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Abstract: The Mississippian was an epoch of strong earth system changes, both tectonic and climatic.
During the Mississippian, the marine faunas experienced a recovery after the late Devonian mass
extinctions, and the rugose corals are a conspicuous example. This study tries to give a general view of
the utility of rugose coral to reconstruct the palaeogeography in the Western Palaeotethys during the
Mississippian. The methodology includes a database with the genera and species recorded in that area
and time period, compiled using more than 700 articles and revisions of several collections in Europe.
We worked with the six sub-provinces defined in previous studies for the Western Palaeotethys. A
generic-level analysis was performed using paired group hierarchical clustering, building clusters
for the Tournaisian, early Visean, late Visean and Serpukhovian. With that information, palaeomaps
for those intervals have been illustrated and discussed. The rugose corals have some deficits for the
reconstruction of the biogeography because of their strong palaeoecologic control and their insufficient
and unequal record, but they provide important information that improves the knowledge on the
palaeogeography of the studied region.
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1. Introduction

Palaeogeographic analyses are essential for understanding Earth’s history. Palaeo-
geography describes the distribution of continents and oceans and is applied in palaeo-
climatology, resource explorations and plate tectonic reconstructions. The methodologies
used to reconstruct the planetary palaeogeography are diverse. Some reconstructions are
based on tectonic data [1–3]; some have been based on palaeomagnetic information [4–6];
others use sedimentological evidence [7–9]; finally, some are based on palaeontological
distributions [10–14]. The most complete palaeogeographic studies comprise mixtures
of several types of information [15–17]. Large compendiums of palaeogeographic maps
also use diverse types of data [18–20], but the necessity to build global maps produces
an absence of details in precise times and geographic areas. For instance, the most cited
maps, those of Scotese [21] (palaeomaps 61 to 64) show the Rheic Ocean closed during the
late Mississippian. They also show as continental zones many of the areas in the Western
Palaeotethys where rugose corals and other marine invertebrates are recorded. In addition,
the information given by foraminifers places the closing of the Rheic Ocean later in the
Bashkirian. Some mostly accurate maps, such as those of Domeier and Torsvik [22], locate
a part of southwestern Laurentia (Florida, Georgia, Alabama) between northern Africa and
the Iberian plate. The coral assemblages from Iberia and northern Africa show many simi-
larities, but show conspicuous differences from those from southeastern North America.

The Mississippian was an epoch of strong earth system changes. The Variscan orogeny
was highly active because of the convergence of Laurussia and Gondwana, affecting several
terrains located in between and changing the distribution of seas and land masses [23,24].
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Additionally, variations in the climate produced the transition from Devonian greenhouse
to Permo-Carboniferous icehouse conditions [25,26]. This was not a lineal progression,
as several cooling and warming times happened during the Mississippian [27]. Several
episodes of glaciation, sea-level changes and variations in the seawater temperature and
CO2 concentration have been recorded [28,29]. During the Mississippian, the marine
faunas experienced a recovery after the late Devonian mass extinctions (Kellwasser and
Hagenberg) [30]. The rugose corals are a notable example: they evolved slowly to reach
a high diversity during the late Visean and suffered significant extinctions during the
Serpukhovian and Bashkirian [31,32].

A strong faunal provincialism resulted from tectonic and climatic changes during
that time. Bambach [33] showed the provincialism affecting different groups of inver-
tebrates such as rugosans, tabulates, bivalvs, ammonoids, brachiopods and bryozoans.
Fedorowski [34] distinguished three super-provinces for the rugose coral faunas during
the Mississippian: the North American super-province, the Palaeotethyan super-province
and the Australian super-province. The Palaeotethyan super-province is divided into
three provinces: the Western Palaeotethys, comprising Europe, North Africa and Nova
Scotia; the Central Palaeotethys, comprising the Ural Mountains and Middle Asia; and the
eastern Palaeotethys, comprising China, southeast Asia and Japan. Somerville et al. [35]
proposed four sub-provinces in the most Western Palaeotethys: the Atlantic sub-province,
the West peri-Gondwanan sub-province, the Mediterranean sub-province and the Saharan
sub-province. Rodríguez-Castro et al. [36] proposed two additional sub-provinces, the
Central European sub-province and the Eastern European sub-province (Figure 1).
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The communication between the super-provinces in the early Tournaisian was par-
tially restricted [34] because of low sea levels and the cold climate [26]. During the late
Tournaisian, the conditions improved, and there was better communication generating the
“Avins event”, produced by a rise in the sea level [37]. A global warming and a general
transgression in the late Visean allowed easier migrations between different provinces and
super-provinces, and the differences between the rugose coral assemblages diminished [34].

The variations of the rugose coral assemblages in the different sub-provinces of the
Western Palaeotethys during the Mississippian provide useful information on the communi-
cation between them. The selection of the Western Palaeotethys is based on the abundance
of rich rugose coral assemblages, which have been studied since the XIX century. Many
papers have addressed this matter previously. Some of them are quite old [38,39]; they
provide useful and interesting data, but the knowledge on rugose corals has improved in re-
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cent years. Some others are dedicated to local or regional areas such as North Africa [35,40],
the Asian Gondwana margin [41], the British Isles [42], SW Spain [43], Belgium and sur-
rounding areas [44,45], etc. Finally, other studies include only a part of the Mississippian,
mainly the late Visean [46,47]. The present study aims to analyse the entire Mississippian
in the Western Palaeotethys.

2. Materials and Methods
2.1. Sub-Provinces

The areas used for comparison are the four sub-provinces defined by Somerville et al. [35]
and the two additional ones proposed by Rodríguez-Castro et al. [48] (Figure 1: A, Atlantic;
G, West Perigondwanan; M, Mediterranian; C, central European; E, eastern European;
and S, Saharan). The Atlantic sub-province comprises N. France, Belgium, the United
Kingdom and Ireland. The West peri-Gondwanan sub-province comprises SW Spain
and the Moroccan Meseta. The Mediterranean sub-province includes numerous outcrops
in the Western Palaeotethys and along the eastern and southern borders of the French
Massif Central and the Iberian Massif: Nötsch and the Carnic Alps in Austria, South
France, the Pyrenees, the Cantabrian Mountains, the Betic Cordillera, the Rif and the
Balearic Islands. The Saharan sub-province comprises the outcrops southern from the
Atlas Mountains: Béchar, Regann, Ahnet-Mouydir and Tindouf. The Central Europe sub-
province includes the Rhenohercynian, the Saxothuringian and the Moldanubian domains
in Germany, the Sudetes, Upper Silesian Basin, Lublin Basin, and its southeastwards
prolongation in Ukraine. The Eastern European sub-province includes Moscow Basin,
Donets Basin and Voronezh.

Smaller areas would diminish the reliability of the results because of the scarcity
and even the absence of coral records in some areas for particular time intervals. For
instance, the absence of Tournaisian corals in SW Spain [49], the Moroccan Meseta [50]
and Austria [36] or the absence of Serpukhovian corals in areas like Belgium [51] and the
Rhenohercynian domain in Germany [52]. Although the coral record from the Balkans
has also been compiled, it has not been included in the analysis. This region, comprised
in the Brunovistulian and Moesian terranes [53], could be included in the Mediterranean
sub-province or in an additional sub-province (eastern Mediterranean), together with the
Istanbul Zone in north Turkiye. However, the data from the Balkans [54–56] are not entirely
reliable since the figures and descriptions are of low quality.

2.2. Database

In order to ensure a robust comparison of rugose coral faunas, we began by selecting
the appropriate time intervals. If the selection comprises very short intervals, such as the
coral zones proposed by Poty [45], the number of genera and species will be small, and the
comparison may lack statistical significance. However, if the intervals are too large, (such
as the entire Mississippian), the comparison may lack accuracy. Consequently, we selected
four intervals: the Tournaisian, the early Visean, the late Visean and the Serpukhovian. We
built a database with the records of genera and species for each time interval considered.
The database was made using about 700 papers, chapters of books and abstracts. Although
the coral record data came from many different sources, most of the data were derived
from the following papers and monographies: In the Atlantic Sub-province [57–63], in the
Central Europe sub-province [64–69], in the Eastern Europe sub-province [31,70–76], in the
West Peri-Gondwanan sub-province [77–80], in the Mediterranean sub-province [81–85]
and in the Saharan sub-province [86–89]. In addition, we examined several collections from
institutions in Europe (Table 1).

The database comprises 64 genera and 128 species for the Tournaisian, 56 genera and
148 species for the early Visean, 79 genera and 293 species for the late Visean, 78 genera
and 151 species for the Serpukhovian (Tables 2–5 and Supplementary Tables S1–S4).
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Table 1. Collections visited and revised by the authors. IRGC: Isabel Rodríguez-Castro; SRG:
Sergio Rodríguez.

Institution Checked by

British Natural History Museum, London IRGC

British Geological Survey, Keyworth IRGC

Institute of Geology, Adam Mickiewicz University, Poznan IRGC

Institute for Earth Sciences at the Karl-Franzens-Universität, Graz SRG

Vserossiskiy Nauchno-issledovatelskiy Geological Institut, S. Petersburg SRG

Museum National d’Histoire Naturelle, Paris SRG

Geol.-Palaont. Institut, Eberhard Karls Universität, Tübingen SRG

Museum für Naturkunde, Berlin SRG

Leiden University, Leiden SRG

Geomuseum der Universität Münster, Münster SRG

Division of the Geologic Patrimony, Rabat SRG

Área de Paleontología, Universidad Complutense, Madrid IRGC, SRG

Table 2. Distribution of genera in the Tournaisian.

Genera Atlantic C. Europe E. Europe Sahara

Allotropiophyllum x

Amplexizaphrentis x

Amplexocarinia x x

Amplexus x x x

Amygdalophyllum x x

Arctophyllum x

Aulina x

Aulokoninckophyllum x x

Axophyllum x

Batybalva x

Bifossularia x x

Calmiussiphyllum x x

Campophyllum x x x

Caninophyllum x x x

Caninia x x x x

Carruthersella x x

Claviphyllum x

Clisiophyllum x x

Commutia x

Conilophyllum x x x

Corphalia x

Corwenia x

Cravenia x

Cryptophyllum x

Cyathaxonia x x
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Table 2. Cont.

Genera Atlantic C. Europe E. Europe Sahara

Cyathyoclisia x x x

Delepinella x

Dorlodotia x x

Drewerelasma x x

Eostrotion x x

Fasciculophyllum x

Hapsiphyllum x x

Hebukophyllum x

Heterostrotion x

Howthia x

Kabakovitchiella x

Keyserlingophyllum x x x

Kizilia x

Koninckophyllum x

Laccophyllum x

Lophophyllidium x x

Lophophyllum x x

Lublinophyllum x

Melanophyllum x

Merlewoodia x x

Nominoephyllum x

Palaeosmilia x x

Pentaphyllum x x

Proheterolasma x x

Rhopalolasma x x

Rotiphyllum x x x

Rylstonia x x x

Saleelasma x x

Semenoffia x

Siphonophyllia x x x x

Sochkineophyllum x

Solenodendron x x

Sychnoelasma x x x x

Syringaxon x x

Thuriantha x

Ufimia x x

Uralinia x x

Zaphrentites x x x

Zaphriphyllum x
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Table 3. Distribution of genera in the early Visean.

Genera Atlantic C. Europe E. Europe W. Peri-G. Sahara

Allotropiophyllum x

Amplexizaphrentis x

Amplexocarinia x

Amplexus x x x

Amygdalophyllum x x x x

Aulina x

Auloclisia x x x

Aulokoninckophyllum x x x

Axoclisia x x x x

Axophyllum x x x x

Bifossularia x x x x

Bradyphyllum x

Calmiussiphyllum x

Calophyllum x

Campophyllum x x x

Caninia x x x x

Caninophyllum x x

Carruthersella x x

Clinophyllum x

Clisiophyllum x x x

Corphalia x

Cravenia x x x

Cyathaxonia x x x x

Cyathoclisia x x x x

Dibunophyllum x x

Diphyphyllum x x

Dorlodotia x x x

Drewerelasma x

Eolithiostrotionella x

Fasciculophyllum x

Haplolasma x x x

Hettonia x

Koninckophyllum x x x x

Laccophyllum x

Lithostrotion x x x

Merlewoodia x x

Palaeosmilia x x x x

Pentaphyllum x x x

Proheterolasma x

Pseudouralinia x

Richrathina x
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Table 3. Cont.

Genera Atlantic C. Europe E. Europe W. Peri-G. Sahara

Rotiphyllum x x

Rylstonia x x x

Siphonodendron x x x x

Siphonophyllia x x x x x

Solenodendron x x x

Spirophyllum x

Sychnoelasma x x x x x

Syringaxon x

Ufimia x

Uralinia x x

Vassiljukia x

Verneuilites x

Zaphriphyllum x

Zaphrentites x x x x

Zaphrentoides x x

Table 4. Distribution of genera in the late Visean.

Genera Atlantic C. Europe E. Europe W. Peri-G. Saharan Mediterranean

Actinocyathus x x x x

Allotropiophyllum. x x x

Amplexizaphrentis x x x x x x

Amplexocarinia x x x x x

Amplexus x x x x x

Amygdalophyllum x x x x x

Arachnolasma x x x x x x

Auloclisia x x x x x

Aulokoninckophyllum x x x x x

Aulophyllum x x x x x

Axoclisia x x x x x

Axophyllum x x x x x x

Bifossularia x x x x

Biphyllum x

Bothrophyllum x x x x

Bradyphyllum x x x x

Calophyllum x

Campophyllum x

Caninia x x x x x

Caninophyllum x x x x

Carruthersella x x x

Ceriodotia
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Table 4. Cont.

Genera Atlantic C. Europe E. Europe W. Peri-G. Saharan Mediterranean

Claviphyllum x x x x

Clisiophyllum x x x x x x

Corwenia x x x

Cravenia x x

Cryptophyllum x x

Cyathaxonia x x x x x

Dibunophyllum x x x x x x

Diphyphyllum x x x x x x

Enniskillenia x x x

Espielia x x

Gangamophyllum x x x x x x

Guadiatia x

Haplolasma x x x x x x

Kizilia x x x x x x

Koninckinaotum x x

Koninckophyllum x x x x x x

“Koninckophyllum” (colonial) x x

Lithostrotion x x x x x x

Lonsdaleia x x x x x

Lophophyllidium x

Lublinophyllum x x

Melanophyllidium x

Merlewoodia x

Mirka x

Morenaphyllum x

Neoclisiophyllum x x x

Neokoninckophyllum x x

Nemistium x x x x x

Nervophyllum x x

Orionastraea x x x

Palaeosmilia x x x x x x

Palastraea x x x x x

Pareynia x x x x

Pentaphyllum x x x

Pseudocaninia x

Pseudoclaviphyllum x

Pseudozaphrentoides’ x x x x x x

Rotiphyllum x x x x

Rozkowskia x

Rylstonia x x x x x
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Table 4. Cont.

Genera Atlantic C. Europe E. Europe W. Peri-G. Saharan Mediterranean

Saharaphrentis x

Semenoffia x x

Siphonodendron x x x x x x

Siphonophyllia x x x x x x

Slimoniphyllum x x

Solenodendron x x x x x x

Spirophyllum x x x x

Tachylasma x x

Tchernowiphyllum x

Thysanophyllum x x

Tizraia x x x

Turbinatocaninia x x x

Ufimia x x x x

Viseaulina x

Zakowia x

Zaphrentites x x x x x x

Zaphrufimia x

Table 5. Distribution of the genera in the Serpukhovian.

Genera Atlantic C. Europe E. Europe W. Peri-G. Saharan Mediterranean

Actinocyathus x x x x

Adamanophyllum x

Amplexizaphrentis x x

Amplexocarinia x x

Amplexus x x x

Amygdalophyllum x x

Antiphyllites x

Antiphyllum x

Arachnolasma x x x x

Aulina x x x x

Auloclisia x x

Aulokoninckophyllum x x x x

Aulophyllum x x x x

Axophyllum x x x x x x

Barytichisma x

Bothrophyllum x x x

Caninia x x x x

Caninophyllum x x

Caninostrotion x

Carruthersella x
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Table 5. Cont.

Genera Atlantic C. Europe E. Europe W. Peri-G. Saharan Mediterranean

Claviphyllum x x

Clisiophyllum x x x x x x

Corwenia x x

Cyathaxonia x x x x

Diaschophyllum x

Dibunophyllum x x x x x x

Diphyphyllum x x x x x x

Effigies x

Eostrotion x

Fasciculophyllum x

Gangamophyllum x x x x

Guadiatia x

Haplolasma x x x

Hapsiphyllum x

Kazachiphyllum x

Kizilia x x x x

Koninckophyllum x x x x x

Lithostrotion x x x x x x

Lonsdaleia x x x x

Lophophyllidium x

Lublinophyllum x x

Lytvophyllum x

Melanophyllidium x

Mirka x

Morenaphyllum x

Neokoninckophyllum x x

Nemistium x x

Nervophyllum x x

Nina x

Ostravaia x

Palaeosmilia x x x x x x

Palastraea x x x x

Pareynia x x

Plerophyllum x

Pseudoaulina x x

Pseudozaphrentoides’ x x x x

Rotiphyllum x x x

Rylstonia x

Schoenophyllum x

Serraphyllum x

Silesamplus x
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Table 5. Cont.

Genera Atlantic C. Europe E. Europe W. Peri-G. Saharan Mediterranean

Siphonodendron x x x x x x

Siphonophyllia x x x x x

Slimoniphyllum x x

Solenodendron x

Spirophyllum x

Tachylasma x x

Thysanophyllum x

Tizraia x x

Turbinatocaninia x x x

Ufimia x x x

Variaxon x

Vojnimitor x

Vojnovskytes x

Zakowia x

Zaphrentites x x x x x

Zaphriphyllum x

Zaphrufimia x x x

The coral genera and species described and/or figured in the bibliography have been
carefully examined. Unfortunately, in many cases, especially in old papers, the low quality
of the figures obstructs a precise identification. Moreover, in some cases, the classification is
questionable because of the absence of figuration, description or both. The identifications of
the corals from the collections have been examined maintaining a homogeneous criterion.
In many cases, pictures of the specimens and the thin sections studied in the museums
were taken in order to have a significant catalogue of Carboniferous corals.

2.3. Taxonomic Units

Some attempts to compare the species assemblages have been made in areas with
homogeneous identifications and well-known assemblages [43,46]. However, we chose
the generic assemblages for the overall comparison of the Western Palaeotethys. The
main reason is that a high number of the specific identifications, about 40%, are in open
nomenclature (sp., cf., aff., ?, etc.). Additionally, we try to avoid the problems caused
by the different taxonomic criteria, preservation, and reliability of the data. This was
already highlighted by Bambach [33], who analysed biogeographic distributions of several
groups of invertebrates at the generic level. The authors who studied the corals in different
times and geographic areas have also used different criteria for the identification of the
corals. All the identifications of the specimens studied in different laboratories were
homogenized. In addition, the old papers with low quality illustrations were interpreted
with the same criteria. However, we accepted the identifications in most papers by recent
authors, although the criteria were not always the same. Some authors are clearly splitters,
and some other are clearly lumpers. This introduces a methodological problem that we
will discuss in some particular cases.

2.4. Clusters

The palaeobiogeographical analyses have been performed using PAST [90]. The study
uses paired group (UPGMA) hierarchical clustering. We examined several indices (Raup-
Crick, Simpson, Dice, Jaccard), but we used only the Dice and Simpson indices because
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they produced better results in initial tests. Simpson is less influenced by differences in
sample size or insufficient sampling [91] and reflects spatial turnover over nestedness [92].
This characteristic can lead it to consider areas with a small number of taxa as identical or
almost identical to other areas, as long as the taxa present in the less diverse area are also
found in the others. This problem should be less prevalent because the sub-provinces are
large areas, but in some sub-provinces for several time intervals, the coral records are scarce
(Tables 2–5). To address this limitation, we used both Simpson and Dice indices, providing
a more nuanced comparison that takes into account both the presence and absence of taxa.
A total of 1000 bootstrap resamples have been performed on the analysis to test the stability
of the resulting clusters. The branches with a bootstrap value lower than 50% are unstable
and are not considered well supported.

3. Results
3.1. Clusters

The comparisons between the sub-provinces are illustrated in Figures 2–5 and are
completed with Table 6. Figure 2 shows the hierarchical cluster of the Tournaisian us-
ing Dice and Simpson indices. Only four sub-provinces are represented there, since the
Mediterranean and the West Peri-Gondwanan sub-provinces do not present a rugose coral
record during the Tournaisian. Both clusters have stable branches, with bootstrap values
higher than 60%. Both clusters and similarity indices indicate that the Saharan and East
European sub-provinces are more similar to each other than to the others. Central Europe
is more closely related to the Atlantic sub-province than to the Saharan or East European
sub-provinces. However, the Atlantic sub-province’s relationships vary depending on the
analysis: with the Dice index, it aligns more with Central Europe, while the Simpson index
shows a closer connection to the Saharan or East European sub-provinces.
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Table 6. Pairwise comparison between the different sub-provinces, rounded to the third decimal place.

Tournaisian

DICE Atlantic C. Europe E. Europe Sahara

Atlantic 1 0.548 0.394 0.182

C. Europe 0.548 1 0.32 0.154

E. Europe 0.394 0.32 1 0.476

Sahara 0.182 0.154 0.476 1

SIMPSON Atlantic C. Europe E. Europe Sahara

Atlantic 1 0.676 0.813 1

C. Europe 0.676 1 0.5 0.6

E. Europe 0.813 0.5 1 1

Sahara 1 0.6 1 1

Early Visean

DICE Atlantic C. Europe E. Europe West Peri-G. Sahara

Atlantic 1 0.476 0.426 0.278 0.372

C. Europe 0.476 1 0.417 0.162 0.409

E. Europe 0.426 0.417 1 0.190 0.357

West Peri-G. 0.278 0.162 0.190 1 0.235

Sahara 0.372 0.409 0.357 0.235 1
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Table 6. Cont.

Tournaisian

SIMPSON Atlantic C. Europe E. Europe West Peri-G. Sahara

Atlantic 1 0.484 0.625 1 0.667

C. Europe 0.484 1 0.625 0.6 0.75

E. Europe 0.625 0.625 1 0.4 0.417

West Peri-G. 1 0.6 0.4 1 0.4

Sahara 0.667 0.75 0.417 0.4 1

Late Visean

DICE Atlantic C. Europe E. Europe West Peri-G. Sahara Mediterran.

Atlantic 1 0.789 0.773 0.846 0.622 0.561

C. Europe 0.789 1 0.792 0.712 0.578 0.512

E. Europe 0.774 0.792 1 0.792 0.683 0.514

West Peri-G. 0.846 0.712 0.792 1 0.7 0.583

Sahara 0.622 0.578 0.683 0.7 1 0.552

Mediterranean 0.561 0.512 0.514 0.583 0.552 1

SIMPSON Atlantic C. Europe E. Europe West Peri-G. Sahara Mediterran.

Atlantic 1 0.789 0.837 0.936 0.848 0.92

C. Europe 0.789 1 0.857 0.787 0.788 0.84

E. Europe 0.837 0.857 1 0.809 0.848 0.76

West Peri-G. 0.936 0.787 0.809 1 0.848 0.84

Sahara 0.848 0.788 0.848 0.848 1 0.64

Mediterranean 0.92 0.84 0.76 0.84 0.64 1

Serpukovian

DICE Atlantic C. Europe E. Europe West Peri-G. Sahara Mediterran.

Atlantic 1 0.436 0.508 0.478 0.490 0.533

C. Europe 0.436 1 0.585 0.462 0.441 0.438

E. Europe 0.508 0.585 1 0.466 0.474 0.417

West Peri-G. 0.478 0.462 0.466 1 0.610 0.509

Sahara 0.490 0.441 0.474 0.610 1 0.655

Mediterranean 0.533 0.438 0.417 0.509 0.655 1

SIMPSON Atlantic C. Europe E. Europe West Peri-G. Sahara Mediterran.

Atlantic 1 0.667 0.889 0.611 0.667 0.667

C. Europe 0.667 1 0.649 0.536 0.484 0.533

E. Europe 0.889 0.649 1 0.607 0.581 0.533

West Peri-G. 0.611 0.536 0.607 1 0.643 0.607

Sahara 0.667 0.484 0.581 0.643 1 0.633

Mediterranean 0.667 0.533 0.533 0.607 0.633 1

Figure 3 shows the hierarchical cluster of the early Visean with Dice and Simpson in-
dices. For this time interval, the West Peri-Gondwanan sub-province is already represented,
but the number of genera recorded is low, because only one locality in the Moroccan Meseta
provided a coral assemblage, and it has low diversity [80]. In this case, the stability of the
clusters is lower, because there are some relationships that present bootstraps lower than
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50%. Additionally, the results are quite different between both clusters. The Simpson index
shows a close similarity between the West Peri-Gondwanan and the Atlantic sub-provinces,
while the Dice index indicates the closest relationship between the Central Europe and
Atlantic sub-provinces.

Figure 4 shows the hierarchical cluster of the late Visean with Dice and Simpson
indices. In this case, all the sub-provinces are represented by a relatively high number
of genera. This is due to the general warming and marine transgression [93–95], which
increased the surface of the shallow carbonate platforms and, consequently, increased the
ecological niches favorable for rugose corals. In this case, the cluster made with the Dice
index shows higher reliability (all bootstraps higher than 50%) than the cluster with the
Simpson index, where most bootstraps are below 50%. However, they show similar results,
with the highest similarities being between Eastern and Central Europe and between the
Atlantic and West Peri-Gondwanan sub-provinces.

Figure 5 shows the hierarchical cluster of the Serpukhovian with Dice and Simpson
indices. Again, the six sub-provinces are represented, despite the increase in tectonic
activity [96,97] and the cooling of the climate [26] reducing the number of areas with coral
records. In this case, both clusters differ significantly, and the reliability of the branches is
irregular, with varied bootstrap values.

3.2. Maps

Based on the data provided by the clusters and a previous map [80], we built the palaeo-
geographic maps corresponding to the four time intervals considered in this study. The bio-
geographic sub-provinces are shown in all the maps, and the different areas with records of
rugose corals are numbered. According to the relationships between sub-provinces shown
in the clusters and according to the oceanic circulation systems, the main oceanic currents
have been illustrated. The possible movements of the continents, the transgressions and
regressions and the new lands emerging because of the tectonic movements have been
reflected in the changes of the maps along the four time intervals studied. The analysis of
those changes is included in the discussion section.

4. Discussion

There are many obstacles to doing a complete and reliable identification of the Missis-
sippian coral faunas. Their knowledge is very irregular: the coral record of precise time
intervals (mainly in the late Visean) in some sub-provinces contains numerous genera
because there are good outcrops, and they have been studied in detail for decades. In
contrast, the Tournaisian or Serpukhovian outcrops are scarce, or, in most cases, they do not
contain coral assemblages. Therefore, some sub-provinces are excluded from the clusters
or contain few genera due to the scarcity of outcrops, which biases the results.

An additional problem is the environmental influence on the coral assemblages. Car-
boniferous corals are strong palaeoenvironmental indicators and have proven their use in
palaeoecological studies [98–100]. This introduces an additional difficulty when comparing
assemblages that originated in diverse environments. However, this influence is mitigated
when comparing sub-provinces that comprise diverse environments, as their effects on the
assemblages tend to average out.

4.1. Tournaisian

During the Tournaisian and early Visean, some regions, such as SW Spain and the
Moroccan Meseta were mostly uplifted areas [101,102]. Additionally, most areas included
in the Mediterranean sub-province were part of deep seas, without a record of rugose
corals [85,103]. Therefore, the West peri-Gondwanan and the Mediterranean sub-provinces
are excluded in the clusters for the Tournaisian.

The clusters with Simpson and Dice indices have high reliability (bootstraps above
60% in all cases), but they present somewhat different results that can be explained by
the problems previously highlighted. The East Europe Sub-province seems to be closely
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related with the Saharan sub-province (Figure 2). This is possible because the equatorial
current could turn south-westwards when colliding against the continental mass of the
Ukrainian Shield (Figure 6). However, the very close relationship shown by the Simpson
index may also be related to the low number of rugose coral records in both sub-provinces.
Such a low number of records may be due to the high input of siliciclastic sediments in
those areas during the Tournaisian. The high similarity between the Atlantic and Central
European sub-provinces (Figure 2; about 0.6) is related to the easy communication along
the platforms located in the southern border of Laurussia (Figure 6).
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The pairwise comparison between the different sub-provinces (Table 6) shows a low
similarity between them with the Dice index; all are below 0.5, except the relationship
between the Atlantic and Central Europe. These low similarities are probably caused by
an important level of endemism after the late Devonian extinctions and the low number
of genera present in some of the areas. This is confirmed when analyzing the comparison
with the Simpson index, which is less affected by the differences in the number of taxa
among different sub-provinces.

4.2. Early Visean

The Mediterranean sub-province is also discarded here for the same reasons as in the
Tournaisian. In contrast, the West Peri-Gondwanan sub-province is included because of
the record of a low-diversity but significant assemblage in the Khenifra area (Moroccan
Meseta) [80].

The results with the Dice and Simpson indices are very different (Figure 3). The
reliability of the connections is not always high, because some bootstraps have values
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under 50% in both clusters. The Dice cluster shows similarities that fit with the previous
knowledge [17,40], except for the low connection between the West Peri-Gondwanan sub-
province and the rest. This is easily explained by its low number of taxa (five genera).
All the genera present in this sub-province (Axoclisia, Cravenia, Cyathaxonia, Siphonophyllia
and Sychnoelasma) are also recorded in the Atlantic sub-province, which explains the high
similarity found by the Simpson index. The low number of genera in this sub-province
could be explained by the low sea level, which isolated that area in an epicontinental zone
(Figure 7) [102].
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The main change in the palaeogeographic map from the Tournaisian to the early Visean is
the light advance of Gondwana to Laurussia, with a little narrowing of the intermediate terrains.

The pairwise comparison between the different sub-provinces (Table 6) for the early
Visean again shows lower values with the Dice index than with the Simpson index. None of
the values are higher than 0.5 in the first case, but most are above that value in the second.
The Simpson index shows a high similarity of the West Peri-Gondwanan with the Atlantic
sub-province (Table 6), because all genera recorded in the Khenifra area are also present
in South Wales [80,104]. However, the other relationships shown by this index are not
consistent with the previous knowledge of other fossil groups [14].

4.3. Late Visean

The late Visean offers the most complete comparison between the six sub-provinces
because all of them contain abundant rugose corals (a total of 79 genera and 293 species),
with the assemblages in each of them being quite diverse (Table 4, 340 to 58 genera). This
diversity is attributed to the already mentioned marine transgression, which not only
facilitated communication between different basins through the extension of the marine
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areas but also led to the occupation of many new marine niches in the inundated low-lying
areas of the continents, now transformed into epi-continental seas.

In this case, the results with the Simpson and Dice indices are similar [47]. All the
connections shown by the Dice index are well supported, with bootstrap values of 50% or
higher. However, several connections with the Simpson index have bootstraps lower than
50. Both indices show a high similarity between the Atlantic and West Peri-Gondwanan
sub-provinces, which were connected along the northwestern coast of the Ibero-Armorican
Massif or the southeastern part of the Rheic Ocean. Both analyses also group the Central
European and Eastern European sub-provinces together, although with slightly lower
support values.

Other connections are less evident, because the Simpson and Dice indices show
different results. The Simpson index shows a connection of the West Peri-Gondwanan and
Atlantic sub-provinces with the Mediterranean sub-province, and the Central and Eastern
European sub-provinces with the Saharan sub-province, although with low bootstrap
supports. The Dice index joins the Central and Eastern European sub-provinces with the
West Peri-Gondwanan and Atlantic sub-provinces (Figure 4). This fits with the previous
knowledge that supports the continuity of the Atlantic basins and platforms in Germany
and Poland along the south border of Laurussia (Figure 8).
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In any case, the similarities are high (see the pairwise comparison, Table 6), greater
than those in the equivalent tables for the Tournaisian and the Early Visean.

During the Visean, the advance of Gondwana is more intense and the narrowing of
the Rheic Ocean is evident, as well as the lifting of new continental areas or widening of
other previously lifted regions.
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4.4. Serpukhovian

The Serpukhovian also allows for a complete comparison of the six sub-provinces. The
number of genera in most sub-provinces is lower, as some areas were affected by the input
of siliciclastic sediments due to the active tectonics, and an increasing number of genera
became extinct in some of the sub-provinces. However, the total number of genera remains
high because several areas served as refuges for rugose corals [105], and the progressive
isolation of some areas promoted the appearance of new genera [32].

The results obtained with the Dice and Simpson indices differ significantly. Several
of the connections show low reliability (bootstraps lower than 50%). Both clusters show a
grouping of the Mediterranean, the West Peri-Gondwanan and the Saharan sub-provinces,
but the order of these connections varies (Figure 5). The closer relationship of the Saharan
sub-province with the Mediterranean and the West Peri-Gondwanan may be due to the
approach of Gondwana to the northern terranes (Figure 9). The separation of the West
Peri-Gondwanan and the Atlantic sub-provinces may be related to the early stages of the
closure of the Rheic Ocean, which will be complete later in the Bashkirian [14].
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The Dice index shows a close relationship between the Central and Eastern Europe
sub-provinces, with a high level of confidence (bootstrap 70%) despite significant tectonic
activity in those areas that closed some connection routes. The Simpson index cluster shows
a very close connection between the Eastern Europe and the Atlantic sub-provinces that
cannot be explained by palaeogeography (Figure 9), as the Central Europe sub-province
should show intermediate features. The Dice index provides a more logical result, with
a close connection between the Central and Eastern Europe sub-provinces and a weaker
connection to the other sub-provinces (Figure 5).
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In the Serpukhovian, the extension of lifted continental areas is larger, and the nar-
rowing of the marine realms is evident. The lifted regions are more extensive, and the
cordilleras are producing more terrigenous material that makes the development of corals
more difficult.

4.5. Final Considerations

This is the first attempt to analyse the rugose coral biogeography in the Western
Palaeotethys throughout the complete Mississippian. One of the main problems in these
comparisons is that during the late Tournaisian and early Visean, some genera became
widely distributed in the Palaeotethys. This trend was even stronger during the late Visean,
when a high percentage of genera are present in five or six sub-provinces (Table 2). More-
over, their absence in some sub-provinces may be a result of deficient outcrops or incom-
plete records, because they also occur in other areas of the Palaeotethys and even in other
seas. Consequently, their utility in biogeographical studies is limited. Some of these gen-
era are Amplexizaphrentis, Amygdalophyllum, Arachnolasma, Auloclisia, Aulokoninckophyllum,
Aulophyllum, Axoclisia, Axophyllum, Caninia, Clisiophyllum, Cyathaxonia, Dibunophyllum, etc.

The clusters generated using the distribution of rugose coral genera throughout the
Mississippian provide valuable insights, despite several factors that may reduce the validity
of the results. In most cases, the relationships shown between the different sub-provinces
align well with previous data from other fossil groups [14] and with palaeomagnetic [3,16]
and tectonic [3] data.

However, there are some cases that do not fit with the previous data or with the
expected position of the terranes. This is more frequent in the clusters built with the
Simpson index and, in several cases, with the relationships of the Central Europe sub-
province. This could be related to the many new genera defined in that area, which has
been studied in detail during many years with a splitter perspective, resulting in a high
number of endemic taxa.

This study could be extended to include an additional sub-province comprising the
Balkans and northern Turkiye. However, until we have more complete knowledge of the
assemblages from that region, we have excluded it from our analysis.

Some of the more global reconstructions of the Mississippian depict the Rheic Ocean
already closed and Gondwana merged with Laurussia at the middle Visean [20]. Our data
do not align with that reconstruction, as there are epicontinental seas containing rugose
corals in several areas, and rugose coral assemblages still exist in the Atlantic sub-province
during the Serpukhovian. This indicates that the Rheic Ocean was still open at that time, as
already postulated by several authors [3,14].

5. Conclusions

This is the first attempt to statistically analyse the rugose coral biogeography in the
Western Palaeotethys throughout the complete Mississippian, from the Tournaisian to
the Serpukhovian.

The databases compiling rugose coral species and genera present in the Western
Palaeotethys during the Mississippian provide a substantial foundation for future research
on rugose corals in that region.

The clusters built with the Simpson and Dice indices allow for a more complete view
of the relationships between the sub-provinces defined in the Western Palaeotethys.

The results are not always satisfactory due to the uneven knowledge across different
geographic areas, as some of them are well-known and others have been insufficiently
studied. Additionally, many genera are widely distributed (some of them being regionally
cosmopolitan), making them of low value in biogeographical comparisons.

The relationships between different areas and the information on marine areas during
the Mississippian provided by the rugose coral assemblages allow for the presentation of a
set of palaeographic maps of the Western Palaeotethys that show the evolution of the seas
during that time.
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