2017 SES ≤1 Hz Natural time analysis Few hours [64]

Greece 6.6 20/07/2017 Seismic, geomagnetic and
acoustic signals

0.5–40 Hz and
0.0001–100 kHz and
10−4–20 Hz

Mikhnevo observatory, LEMI-018
triaxial fluxgate magnetometer Visual observations 2000–3000 km [334]

Mexican flat slab M7.1 19/09/2017 SES ≤1 Hz Natural time analysis Several hours [64]

Iraq 7.3 12/11/2017 Seismic, geomagnetic and
acoustic signals

0.5–40 Hz and
0.0001 Hz–100 kHz
and 10−4–20 Hz

Mikhnevo observatory, LEMI-018
triaxial fluxgate magnetometer Visual observations 2000–3000 km [334]

Ileia, Greece 4.5 (ML) 07/05/2018 HF magnetic 3, 10 kHz Magnetic loop antennas Fractal analysis 3 days 24 km [35]

Lombok, Indonesia 6.4 28/07/2018 Ne, Te and TEC Onboard sensors China’s seismo-electromagnetic
satellites dTEC, Statistical analysis 1–5 days 2000 km [337]

Lombok, Indonesia 6.8 05/08/2018 Ne, Te and TEC Onboard sensors China’s seismo-electromagnetic
satellites dTEC, Statistical analysis 1–5 days 2000 km [337]

Lombok, Indonesia 5.9 09/08/2018 Ne, Te data and TEC Onboard sensors China’s seismo-electromagnetic
satellites dTEC, Statistical analysis 1–5 days 2000 km [337]

Lombok, Indonesia 6.9 19/08/2018 Ne, Te data and TEC Onboard sensors China’s seismo-electromagnetic
satellites dTEC, Statistical analysis 1–5 days 2000 km [337]

Indonesia 7.5 (Mw) 28/09/2018
Physical properties of
atmosphere and NeTe,
ionospheric disturbances

China’s seismo-electromagnetic
satellites

Seismological,
climatological analysis

3.7, 6 months and
2.7 months 3◦ [338]

Zakynthos, Greece 6.6 (ML) 25/10/2018 LF electric and HF
magnetic

41, 54 MHz and 3,
10 kHz

Electric dipole and magnetic
loop antennas

Fractal analysis, block
entropy, DFA, R/S analysis,
Hurst analysis

Post-activity 40 km [34]

Ileia, Greece 4.3 (ML) 04/02/2019 HF magnetic 3, 10 kHz Magnetic loop antennas Fractal analysis 3 days 24 km [35]
Ridgecrest, Mexico M7.1 06/072019 SES ≤1 Hz Natural time analysis Several hours [64]

Indonesia 6.9 (Mw) 07/07/2019 VLF 48.83–366.21 Hz Electric field detector of China’s
seismo-electromagnetic satellites Electric field PSD Before and after near the epicentre [14]

Indonesia 7.2 (Mw) 14/07/2019 VLF 48.83–366.21 Hz Electric field detector of China’s
seismo-electromagnetic satellites Electric field PSD Before and after near the epicentre [14]

Laiwui, Indonesia 7.2 (Mw) 14/07/2019 TEC, plasma, global
ionospheric map

China’s seismo-electromagnetic
satellites

Cross-validation analysis
and moving-mean method 1, 3, 8 days [335]
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Table 1. Cont.

Location Magnitude Date(s) Emission Type Measurement
Frequency Instrumentation Method(s) Precursory Time ED Reference

Jiashi, China 6.4 (Ms) 19/01/2020 Electron density and rock
temperature

Zhangheng-1 electromagnetic
satellite Visual observations 15 days 150 km [339]

Yutian, China 6.5 (Ms) 25/06/2020 ULF, TEC, Global
ionospheric Map ≤1 Hz

Onboard DEMETER, Swarm and
China’s seismo-electromagnetic
satellites

Statistical, visual analysis Same days [326]

Turkey 7.8 (Mw) 06/02/2023 TEC Global Navigation Satellite
System, ionosondes Statistical, visual analysis 22–25 min after 750 km [16]

Turkey 7.5 (Mw) 06/02/2023 TEC Global Navigation Satellite
System, ionosondes Statistical, visual analysis 22–25 min after 750 km [16]

Table 2. Papers of radon precursors. The papers are presented in chronological order from the oldest to the newest. The precursory time also includes the aftershock
data presented in some papers. RA stands for the relative amplitude of the radon anomalies and AD for the anomaly duration. SSNTDs stands for solid-state nuclear
track detectors. ED is the effective-sensitive distance between the monitoring site and the epicentre of the earthquake. Blank cells indicate there is no information
available in the reference(s). Russian Federation is used as the successor state of the former USSR.

Location Magnitude Date(s) RA AD (days) Instrumentation Methodology Precursory Time ED Reference

Pohai Bay, China 7.4 18/07/1969 60% 170 days Instruments of Kutzan station for radon in water Visual observations 200 km [188]
Szechwan Luhuo, China 7.9 06/02/1973 120% 9 days Instruments of Tangku station for radon in water Visual observations 170 km [186,188]
Markansu, Russian
Federation 7.3 04/02/1975 38% and 17% 270 days and 50 days Instruments of Alma-Ata station for radon in water Visual observations 530 km [188]

Liaoning, Haicheng, China 7.3 04/02/1975 38% and 17% 270 days and 50 days Instruments of Tangangzi station for radon in soil Visual observations 50 km [188,340]
Liaoning, Haicheng, China 7.3 04/02/1975 10% 1 day Instruments of Liaoyang station for radon in soil Visual observations 85 km [188,341]
Gazli, Russian Federation 7.3 17/05/1976 220% 4 days Instruments of Tashkent station for radon in water Visual observations 470 km [188]
Yunnan Lungling, China 7.5 29/05/1976 20% 510 days Instruments of Lungling station for radon in soil Visual observations 190 km [186,188]
Yunnan Lungling, China 7.5 29/05/1976 8% 160 days Instruments of Erhyuan station for radon in soil Visual observations 470 km [186,188]
Szechwan Songpan Pingwu,
China 7.2 16/08/1976 29% 480 days Instruments of Erhyuan for radon in soil Visual observations 40 km [186,188]

Szechwan Songpan Pingwu,
China 7.2 16/08/1976 70% 7 days Instruments of Kutzan station for radon in soil Visual observations 320 km [188,341]

Hopeh Tangshan, China 7.8 27/07/1976 30% 5 days Instruments of Tangshan station for radon in water Visual observations 5 km [188,342]
Hopeh Tangshan, China 7.8 27/07/1976 50% 15 days Instruments of Antze station for radon in water Visual observations 100 km [188,342]
Isferi Batnen, Russian
Federation 6.6 31/01/1977 −30% 60 days Instruments of Tashkent station for radon in water Visual observations 190 km [188]

Hopeh Chienan, China 6.0 04/03/1977 70% 3 days Instruments of Peking station for radon in water Visual observations 200 km [188,341]
Hopeh Lutai, China 6.7 12/03/1977 30% 1 day Instruments of Tungchao station for radon in water Visual observations 115 km [188,341]
Isferi Batnen, Russian
Federation 6.6 24/03/1977 −20% 125 days Instruments of H-O-Garm station for radon in water Visual observations 200 km [188]

Alma-Ata, Russian
Federation 7.1 04/02/1978 32% 50 days Instruments of Alma-Ata station for radon in water Visual observations 65 km [188]

Zaslai, Russian Federation 6.7 01/11/1978 −30% 470 days Instruments of Obi-Garm station for radon in water Visual observations 270 km [188]
Zaslai, Russian Federation 6.7 01/11/1978 −40% 470 days Instruments of Yavros station for radon in water Visual observations 300 km [188]
Izu-Oshima, Japan 6.8 14/01/1978 7% 230 days Instruments of SKE-1 station for radon in water Visual observations 25 km [186,188]
Izu-Oshima, Japan 6.8 14/01/1978 −8% 7 days Instruments of SKE-1 station for radon in water Visual observations 25 km [186,188]
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Table 2. Cont.

Location Magnitude Date(s) RA AD (days) Instrumentation Methodology Precursory Time ED Reference

Imperial valley, California,
USA 6.6 15/10/1979 400% 116 days and 50 days Instruments of KPAS station Radon in water 335 km [187,188]

Irpinia, Italy 6.5 23/11/1980 170% 5–6 months Instruments of Rieti station for radon in
groundwater Visual observations 4 months 150 km [343]

Japan 7.9 06/03/1984 few days Instruments for radon in groundwater Bayesian statistics, ±2σ 1 week 1000 km [344]
Japan 6.7 06/02/1987 few days 4 Instruments for radon in groundwater Bayesian statistics, ±2σ 3 days 130 km [344]
Equador 6.9 06/03/1987 230% 30 days Radon in soil, SSNTDs Visual observations 50 days 200 km [345]
Uttarkashi, India 7.0 (Ms) 20/10/1991 180% 7 days Radon in soil, SSNTDs Visual observations 1 week 450, 330 km [346,347]
Mindoro, Philippines 7.1 11/04//1994 600% 7 days BARASOLVDG Visual observations 22 days 48 km [348]

Kobe, Japan 7.2 1/17/1995 −2% 4 months Radon in atmosphere, flow ionisation chamber at 18
m Daily min data analysis 4 to 0 months 130 km [29,214,349]

Chamoli, India 6.5 (Ms) 29/03/1999 200% 2 days Radon in soil, water with emanometric technique ±2σ 1–7 days 393 km [347]
Hiwacho-Mitsugaichi,
Shobara, Japan 7.3 (MJMA) 06/10/2000 16–20% >6 months Gas flow ionisation chamber Residual analysis 207 km [215]

Scotia sea, Antarctica 7.5 (Ms) 04/08/2003 400–700% 16 days CR-39, TASTRAK Visual, power law 6 1176 km [350]

Chengkung, Taiwan 6.8 10/12/2003 −13% 6 months Radon in water, liquid scintillation counter, wells
167–187 m deep 30 km 65 days 20 km [193]

Yura, Hidaka, Japan 7.4 (MJMA) 05/10/2004 16–20% >6 months Gas flow ionisation chamber Residual analysis 22 km [215]

Indonesia 9.1 26/12/2004 60% 4–6 days Radon and progeny in gases from thermal springs at
Bakreswar, India ±2σ, visual observations 2275 km [351]

Middle Kurils, Simushir
Island, Kamchatka
Peninsula

8.1(Mw) 20/04/2006 33–35% Gas-discharge counter for radon progeny Visual observations 8 months–3 years 800 km [153]

Olutorsk, Kamchatka
Peninsula 7.6 (Mw) /20/04/2006 33–35% 33–35% Gas-discharge counter for radon progeny Visual observations 8 months–3 years 1035 km [153]

Middle Kurils Kamchatka
Peninsula Simushir Island,
Pacific Ocean

8.3 (Mw) 13/01/2007 33–35% Gas-discharge counter for radon progeny Visual observations 8 months–3 years 800 km [153]

Wenchuan, China 8 (Ms) 12/05/2008 10 times the
baseline 12 days SD-3 A, automatic radon instrument, Guzan station Statistical analysis 155 km [204]

Wenchuan, China 8 (Ms) 12/05/2008 5 times the
baseline Scattered days FD-125, ZnS(Ag)

Sliding window power
law, DFA, fractal
dimension, 13-method
combination analysis

1–2 months 150–500 km [36]

Kato Achaia, Peloponnese,
Greece 6.5 (ML) 06/08/2008 20 times the

baseline 12 h Alpha GUARD, CR-39, radon in in soil Sliding window power
law, statistics, outliers 2 months 40 km [2]

Kato Achaia, Peloponnese,
Greece 6.5 (ML) 06/08/2008 20 times the

baseline 12 h Alpha GUARD radon in in soil
Sliding window power
law, DFA, spectrogram,
scalogram

2 months 40 km [23]

Kato Achaia, Peloponnese,
Greece 6.5 (ML) 06/08/2008 20 times the

baseline 12 h Alpha GUARD radon in in soil
Sliding window fractal
dimension analysis, Hurst
exponents

2 months 40 km [23]

Kato Achaia, Peloponnese,
Greece 6.5 (ML) 06/08/2008 20 times the

baseline 12 h Alpha GUARD radon in in soil

Sliding window R/S,
DFA and block entropy
analysis, R-L, variogram
methods, fractal
dimensions

2 months 40 km [21]
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Aegean Sea, Lesvos area,
Greece 5.0 (ML) 19/03/2008 20 times the

baseline 1 h Alpha GUARD radon in soil

Sliding window R/S,
DFA and block entropy
analysis, R-L, variogram
methods, fractal
dimensions

3 months 40–70 km [21]

Tohoku, Japan 9.0 (MJMA) 11/03/2011 80–160 times
the baseline >16 days Radon, thoron instrumentation at Seongryu Cave Statistical, visual analysis 1 month [204]

PhekN agaland, India 5.8 29/07/2012 2–3 times the
baseline 1 month LR-115 in soil ±2σ, visual observations 16–31 days 224 km [352]

Myanmar, India 6.0 29/07/2012 2–3 times the
baseline 1 month LR-115 in soil ±2σ, visual observations 16–31 days 132 km [352]

Awaji Island, Japan 6.7 (MJMA) 13/04/2013 16–20% >6 months Gas flow ionisation chamber Residual analysis 44 km [215]

Luhsan, Cina 7 (Ms) 20/04/2013 10 times the
baseline 20 days SD-3 A, automatic radon instrument, Guzan station Statistical analysis 82 km [204]

Gansu, China 6.6 (Ms) 22/07/2013 10–20% 2 months FD-125 instrument, radon in groundwater Monofractal, multifractal
DFA 688 km [179]

Evia Island, Greece 5.0 (ML) 15/11/2014 −5 times the
baseline 10 min VDG BARACOL, radon in soil Sliding window R/S,

DFA, scalograms 10–12 days 100 km [32]

Nepal 7.8 25/04/2015 4 times the
baseline 15 days LR-115 in soil ±2σ, visual observations 5 days 722 km [353]

West Bengal, India 7.8 26/04/2015 3.5 times the
baseline 15 days LR-115 in soil ±2σ, visual observations 6 days 612 km [353]

Kalamei, Nepal 7.8 12/05/2015 3 times
baseline 15 days LR-115 in soil ±2σ, visual observations 5 days 618 km [353]

Lesvos Island, Greece 4.1 (ML) 10/09/2015 8–20 times the
baseline Alpha GUARD radon in soil Sliding window R/S,

DFA, scalograms 50 km [235]

Lesvos Island, Greece 4.6 (ML) 26/10/2015 8–20 times the
baseline Alpha GUARD radon in soil Sliding window R/S,

DFA, scalograms 50 km [235]

Zhupanovo, Kamchatka
Peninsula 7.2 (Mw) 30/01/2016 33–35% Gas-discharge counter for radon progeny Visual observations 8 months–3 years 110 km [153]

Jiuzhaigou 7 (Ms) 08/08/2017 ±3 times >2 months SD-3 A, automatic radon instrument, Songpan
station Statistical analysis 67 km [204]

Uglovoye Podnyatiye,
Kamchatka Peninsula 7.3 (Mw) 20/12/2018 33–35% Gas-discharge counter for radon progeny Visual observations 8 months–3 years 490 km [153]

North Kurils, Kamchatka
Peninsula 7.5 (Mw) 25/03/2020 33–35% Gas-discharge counter for radon progeny Visual observations 8 months–3 years 449 km [153]
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8. Conclusions

This paper presented a review on electromagnetic and radon precursors for earthquake
forecasting. The electromagnetic precursors emerge in diverse frequency bands ranging
from ultra-low to very high frequencies. Nowadays, electromagnetic data are collected
from satellites, whereas remote sensing techniques are increasingly used as well. Within the
electromagnetic spectrum, TEC measurements and the modern approach of SAR studies
are also found. Various investigators are still working independently; nevertheless, there
is great space for collaborations. The traditional approach for earthquake prediction is
still recordings from ground stations, with the precursors of the ULF range having the
greater history and potential. MHz and kHz frequencies provide very good estimations
as well. On the other hand, radon precursors are those with the oldest usage. Many
great earthquakes have been studied with the help of radon stations worldwide. Radon is
easily detected and may travel far due to its inert nature. For this reason, it is suitable for
forecasting earthquakes occurring at relatively long distances.

The majority of the reported precursory anomalies have been and still are visually
observed. Several statistical approaches have been utilised in the papers. Especially for
radon, the ±2σ criterion is the one most frequently used. In recent years, advanced methods
have been published and used in several new publications. Special mention is given to the
modern approach of natural time which has great potential and many future earthquakes
to be applied to. Power-law as well as monofractal and multifractal Detrended Fluctuation
Analysis have been used in both electromagnetic and radon precursors. Considerable
attention has been given to R/S analysis, fractal dimension analysis and Hurst exponents.
Block entropy and several entropy measures have been used as well. A combinational
analysis between different monofractal methods has been used with success. All these
modern methods attempt to outline the fractal and self-organised critical features of the
fracturing parts of the Earth’s crust during the preparation of earthquakes. Much research
needs to be carried, and new approaches are still in demand.

Several models have been proposed for the interpretation of the collected precursory
data. The LAIC model has been in great use by many papers. The theory of asperities has
been employed both in electromagnetic and radon precursors. In radon research, other
models have also been utilised. Since each earthquake is a special event, it is difficult
to find a universal model which covers all aspects of the research outcomes. The main
problem is that many precursors have been characterised as such, after the occurrence of
the earthquakes. This is a disadvantage that will be overcome as the pertinent research
progresses. There are papers that forecast earthquakes prior to their occurrence, and this
their most distinguishing feature. The work of researchers from different sub-disciplines of
electromagnetic and radon precursors will hopefully provide better forecasting results in
the near future.

Author Contributions: Conceptualization, D.N. and E.P.; methodology, D.N., D.C. and E.P.; software,
D.N., D.C., S.D., A.A. and E.P.; formal analysis, D.N. and D.C.; investigation, D.N. and E.P.; resources,
D.N., A.A. and E.P.; data curation, D.N., A.A. and E.P.; writing—original draft preparation, D.N.;
writing—review and editing, D.C., A.A. and E.P.; supervision, D.N.; project administration, D.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.



Geosciences 2024, 14, 271 30 of 42

References
1. Eftaxias, K.; Balasis, G.; Contoyiannis, Y.; Papadimitriou, C.; Kalimeri, M. Unfolding the procedure of characterizing recorded

ultra low frequency, kHZ and MHz electromagnetic anomalies prior to the L’Aquila earthquake as pre-seismic ones—Part 2. Nat.
Hazards Earth Syst. Sci. 2010, 10, 275–294. [CrossRef]

2. Nikolopoulos, D.; Petraki, E.; Marousaki, A.; Potirakis, S.; Koulouras, G.; Nomicos, C.; Panagiotaras, D.; Stonhamb, J.; Louizi, A.
Environmental monitoring of radon in soil during a very seismically active period occurred in South West Greece. J. Environ.
Monit. 2012, 14, 564–578. [CrossRef] [PubMed]

3. Keilis-Borok, V.I.; Soloviev, A.A. Nonlinear Dynamics of the Lithosphere and Earthquake Forecast; Springer: Berlin/Heidelberg,
Germany, 2003. [CrossRef]

4. Keilis-Borok, V. Earthquake Forecast: State-of-the-Art and Emerging Possibilities. Annu. Rev. Earth Planet. Sci. 2002, 30, 1–33.
[CrossRef]

5. Hayakawa, M.; Hobara, Y. Current status of seismo-electromagnetics for short-term earthquake prediction. Geomat. Nat. Hazards
Risk 2010, 1, 115–155. [CrossRef]

6. Cicerone, R.; Ebel, J.; Britton, J. A systematic compilation of earthquake precursors. Tectonophysics 2009, 476, 371–396. [CrossRef]
7. Molchanov, A.; Kopytenko, A.; Voronov, M.; Kopytenko, A.; Matiashviali, G.; Fraser-Smith, C.; Bernardi, A. Results of ULF

magnetic feld measurements near the epicenters of the Spitak (Ms = 6.9) and Loma-Prieta (Ms = 7.1) earthquakes: Comparative
analysis,. Geophys. Res.Lett. 1992, 19, 1495–1498. [CrossRef]

8. Conti, L.; Picozza, P.; Sotgiu, A. A Critical Review of Ground Based Observations of Earthquake Precursors. Front. Earth Sci.
2021, 9, 676766. [CrossRef]

9. Shrivastava, A. Are pre-seismic ULF electromagnetic emissions considered as a reliable diagnostics for earthquake prediction?
Curr. Sci. 2014, 107, 596–600.

10. Uyeda, S.; Nagao, T.; Kamogawa, M. Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics
2009, 470, 205–213. [CrossRef]

11. Petraki, E.; Nikolopoulos, D.; Nomicos, C.; Stonham, J.; Cantzos, D.; Yannakopoulos, P.; Kottou, S. Electromagnetic Pre-earthquake
Precursors: Mechanisms, Data and Models-A Review. J. Earth Sci. Clim. Chang. 2015, 6, 250. [CrossRef]

12. Aggarwal, P.; Sykes, R.; Simpson, W.; Richards, G. Spatial and temporal variations in ts/tp and in P wave residuals at Blue
Mountain Lake, New York: Application to earthquake forecast. J. Geophys. Res. 1975, 80, 718–732. [CrossRef]

13. Parvaiz, K.; Sharad, T.; Azad, M.; Purushottam, B.; Purohit, P.; Gwal, A.K. Scientific efforts in the direction of successful
earthquake forecast. Int. J. Geomat. Geosci. 2011, 1, 669–677.

14. Zong, J.; Tao, D.; Shen, X. Possible ELF/VLF Electric Field Disturbances Detected by Satellite CSES before Major Earthquakes.
Atmosphere 2022, 13, 1394. [CrossRef]

15. Thomas, J.E.; Ekanem, A.M.; George, N.J.; Akpan, A.E. Ionospheric perturbations: A case study of 2007 five major earthquakes
using DEMETER data. Acta Geophys. 2023, 71, 1607–1618. [CrossRef]
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