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Abstract: Constraining the collision timing of India and Asia requires reliable information from the
coeval geological record along the ~2400 km long collisional margin. This study provides insights
into the India–Asia collision at the westernmost margin of the Indian Plate using combined U-Pb
geochronological data and sandstone petrography. The study area is situated in the vicinity of
Fort Munro, Pakistan, along the western margin of the Indian Plate, and consists of the Paleocene
Dunghan Formation and Eocene Ghazij Formation. The U-Pb ages of detrital zircons from the
Dunghan Formation are mainly clustered between ~453 and 1100 Ma with a second minor cluster
between ~1600 and 2600 Ma. These ages suggest that the major source contributing to the Dunghan
Formation was likely derived from basement rocks and the cover sequence exposed mainly in Tethyan
Himalaya (TH), Lesser Himalaya (LH), and Higher Himalayan (HH). Petrographic results suggest
that the quartz-rich samples from the Dunghan Formation are mineralogically mature and have
likely experienced log-distance transportation, which is possible in the case of an already established
and well-developed river system delivering the sediments from the Craton Interior provenance.
Samples of the overlying Ghazij Formation show a major detrital zircon age clustered at ~272–600 Ma
in the lower part of the formation, comparable to the TH. In the middle part, the major cluster
is at ~400–1100 Ma, and a minor cluster at ~1600–2600 Ma similar to the age patterns of TH, LH,
and HH. However, in the uppermost part of the Ghazij Formation, ages of <100 Ma are recorded
along with 110–166 Ma, ~400–1100 Ma, and ~1600–2600 Ma clusters. The <100 Ma ages were mainly
attributed to the northern source, which was the Kohistan-Ladakh arc (KLA). The ~110–166 Ma ages
are possibly associated with the TH volcanic rocks, ophiolitic source, and Karakoram block (KB).
The Paleozoic to Archean-aged zircons in the Ghazij Formation represent an Indian source. This
contrasting provenance shift from India to Asia is also reflected in the sandstone petrography, where
the sample KZ-09 is plotted in a dissected arc field. By combining the U-Pb ages of the detrital zircons
with sandstone petrography, we attribute this provenance change to the Asia–India collision that
caused the provenance shift from the southern (Indian Craton) provenance to the northern (KLA
and KB) provenance. In view of the upper age limit of the Ghazij Formation, we suggest the onset
of Asian–Indian collision along its western part occurred at ca. 50–48 Ma, which is younger than
the collision ages reported from central and northwestern segments of the Indian plate margin with
70–59 Ma and 56 Ma, respectively.
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1. Introduction

The Indian Plate has a tectonic drift starting at ~300 Ma when Pangea segregated [1,2].
During this displacement, the Indian Plate detached from the African Plate and traveled
~9000 km, leading to the closure of the Tethys Ocean and the formation of the younger
Himalayas orogenic belt [3,4]. Several significant events were interpreted to be associated
with this drift, such as the eruption of the Deccan flood basalt during the Cretaceous, which
is regarded as hotspot volcanism [5]. Subsequently, the obduction of ophiolite over the
northern Indian margin indicates the initial stage of the collision process [6], followed by the
terminal India–Asia collision at 60–56 Ma [3,7–10]. The timing of the terminal India–Asia
collision event is still debated. Multiple studies were carried out to constrain the timing of
the India–Asia collision, which includes high-resolution sedimentology and stratigraphy,
dating of high-pressure (HP) and ultrahigh-pressure (UHP) metamorphic rocks, detrital
zircon U-Pb geochronology, paleomagnetic constraints, acceleration and deceleration of
plate velocity, and the dating of arc magmatic records [3,7,8,11–17]. These studies provided
an array of ages for the onset of continent-continent collision ranging between ~70 and
~34 Ma [7,8,18–20].

However, the determination of the onset of the collision is more complex. In the
western Himalayas, where the Kohistan-Ladakh arc (KLA) is sandwiched between the
Indian Plate and the Karakoram Block (part of the Asian Plate). This timing may represent
the onset of the collision of India or Asia with various island arcs and/or microcontinents
intervening between them and the final India–Asia collision occurring afterward [21–23].
The accretion of the KLA with India, predating the Asia–India collision is recognized
widely [8,24]. However, a few studies also invoked the idea of a first accretion of KLA with
Asia [21,25].

Similarly, the hypothesis of the Greater Indian Basin (GIB) has also been criticized
for its existence south of the Main Central Thrust (MCT), contradicting the evidence of
the suture zone [5]. However, recent studies support GIB existence north of the Main
Mantle Thrust (MMT) instead of the MCT, with the possibility of closure before ~56 Ma [14].
These different scenarios in the western Himalayas created conflicts in constraining the
timing and location of the initial India–Asia collision. As far as the initial collision timing is
concerned, the stratigraphic record from the Himalayas provides varying information. The
Cretaceous–Eocene sedimentary sequence in the Tethyan Himalaya is considered to be the
northernmost exposure that documents the oldest ages of the initial India–Asia collision
between 70 and 59 Ma [4,9,26]. The onset of collision in the western Himalayas has been
constrained around ~56 Ma by studying the foreland basin sequence [3,8,14]. In contrast,
similar studies from India, Tibet, Nepal, Bengal, and Indo-Burma ranges provided different
ages for the initial India–Asia collision, which implies a diachronous onset of collision
across the belt. In this study, we constrain the initial collision timing from the westernmost
margin of the Indian Plate and compare our ages with similar sedimentary proxies to test
the model of diachronous collision.

The general trend of the Himalayas changes from northwest-southeast in India to
northeast-southwest in Pakistan (Figure 1A). The Sulaiman fold-and-thrust belt (SFB) is a
broad curvilinear belt formed as a result of the oblique collision between India and Asia
along the sinistral Chaman fault zone [27]. The structures formed in the SFB are mostly
duplexes [28]. The propagation of the frontal fault southward delivered eroded sediments
from the main collision zone into the active Sulaiman foredeep, which is reflected by the
exposure of a 7-km-thick molasse sequence in the Sibi Basin [29]. The tectonic framework
of the western Himalayas is an important component in addressing the timing of the
India–Asia collision. The timing of the initial India–Asia collision in the western Himalayas
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was at ~55 Ma [8]. The plate velocities, HP and UHP metamorphism, and detrital record
support this age in the western Himalayan [13,14,22]. The initial collision age in the
westernmost segment of the Himalayas is crucial because this can evaluate the model of
the diachronous India–Asia collision. The oldest age reported from the western margin is
65 Ma, which is based on the thrusting of ophiolites over Paleocene sedimentary rocks [30].
Zhuang et al. [31] carried a research on a section located ~700–800 km in the south in
the Sulaiman-Kirther belt using an integrated approach consisting of detrital zircon U-Pb
age dating, fission track ages, and Nd-Sr isotopic signatures and constrained the collision
timing around ~50 Ma. Our previously reported ages (56 and 55 Ma) from the northern
sections and the age from Zhuang et al. [32] supported the idea that the Tethys started to
close from the north toward the west. However, the ~50 Ma age might be older because the
reported provenance shift is from Oligocene sediments.
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Figure 1. (A) The Google Earth satellite image showing major tectonic features. The initial India–
Asia collision is marked for the particular sections represented by yellow boxes. The red black box
indicates the western Himalayan syntaxial bend (Hazara-Kashmir Syntaxis; after Qasim et al. [14]).
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(B) The simplified map showing the regional geology of the Sulaiman fold-thrust belt (SFB). Study
area is marked with a red star (after Qasim et al. [33]). (C) Studied samples are marked on the
geological map, which shows major stratigraphic units (after Jadoon and Zaib, [31]).

In order to provide better constraints on the initial collision, this study aims to inves-
tigate the Fort Munro section located in the SFB along the western margin of the Indian
Plate (Figure 1A). The section is located in the southwestern part of SFB (Figure 1B,C).
The selected section is more complete and continuous, where the horizon from where the
provenance shift occurred can be traced. In this study, an advanced U-Pb detrital zircon
dating is used, supplemented with sandstone petrography on the Cenozoic sequence to
constrain the timing of the India–Asia initial collision. The U-Pb dating constrains the ages
of the detrital zircons, which can be used to interpret the provenance by comparing the age
patterns with the adjacent source regions [33,34].

2. Geological Setting and Stratigraphic Overview

The tectonics of the Pakistani Himalayas is mainly attributed to two main interactions.
The first is in the northwest, driven by the India–Asia collision, while the second is in the
south, where the Arabian, Indian, and Asian plates form a triple junction (Figure 1A inset).
The Chaman Fault mainly controlled the first interaction in the western segment, while
the Indus suture zone or Main Mantle Thrust (MMT) and Shyoke Suture Zone or Main
Karakoram Thrust (MKT) pertained to the northern segment (Figure 1A) [6,35,36]. These
faults separate the Indian Plate from the Afghan Block and the KLA from the Karakoram
Plate, respectively (Figure 1). The southern interaction is mainly controlled by the Makran
trench arc system, where the oceanic part of the Arabian plate subducts beneath the Afghan
Block (Asian Plate) and the Chaman-Ornach Nal Fault System [37]. In response to these
interactions, various fold-and-thrust belts formed throughout the Himalayas from east to
west. On the western margin is the location of the SFB. The shape of the SFB suggests that
the result of the rapid translation of the Indian plate in the southward direction is associated
with weaker decollement of the tear fault-bounded thrust sheets. Magnetic stratigraphic
dating indicates that the deformation pattern is younger in the foreland part [38]. In the SFB,
the deformation pattern is gradually younger, reflected by the structural style, a noticeable
topographic front, and seismicity recorded over the frontal folds [39]. Compared to other
Himalayan fold-thrust belts, such as the Salt Range/Potwar plateau, which are connected
to the main collision zone, the SFB is located along the transpression zone along the western
boundary of the Indian Plate (Figure 1A). The initial collision in this belt is attributed to the
Muslim Bagh Ophiolite emplacement during the Late Cretaceous to early Eocene [27].

The SFB is the widest of all Himalayan fold-and-thrust belts [27,28]. The SFB consisted
of thick Triassic to Recent sedimentary rocks, which were deposited during pre-, syn- and
post-collision. The Fort Munro Section is located at the southwestern margin of the SFB,
where Cretaceous to Recent sedimentary rocks are exposed. The oldest units exposed in
the study section are the Cretaceous Fort Munro and Pab formations, which are exposed
in the core of an anticline (Figure 1C). The Fort Munro Formation consisted of mixed
carbonate and clastic sequences. The carbonate consists mainly of thickly bedded limestone
with minor interlayers of marl, shale, and sandstone [40]. The Pab Formation primarily
consists of thick to massive sandstone (Figure 2A). The upper contact of the Pab Formation
is unconformable with the overlying Ranikot Formation, which mainly comprises grey
limestone, various colored sandstone, and shales. The Ranikot Formation is Paleocene
in age [41]. It has an upper contact with the Dunghan Formation, which mainly consists
of limestone with subordinate sandstone, shale, and marl (Figure 2B,C). The lower and
upper contacts of the Dungan Formation with the Ranikot Formation and Ghazij group
are conformable, respectively (Figure 1C). The age assigned to the Dunghan Formation
is Late Paleocene (66–56 Ma) based on the reported foraminiferal assemblages [41]. The
Ghazij Group mainly consisted of shale, limestone, and sandstone (Figure 2D). The shale is
predominantly red and maroon (Figure 2E), occasionally purple. In comparison, sandstone
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is red, grey, and green. The limestone is nodular and thin to thick-bedded (Figure 2E). The
age of the Ghazij group is Eocene (55–48 Ma) based on the fossil assemblages [41].
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Figure 2. (A) Simplified lithological log of the studied section. (B–E) Key lithological variations in the
studied formations are shown by field photographs taken along the main road. (B) Coarse sandstone
of the Dunghan Formation. (C) Photograph of the Dunghan Formation shows limestone, shale,
and sandstone units. (D) Shale interbedded with limestone and sandstone in the Ghazij Formation.
(E) Close view of the outcrop showing shale and limestone interbeds of the Ghazij Formation.

3. Data and Methods
3.1. Petrography

Sandstone petrography is a classical method used to study the composition and find
out the provenance of the sandstones [42,43]. In this study, it is used as an aid to detrital
zircon U-Pb geochronology. The five representative samples of the sandstones from the
Fort Munro section were selected for petrographic observations. These samples were cut,
and thin sections were prepared in the Rock Cutting and Thin section lab at the Department
of Earth Sciences, COMSATS University Islamabad, Abbottabad Campus, Pakistan. The
thin sections were observed under a polarizing petrographic microscope. Approximately
400 individual framework grains were counted from different views of the thin section
using the point-counting method [42].

3.2. Zircon Imaging

Zircon imaging depicts the internal structure of the individual detrital zircon grains.
The detrital zircon grains were derived from various source regions containing metamor-
phic, igneous, and sedimentary rocks. The complex internal structure of the detrital zircons
can lead to inaccurate age results if analyses were conducted on the transition zone. To
avoid overlapping the analyzed spots on the core and rim of the detrital zircon, cathodolu-
minescence (CL) images (Supplementary Material Figure S1) were taken before the in situ
U-Pb analyses. The U-Pb analysis spots were placed on the outer rim, where the internal
structure is complex, to record the younger age of the zircons.
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The zircon internal structure is important for differentiating between zircons from
igneous and metamorphic origin [44]. The common zoning pattern observed in the imaged
samples is oscillatory, which is a typical pattern of zircons derived from igneous origin [45].
The detrital zircons that experienced metamorphism reflect the core and rim structure. In
our imaged zircons, a fair number of zircon grains exhibit core and rim structures. In the
case of multiple metamorphic and magmatic events, the zircon internal structure becomes
more complex, which is reflected by zoning structures comprising a xenocrystic core and
sectoral pattern. Such zircon grains are also observed in the CL images. The zircon grains
with a plane texture without any zoning are present too.

3.3. U-Pb Detrital Zircon Dating

One of the advanced and widely applied techniques in provenance studies is the U-Pb
dating of the detrital zircons, which provides important and reliable information about
the adjacent source regions [46]. A total of five samples were selected for U-Pb age dating:
two from the Paleocene Dunghan Formation and three from the Eocene Ghazij Formation.
Magnetic separation was applied to isolate the magnetic minerals from the crushed samples.
These magnetic minerals were then further passed through different heavy liquids for the
separation of detrital zircons. The zircon grains were mounted on double-sided adhesive
tape, encased in epoxy resin within a closed circular mold, and then polished to create a flat
surface of the mounted zircon grains. The polished zircon grains were washed with pure
alcohol and diluted nitric acid to avoid lead contamination before in situ U-Pb analyses.
The lab facility at the State Key Laboratory of Tibetan Plateau Earth System, Environment
and Resources, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing,
China, was utilized for the U-Pb analyses.

One hundred detrital zircons from each sample were examined by Agilent 7500a Laser
Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICP-MS). The two standard
zircons were used to standardize the ages of the unknown detrital zircons. The standards
used for the calibration were GJ-1 (weighted mean age of 609 Ma) [47] and 91500 (weighted
mean age of 1065 Ma) [48]. The GJ-1 standard is used as the primary standard, while the
91500 standard was used as the secondary standard. The 207Pb/206Pb and 206Pb/238U age
systems were used for zircons older and younger than 1000 Ma, respectively. Zircon grains
with >10% discordance in either system were excluded from the final interpretation. Data
reduction was performed using Glitter 4.0 software, and the final plots were created as
probability density plots using Isoplot [49]. The U-Pb ages of the zircon grains are provided
in Table S1 in Supplementary Material.

4. Results
4.1. Sandstone Petrography
4.1.1. Dunghan Formation (~66–56 Ma)

The thin sections (FM-6 and FM-7) of the Dunghan Formation consist of 93–94% quartz,
3–5% feldspar, and 2–3% lithics (Table 1). The sample FM-6 represented the lower portion of
the Dunghan Formation. Quartz grains are predominantly monocrystalline, though a few
quartz grains with polycrystalline nature are present. The quartz grains exhibit undulatory
extinction (3A). The feldspar includes both alkali and plagioclase varieties, while the lithics
observed are of sedimentary origin, mostly carbonate (Figure 3A). The matrix consists of
calcite. Accessory minerals such as muscovite and hematite are observed. The shape of
the framework grains ranges from sub-angular to sub-rounded, with moderate to poor
sorting (Table 2).
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Table 1. Table shows the petrographic results for the samples of Dunghan and Ghazij formations.
Q-Total quartz, Qp-Polycrystalline quartz, Qm-Monocrystalline quartz, F-total feldspar, Af-Alkali
feldspar, Pf-Plagioclase feldspar, L-total lithics, Lm-Metamorphic lithics, Ls-Sedimentary lithics,
Li-Igneous lithics, Bt-Biotite, Mus-Muscovite, Hm-Hematite and Cal.-Calcite.

Sample
No.

Quartz Feldspar Lithics (L) Matrix/Cement Accessory
Minerals (%)

Percentage Composition of
Framework Grains

Qm Qp Q Pf Af F Ls Lm Li Clay
(%)

Cal.
(%) Bt Mus Hm Q F L Qm F L

FM6 292 8 300 16 6 - - 8.8 9 - - 2 93 5 2 93 5 2
FM7 346 22 368 8 4 12 12 - - - - - 0.3 2 94 3 3 94 3 3

FM8 308 16 324 1 3 4 8 - - 7.5 8.3 0.3 - 2 96 1 3 96 1 3
FM9 324 1 325 - 7 7 8 - - 14 - - 1 1.3 96 2 2 96 2 2
KZ9 136 - 136 - 148 148 68 - - - 12 - - - 39 42 19 39 42 19
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Figure 3. (A,B) Photomicrographs of the thin sections of the Dunghan Formation showing lithic
fragments and monocrystalline quartz. (C) The photomicrograph of the Ghazij Formation shows poly-
crystalline quartz with hematite coating. (D,E) Ternary diagrams [42] show the tectonic provenance
of Dunghan and Ghazij formations. Where Q represents total quartz, Qm represents monocrystalline
quartz, F is used for total feldspar, and L stands for lithics.
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Table 2. The petrographic data of the Dunghan and Ghazij formations show properties of the
framework grains and other features.

Formation
Name

Sample
No.

Grain Shape Fabric Support/
Contacts

Sorting
Maturity

Roundness Sphericity Textural Mineralogical

Dunghan
Formation

FM6 Sub-rounded Low-
Medium

Grain-
supported, point
contact

Moderate-
Poor sorted Sub mature Mature

FM7
Subangular
to
Sub-rounded

Low-
Medium

Grain-
supported,
pointed,
concave-convex
contacts

Moderate-
Poor sorted Mature Mature

Ghazij
Formation

FM8 Sub-rounded
to rounded

Low-
Medium

Grain-
supported, point
contacts

Moderately
sorted Mature Mature

FM9 Sub-rounded
to rounded

Low-
Medium

Matrix-
supported,
pointed contacts

Moderately
sorted Mature Mature

KZ9 Sub-rounded
to rounded

Medium-
high

Grain-
supported,
pointed,
concave-convex
contacts

Moderately
sorted Immature Mature

4.1.2. Ghazij Formation (~56–48 Ma)

The sample FM-8 represents the zone immediately above the basal contact with the
Dungan Formation. The lowermost sample (FM-8) of the Ghazij Formation comprises
96% quartz, 1% feldspars, and 3% lithics (Table 1). Quartz grains are predominantly
monocrystalline, with a few polycrystalline grains. The feldspar grains include both alkali
and plagioclase varieties. The lithics are entirely sedimentary. Clay and calcite are observed
in the matrix (Figure 3C). Accessory minerals such as biotite and muscovite are also present.
The framework grains are sub-rounded to rounded, with moderate sorting (Table 2).

The thin section FM-9 of the Ghazij Formation, representing its middle zone, consists
of 96% quartz, 2% feldspar, and 2% lithics (Table 1, Figure 3D,E). Most of the quartz grains
are monocrystalline, with a few polycrystalline grains. The feldspar observed in this thin
section is alkali feldspar. The lithics are sedimentary. No metamorphic and igneous lithics
are observed. The matrix is clayey, and the accessory minerals include muscovite and
hematite. The grains are sub-rounded to rounded, with moderate sorting (Table 2).

The third thin section (KZ-9) represented the zone immediately below the upper con-
tact with the Kirthar Formation. The sample KZ-9 of the Ghazij Formation comprises quartz
(39%), feldspar (42%), and lithics (19%). The quartz grains were mostly monocrystalline,
and the feldspar grains were alkali feldspar. The observed lithics are sedimentary. The
grains are sub-rounded to rounded in shape, with moderate sorting (Table 2).

4.2. U-Pb Zircon Geochronology
4.2.1. Dunghan Formation (66–56 Ma)

One hundred detrital zircon grains were analyzed from sample FM-6, which is rep-
resentative of the lower part of the Dunghan Formation. One detrital zircon age was
excluded due to >10% discordance. Ninety-nine concordant ages were obtained from
this sample. The shape of zircon grains is mostly sub-rounded to rounded. Few zircon
grains are euhedral (Supplementary Figure S1). The length of the zircon grains ranges
between 50 and ~200 µm. One detrital zircon was excluded from the final ages due to >10%
discordance in the age. The age spectrum of sample FM-6 reflects the major ages between
~486 and ~1102 Ma (~73%), with age peaks around ~518, ~588, ~729, ~871, and ~941 Ma
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(Figure 4). The second age group ranges between ~1700 and ~2600 Ma, which is ~24% of
the total detrital zircon ages. The major age peaks in this spectrum are at ~1753, ~1976, and
~2482 Ma (Figure 4). Few grains yielded ages between ~2800 and ~3250 Ma.

Geosciences 2024, 14, x FOR PEER REVIEW 9 of 20 
 

 

zircons were excluded due to >10% discordance in the obtained ages. The first major age 

cluster exists between ~453 and ~1000 Ma (Figure 4). 

This broader age cluster is further subdivided into three sub-clusters, which are ~453–

678 Ma with age peaks at ~500 and ~530 Ma, ~692–900 Ma with age peaks at ~750 and 820 

Ma, and ~916–1000 Ma with age peak at ~940 Ma. The two minor age groups cluster at 

~1800–2000 Ma and ~2200–2500 Ma (Figure 4). Few sca�ered Archean ages are measured. 

The youngest age documented in this sample is 104 Ma (Figure 4). 

4.2.2. Ghazij Formation (~56–48 Ma) 

Three representative samples, FM-8, FM-9, and KZ-9, were collected from the Ghazij For-

mation, corresponding to the basal, middle, and upper stratigraphic levels of the for-

mation, respectively. The detrital zircons in sample FM-8 are mostly rounded to sub-

rounded with a diameter ranging between ~50 and ~100 µm. Few elongated grains are 

present, ranging in length between 50 and 200 µm. In addition, a few needle-like grains 

are present. The different zoning pa�erns are observed in the zircon grains. Some of the 

grains display a plain texture. However, grains with oscillatory zoning, sectoral zoning, 

and core-rim zoning are present. One hundred detrital zircons from sample FM-8 yielded 

63 concordant ages. Thirty-seven detrital zircons are excluded from the final analyses due 

to age discordance >10%. The PDP displays the major age clusters at ~272–603 Ma with 

age peaks at ~280, ~310, ~440, and ~500 Ma. This age population is ~95% of the total detrital 

zircon ages. Three detrital zircon grains yield sca�ered ages at ~951, ~966, and ~1313 Ma 

(Figure 4). 

 

Figure 4. The U-Pb age data of the Dunghan and Ghazij formations are displayed as probabil-
ity density plots (PDPs). The x-axis represents the age and the y-axis represents the number of
zircon grains.

Sample FM-7 is representative of the upper zone of the Dunghan Formation and yields
97 usable concordant ages out of 100 analyses. The shape of the zircon grains varies from
sub-rounded to rounded. A few zircon grains were elongated. Most of the zircon grains
ranged in size between 50 and 150 µm (Supplementary Figure S1). Three detrital zircons
were excluded due to >10% discordance in the obtained ages. The first major age cluster
exists between ~453 and ~1000 Ma (Figure 4).

This broader age cluster is further subdivided into three sub-clusters, which are
~453–678 Ma with age peaks at ~500 and ~530 Ma, ~692–900 Ma with age peaks at ~750
and 820 Ma, and ~916–1000 Ma with age peak at ~940 Ma. The two minor age groups
cluster at ~1800–2000 Ma and ~2200–2500 Ma (Figure 4). Few scattered Archean ages are
measured. The youngest age documented in this sample is 104 Ma (Figure 4).
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4.2.2. Ghazij Formation (~56–48 Ma)

Three representative samples, FM-8, FM-9, and KZ-9, were collected from the Ghazij
Formation, corresponding to the basal, middle, and upper stratigraphic levels of the
formation, respectively. The detrital zircons in sample FM-8 are mostly rounded to sub-
rounded with a diameter ranging between ~50 and ~100 µm. Few elongated grains are
present, ranging in length between 50 and 200 µm. In addition, a few needle-like grains
are present. The different zoning patterns are observed in the zircon grains. Some of the
grains display a plain texture. However, grains with oscillatory zoning, sectoral zoning,
and core-rim zoning are present. One hundred detrital zircons from sample FM-8 yielded
63 concordant ages. Thirty-seven detrital zircons are excluded from the final analyses due
to age discordance >10%. The PDP displays the major age clusters at ~272–603 Ma with age
peaks at ~280, ~310, ~440, and ~500 Ma. This age population is ~95% of the total detrital
zircon ages. Three detrital zircon grains yield scattered ages at ~951, ~966, and ~1313 Ma
(Figure 4).

The zircon grains in sample FM-9 are mainly rounded to sub-rounded with a diameter
ranging between 50 and ~80 µm. The elongated and euhedral grains have a length of
<100 µm. Only a few grains were long enough, with a length ranging between 100 and
200 µm. Most of the zircon grains show a plain texture. However, the sectoral and
oscillatory zoning is also reflected by many grains (Supplementary Figure S1). One hundred
zircon grains are selected for the U-Pb analyses and 94 concordant ages are obtained with
<10% discordance. Six grains are excluded because they exhibit >10% discordance. The
PDP reflects that the major age group exists between ~725 and ~1100 Ma, which is ~43%
of the total detrital zircon ages. In this age group, the major age peaks are at ~836 and
~944 Ma (Figure 4). The second group ranges between ~482 and ~650 Ma with a peak age at
~524 Ma, which is ~18% of the total obtained ages. The third group of ages ranges between
~1600 and ~1900 Ma (Figure 4). This age range is ~17% of the total age population. About
10% of the detrital ages are clustered at ~2257–2511 Ma (Figure 4). Three scattered ages are
reported between ~2700 and ~3100 Ma.

The sample KZ-9 represents the upper part of the Ghazij Formation. The detrital zircon
grains are mainly rounded to sub-rounded with a diameter of >80 µm. Detrital grains with
elongated shapes are also present, with a length ranging between ~50 and >100 µm. The
round grains mainly display a plain texture. However, the elongated and euhedral grains
show oscillatory and sectoral zoning patterns (Supplementary Figure S1). The zircon grains
were smaller in size; therefore, 90 grains were selected in this sample for U-Pb analyses.
Of these analyzed grains, the concordant ages are obtained from 74 grains. The rest of the
detrital zircon grains reflect the ages with >10% discordance and, therefore, are excluded
from the interpretation. The major age cluster is present between the ages of ~355 and
~1100 Ma, with age peaks at ~580 and ~760 Ma, which is ~46% of the total obtained ages.
The second significant age cluster (~27%) is the younger age population, which is present
between ~67 Ma and ~166 Ma (Figure 4). Three detrital grains yield Permian-Triassic ages.
The rest of the detrital grains yield scattered ages between ~1600 and ~3350 Ma (Figure 4).

4.3. Th/U Ratio

The Th/U of the zircon grains is used to distinguish between igneous and metamorphic
zircons [50]. The Th/U ratio of the igneous zircons is usually >0.3, while in the case of
metamorphic zircon, this ratio is <0.3 [45]. The Th/U ratio and detrital zircon U-Pb ages
are displayed by a binary plot to discriminate the igneous and metamorphic zircons. The
scattered plot shows that the major detrital zircons with ages of >500 Ma are likely derived
from igneous rocks with fair contribution from metamorphic rocks (Figure 5). The Permian
detrital zircons and their corresponding Th/U ratio suggest an igneous origin, which is
more likely the Panjal Traps exposed in the lesser Himalayas. Similarly, the younger detrital
zircons of <100 Ma portray a higher Th/U ratio (>0.3), which is plotted in the igneous
field. This supports the derivation from the Kohistan-Ladakh Arc, which is an entirely
igneous terrane.
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5. Discussion
5.1. U-Pb Ages and Source Terranes

In the context of the India–Asia collision, the Karakoram Block (KB), Kohistan-Ladakh
Arc (KLA), and Indian Plate were the possible source regions that could feed the evolving
Himalayan foreland basin. The KB and KLA together represent the Asian source. At the
same time, the Indian Plate sources consisted of rocks that are now part of the Lesser
Himalaya (LH), Higher Himalaya (HH), and Tethys Himalaya (TH). The Asian and Indian
source regions were located apart from each other before the India–Asia collision [51]. This
separation is marked by the Tethys Ocean, which gradually closed as a result of the collision
between the Asian and Indian plates. The mixing of these sources indicates the timing of
the closure of the intervening ocean and the final India–Asia collision [8].

The zircon ages of the rocks of the KB are mainly clustered around ~18 to ~22 Ma,
~71 to 75 Ma, and ~103 to 110 Ma (Figure 6) [52]. The KLA age spectrum shows the
major age range between ~40 and ~80 Ma [25]. Another population of the zircon ages
are clustered between ~90 and ~110 Ma. The Indian craton sources yield zircon ages
including the Archean and Proterozoic [53]. Metamorphic and sedimentary rocks are the
major components of the Lesser Himalayan sequence (LHS), which has zircon isotopic ages
between ~1700 and ~1900 Ma with a peak age at ~1880 Ma. In addition to this, a minor age
group of the LHS existed between ~2500 and ~2600 Ma (Figure 6). The LHS sequence is
deposited along the northern Indian margin and represents the southernmost source of the
Paleo-Indian margin [54]. The age clusters of 700 to 1200 Ma, 1600 to 2000 Ma, and 2400
to 2600 Ma were common in the Precambrian sedimentary sequence exposed along the
northern margin [55]. The HH was initially positioned with the LH and TH [51] or accreted
later to the northern Indian margin during Gondwana orogenesis during the Cambrian-
Early Ordovician [56]. Furthermore, the Higher Himalayan sequence (HHS) has zircon
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ages ranging between ~900 and ~1100 Ma with minor age groups at ~500–650, ~1500–1800,
and ~2400–2600 Ma. Similarly, the Tethyan Himalayan Sequence (THS) mainly comprises
ages at ~480–570, ~700–1200, and ~2400–2700 Ma (Figure 6). The younger igneous rocks in
the THS consisted of ages ranging between ~110 and ~140 Ma. Therefore, the pre-collision
sequences received detritus mainly from the Indian provenance, including LHS, HHS,
and THS. The first record of mixed provenance from the northern sources (Asian Source)
indicates the onset of collision between India and Asia between 50 and 48 Ma.
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source terranes. Values between 0 and 1 reflect a no-to-perfect relationship. The green to red color
variation reflect perfect to no relationship.

5.2. Provenance of the Cenozoic Sequence
5.2.1. Dunghan Formation

The samples FM-6 and FM-7 from the Paleocene Dunghan Formation show detri-
tal zircon ages between ~453 and ~1100 Ma, which strongly matches with the TH ages
(Figure 6A). The second group of ages exists between ~1600 and ~2600 Ma, which matches
mutually with the TH, LH, and HH (Figure 6A). Furthermore, the younger 104 Ma detrital
zircon ages may be derived from the TH volcanic rocks [7,57]. The contribution of these
Indian-Plate sources is supported by the quantitative analyses carried out using DZ stats
software 2.30 [58]. The values from 0 to 1 represent weak to perfect relationships, respec-
tively. Data from the Dunghan Formation show a strong relationship with TH and HH
reflected by values close to 1 (Figure 6B). All three statistical tests support this relationship.
This is also evident by the highest percentage (~78%) of detrital ages between ~400 and
1100 Ma. The relationship with the LH is comparatively weaker, as reflected by values
close to 0 (Figure 6B). The LH component typical of 1600 to 1900 Ma is also very low, which
is ~8% of the total ages. This detrital age pattern of the Dunghan Formation suggests a
mixed derivation from the TH, HH, and LH, representing Indian Provenance. The sand-
stone petrography of the samples FM-6 and FM-7 suggest the Craton Interior provenance.
This craton interior provenance supports the detrital zircon provenance. This integrated
provenance of the Dunghan Formation is part of the Indian Plate.

5.2.2. Ghazij Formation

Three samples, FM-8, FM-9, and KZ-9, represent the bottom, middle, and top levels
of the Eocene Ghazij Formation (Figures 1C and 2A). The lowermost samples yielded
a major population of Carboniferous-Permian ages (~360–272 Ma). The Permian zircon
grains could possibly be derived from the Panjal volcanics. These Panjal volcanics are
exposed in LH. The second major population (~400–603 Ma) matched strongly with the
TH. The composite pattern also yielded the major population between ~400–1100 Ma,
which is strongly matched with the TH (Figure 6A). The statistical analyses also show a
strong relationship with the TH and HH, as reflected by the values close to 1 (Figure 6B).
In contrast, the presence of a minor age group between ~1600 Ma and 2600 Ma also
suggests the contribution from LH and HH. The LH component is comparatively fair, as
reflected by ~12% of the detrital zircon ages between 1600 Ma and 2000 Ma. The important
presence of the younger detrital ages between ~67 Ma and ~110 Ma in the uppermost
sample of the Ghazij Formation suggests the provenance shift (Figures 4 and 6A). This
younger pattern indicates the contribution from KLA and KB, which are part of the Asian
plate. The ages ~110–166 Ma may derive from TH volcanic rocks, ophiolitic sources,
and KB. The provenance change from Indian to Asian sources is also reflected in the
statistical analyses by the weak relationship between Dunghan and Ghazij formations. The
sandstone petrography of the samples from the lower and middle parts suggests the craton
interior provenance, whereas the uppermost sample shows dissected arc provenance. The
integration of these results indicates that the lower to middle part of the Ghazij Formation
may receive dominant detritus from Indian sources. In contrast, the uppermost part
received detritus from both the Asian source and the Indian source. This suggests that the
provenance shift occurred during the deposition of the upper part of the Ghazij Formation.

5.3. Implications for the Timing of India–Asia Collision

The India–Asia collision is constrained by marking the provenance shift, which is
clearly reflected by the U-Pb age patterns of the detrital zircons. The Indian provenance is
dominated by the zircons with ages >500 Ma, whereas the Asian provenance is character-
ized by the zircons with ages <150 Ma [3,4,8,14,31,59]. The integrated provenance of the
Paleocene Dunghan Formation is mainly the Indian plate, which is evidenced by the pres-
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ence of >500 Ma aged detrital zircons (Figure 6), where the major contribution is from the
THS and some substantial contribution from LHS and HHS (Figure 6). This represents the
contribution of the Indian provenance during the Paleocene (Figure 7). This provenance is
also supported by the earlier study in the Kirther fold-belt located ~500 km to the southwest
of the study area. The early–middle Paleocene samples from the Kirther fold-belt yielded
similar detrital zircon age patterns dominated by >500 Ma ages [31]. Meanwhile, the lower
and middle portions of the Eocene Ghazij Formation received the detritus mainly from
the Indian plate. This provenance is reflected by the detrital zircons with ages >500 Ma.
The samples show a broadly similar spectrum as of the Dunghan Formation (Figure 4). In
contrast to the Dunghan Formation, a significant component of the Carboniferous–Permian
age (~419–272 Ma) detrital zircons appeared in the basal sample of the Ghazij Formation.
This component suggests the derivation mainly from the Permian Panjal volcanic and other
associated rocks, which are exposed in the LH. This provenance is also primarily the Indian
plate (Figure 6). However, the uppermost portion of the Ghazij Formation received the
younger-aged detrital zircons (~67–110 Ma), which strongly resembled the KLA and KB
(Figures 4 and 6). This arrival of the Asian detritus in the uppermost part of the Ghazij
Formation marks the timing of the Tethys closure and India–Asia collision. The provenance
shift in the Kirther belt is recorded in Oligocene–Pleistocene sediments, where <150 Ma
detrital zircons become more prominent [31]. The double dating of the zircon grains using
U-Pb and Fission Track (FT) dating in the earlier study provided supporting evidence
in favor of the provenance shift and exhumation of the orogen [31]. Another prominent
change in the Nd and Sr isotopic data is recorded by Roddaz et al. [60], where the εNd(0)
value becomes −10 by ~50 Ma. This negative value was attributed to the collision.

Considering this supporting evidence, our interpretation strongly relates the appear-
ance of young detrital zircons (<150 Ma) to the Asian source consisting mainly of the KLA
with a small contribution from the Karakoram block. This change in the studied sample
was recorded in the uppermost part of the Ghazij Formation. By relying on the upper
age limit of the Ghazij Formation, it is suggested that the India–Asia collision occurred
along the westernmost margin around ca. 50–48 Ma. The approximately 2400 km long
Indian northern margin collided with the Asian margin diachronously. This diachronous
collision is reflected by the previous studies extending from Pakistan in the west to the
Indo-Burma ranges in the east. The timing of the collision reported in the eastern segment
of the Himalayan mountain system in the Indo-Burma ranges is documented to be the
earliest late Eocene [61], which is based on the provenance shift recorded by the appear-
ance of Asian sediments. The studies in Tibet and Nepal, representing the central part
of the Himalayan mountain system, reported collision ages ranging between ~70 Ma to
59 Ma [4,7,9–11,34,57]. Similarly, in the western segment of the Himalayan mountain sys-
tem, the collision age reported from northern Pakistan is ~55 Ma [3,8,14,62]. Whereas, from
the westernmost margin, the collision age reported by studying the sedimentary archive
is ~50 Ma [31,60,63,64]. In the present study, our data recorded the first appearance of
the Asian detritus within the uppermost part of the Ghazij Formation, which suggests the
collision age to be ~50–48 Ma. Comparing the ages from the appearance of Asian detritus
at different locations along the belt calls on the location of first contact of the Indian and
Asian plates. The collision age is older in the central part of the Himalayas and becomes
younger in the western and eastern margins. This pattern of the collision age suggested
that the Indian plate collided with the Asian plate first in the central segment. Then, the
intervening ocean closed gradually toward the west and east.
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Figure 7. Tectonic model explaining the foreland basin evolution and collision scenario of the
Indian plate since late Cretaceous to Eocene. (A) KLA and KB (Asian plate) collision during the late
Cretaceous (70–65 Ma). At this time, the Deccan Traps erupted in the cratonic part of the Indian plate.
The Asian margin is modified after Li et al. [65] and Zhang et al. [66]. (B) The initial collision of the
Indian plate occurred in the central part to the west during the latest Cretaceous to Early Eocene
and the Tethys Ocean closed in Central segments. (C) The final Tethys ocean closure occurred in
the westernmost segment during the middle Eocene (50–48 Ma). GA-Gangdese arc, LB-Lhasa block,
KLA-Kohistan-Ladakh Arc, SFB-Sulaiman Fold Belt, CF-Chaman strike-slip fault.
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5.4. Tectonic Evolution

The India–Asia collision is measured as the first contact of continental plates after the
vanishing of the oceanic lithosphere. Current research focuses on the Cenozoic succession
of the Fort Munro Section, situated in the eastern Sulaiman fold-and-thrust belt. The
rock formations studied in the Cenozoic sequence of the Fort Munro section comprise
the Paleocene Dunghan Formation and the Eocene Ghazij Formation. The Paleocene
Dunghan Formation mainly comprises marl, shale, and limestone, which were deposited
in the marine environment [67]. The lower contact of the Dunghan Formation has been
selected as a suitable datum, as the supply of the clastic sediments stopped to the basin and
carbonate facies of the Dunghan Formation started to build. It is promising according to the
surface and local dissimilarities in facies (from shallow nummulitic shoals to deeper marls
and calc-turbidites) that it is not a consequence of a simple deepening event. Formerly,
while interpreting this partitioning, the studies have associated it with the commencement
of compressional tectonics ensued by the collision onset between the Asian and the Indian
plates [24,68–70]. The U-Pb age pattern of the Dunghan Formation is matched well with
the Himalayan source, thus reflecting the Indian provenance (Figure 7). The Eocene
Ghazij Formation overlying the Dunghan Formation mainly comprises limestone, shale,
and sandstone. The paleocurrent data reported from the Ghazij Formation suggested
the southeastward flowing direction during the late Paleocene-early Eocene, which is
northwestward during the late Cretaceous [71]. The provenance shift is recorded in the
upper part of the Eocene Ghazij Formation by the appearance of <100 Ma detrital zircons,
which is suggestive of the Asian source. This appearance marks the collision of India and
Asia along the western margin.

6. Conclusions

This study resulted in the following conclusions.

1. The integrated provenance of the Paleocene Dunghan Formation suggests that the
sediment input was mainly derived from the Indian source, as supported by the zircon
age pattern consisting of ~453–1100 Ma and ~1600–2600 Ma, which are indicative of
the TH, LH, and HH;

2. The samples of the Ghazij Formation representing the lower and middle parts con-
sisted of the detrital zircons with ages clustered at ~272–300 Ma, ~400–1100 Ma, and
~1600–2600 Ma are similar to TH, HH, and LH, which also suggest the Indian prove-
nance. However, the sample representing the uppermost part of the Ghazij Formation
received the residue from the KLA, which is reflected by <100 Ma detrital zircons.
This transition from Indian to Asian provenance occurred during the deposition of
the upper part of the Ghazij Formation;

3. Relying on the sediment mixing of Indian and Asian affinity suggests the timing of
the India–Asia collision occurred along the western margin by ca. 50–48 Ma, which is
the age of the uppermost part of the Ghazij Formation;

4. Considering the proposed collision age, it can be concluded that the western margin
of the Indian plate closed later than the northern and central segments.
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