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Abstract: We present an updated and validated seismic catalog for the northern Fennoscandian
region, focusing on postglacial faults from the Merasjärvi fault system in the southwest to the
Iešjávri fault system in the northeast. This work involved a comprehensive review of continuous
waveforms derived from open datasets from 2007 to 2015 and processed using the Regressive
ESTimator algorithm. The primary objective was to refine the delineation of seismicity along the
above-mentioned postglacial faults and highlight their seismic potential. Our analysis revealed
distinct waveform patterns originating primarily from two main sources: approximately 15% were
associated with areas mapped as postglacial faults, and the remainder of the events outside these
areas, 89%, were concentrated in areas with active mines. Compared to previously reported events in
the Fennoscandian Earthquake Catalogue (FENCAT), we observed a 22% increase in seismic activity
within postglacial fault zones. These results demonstrate that the Regressive ESTimator algorithm
not only improves the detection of tectonic seismicity but also effectively identifies seismic signals
resulting from mining activities in the study area. The Merasjärvi, Lainio–Suijavaara, Palojärvi, and
Maze and Iešjávri fault systems appear to form a continuous deformation complex of approximately
300 km long, which we propose naming the Merasjärvi–Stuoragurra fault complex.

Keywords: postglacial faults; northern Fennoscandia; Stuoragurra fault; Maze and Iešjávri fault;
Palojärvi fault; Lainio–Suijavaara fault; Merasjärvi fault

1. Introduction

Isostatic adjustment is a geological faulting mechanism in which faults are caused
or reactivated by glacially induced isostatic stresses released during or after ice sheet
melting [1]. These types of faults are usually referred to as postglacial faults (PGFs) or
glacially induced faults (GIFs), depending on the reference to the general mechanism or
the reactivated structures [1]. The PGFs have been observed in several locations around
the world, such as the Fennoscandian Shield [2–11], Denmark [12–14], Germany [15,16],
Poland [17,18], Canada [19,20], and Alaska [21,22]. They are predominantly located in
intraplate zones, although some have been observed at plate boundaries [1].
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PGFs in Fennoscandia have been accompanied by large earthquakes with moment
magnitudes ranging from 6 to 8, scarp heights of a few meters, and fault lengths of over
a hundred kilometers [4,6,23,24]. These earthquakes generate landslides and/or soft-
sediment deformation structures (SSDSs) [1]. Most of these structures remain seismically
active [24].

One of the main concerns of the seismological community regarding the PGFs in
the area is the lack of regional geophysical studies and imaging, which makes it difficult
to demonstrate any kind of subsurface geological connection. Nordic countries such as
Norway, Finland, and Sweden are very interested in gaining a new understanding of the
complexity behind the PGFs. In this sense, many techniques have been used recently to
discover new faults or to improve the existing knowledge (LiDAR [25]; landslide dating [26];
fault dating [24,27]).

The present study aimed to improve the current understanding of PGFs in northern
Fennoscandia, focusing on the Merasjärvi, Lanio–Suijavaara, Palojärvi, and Maze and
Iešjávri fault systems. This was achieved by reprocessing open-access seismological records
from stations installed in the region, in order to increase the detection rate of earthquake
events and generate an updated seismic catalog. With this revised catalog, we provide a
clearer perspective on the seismicity distribution in the area, and a better understanding of
how it is influenced by the fault systems. Additionally, the reprocessing of seismological
data in this study helped to identify seismicity associated with human activities, such as
oil and gas extraction and mining operations [28,29]. In particular, mining is an important
activity in northern Fennoscandia [30], so this study aimed to improve the description of
earthquakes associated with different mining sources located in the area. This distinction
could help to improve the earthquake coverage for future tomographic studies.

2. Geotectonic and Seismological Framework
2.1. Northern Fennoscandia Geotectonics

During the last stages of the Weichselian glaciation (~15,000–9000 years B.P.), the
reduction in ice loads induced a rapid uplift in Fennoscandia. This resulted most likely
in active faulting of the bedrock in northern Fennoscandia, with the occurrence of large-
magnitude earthquakes [2,23,24,31–34]. The faults that arose through this process were
originally called PGFs or GIFs, even though radiocarbon dates indicate that some of them
were formed during and before glaciation and other scarps long after deglaciation.

Many factors are currently contributing to the stress field in northern Fennoscandia,
which may be additionally responsible for the faulting development. Multiple investiga-
tions suggest that the lithosphere in northern Fennoscandia is building up elastic strain over
long periods of time. Some of the main commonly accepted stress-generating mechanisms
are (i) gravitational potential energy changes produced due to topographic loads, (ii) post-
glacial isostatic adjustments, which seem to have a larger role in northern Fennoscandia
than in the southern part, (iii) mid-Atlantic ridge push, (iv) Quaternary glacial erosion, and
(v) flexural stresses through sedimentation. Among these tectonic stress sources, the ridge
push from the NE Atlantic spreading, whose velocity at the Knipovich segment has varied
significantly during the last 12 Ma [35], arises as one of the main mechanisms. Gradual
and transient stress perturbations such as erosion, fluid migration, and anthropogenic
effects can also trigger faulting, contributing to the seismicity rates [36–39]. Most of the
observed faults are reverse and low-angle thrusts dipping to the southeast, indicating
compressional forces related to tectonic wrenching [40]. In situ stress measurements show
that the maximum principal stress is compressional and essentially horizontal [40].

From the geological context, it is possible to infer that some of the PGFs in northern
Fennoscandia are related to the reactivation of pre-existing zones of weakness through
as-yet-unknown mechanisms, even though GIA (glacial isostatic adjustment) is triggering
local reactivations [1]. Therefore, at present, we cannot know with certainty which faults
and fault segments were reactivated at which time and due to which mechanism.
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PGFs with very clear surface expressions can be found in at least 14 localities around
Fennoscandia (red lines in Figure 1), including northern Finland, Sweden, and
Norway [41–43]. These faults are the only confirmed and well-characterized at the km scale
in the world [4,42,44], ranging between 2 and 160 km long with vertical displacements
of up to 30 m [41]. The largest are the Pärvie (Sweden) and the Stuoragurra (Norway)
faults [4]. Additionally, a set of shorter GIFs—but still seismically active—can be found
spread in the region between latitudes 64◦ and 70◦ N, as Palojärvi (Finland) [45,46], Lainio–
Suijavaara (Sweden) [7,42,47], and Merasjärvi (Sweden) [7,9,42,47]. They generally strike
SW-NE, and they are commonly interpreted as thrust faults. Our study was focused on
four postglacial fault systems: the Maze and Iešjávri, the Palojärvi, the Lainio–Suijavaara,
and the Merasjärvi.
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Figure 1. Main postglacial faults in Fennoscandia, outlined with red color. The study area has
been demarcated with a dashed blue box. In red, the main PGFs: SFC: Stuoragurra fault complex;
PFS: Palojärvi fault system; LSFS: Lainio–Suijavaara fault system; MFS: Merasjärvi fault system.

2.1.1. Maze and Iešjávri Fault System (MIFS)

The Maze and Iešjávri fault system, with a total length of c. 90 km, constitutes the
Norwegian part of the Lapland province of postglacial faults in northern Fennoscandia [24].
Ref. [24] interpreted three fault systems in the fault complex, while [48] recently acquired
more data and concluded that the two southernmost systems can be merged into one
system. The fault systems have generally been referred to as the Stuoragurra fault complex
(SFC) [24,48]. The distance between the Máze fault system to the southwest and the Iešjávri
fault system to the northeast is 12 km. The faults dip at angles of 30–75◦ to the SE and could
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be traced in reflection seismic data to a depth of c. 500 m [24]. The faults were originally
assumed to be formed during or immediately after deglaciation [36]. Trenching across the
fault rupture at nine sites along the fault complex reveals deformed sediments in all sites,
and there are inclusions of peat and organic-bearing soil in the deformed and partly overrun
loose deposits on the footwall in eight of the sites [24,27,48]. Radiocarbon dating of organic
matter located in buried and severely deformed sediment horizons indicates late Holocene
ages for the (final) formation of the different fault segments, suggesting that the Máze fault
system was formed during an earthquake less than 500 years ago [48], and the Iešjávri fault
system was formed less than 4000 years BP [24,48]. According to these dates, some of the
faulting occurred around 10,000 years after deglaciation, and they were not an immediate
result of the deglaciation rebound. The maximum displacement of the Maze and Iešjávri
fault systems are 10 and 4 m, respectively, while the maximum scarp heights are 7 and 3 m
for the two systems [4,24]. The lengths of the two systems are 42 and 36 km, respectively,
and the magnitudes for the two earthquakes are estimated to be around of 6.8 and 6.9. No
strike–slip displacement has so far been observed along the fault. Its shallow segment was
previously studied through core drilling and geophysical profiling [4,24]. Earthquakes
related to the two fault systems follow a linear spatial distribution along a c. 30 km wide
cluster parallel to the fault and below the hanging wall block [23,24,36] with errors less than
30 km in location for small and medium-sized events. The axis of the cluster is displaced
approximately 30 km to the southwest of the surface expression of the fault, which seems to
be consistent with the fault dip (~40–50◦) and the mean depth of the earthquakes (~19 km).

2.1.2. Palojärvi Fault System (PFS)

Three main reverse structures comprise the PFS. The first trace corresponds to the
main structure, called the Palojärvi fault. This trace is 6 km long, trending NNE-SSW, and
with a vertical displacement of around 6.8 m indicated by the fault scarp from the offset.
The fault is separated into several secondary parallel structures, which can be observed
in the hanging wall block [45]. Considering the vertical offset, the earthquake that gave
rise to this fault had an estimated moment magnitude Mw ~7.0. This fault presents strong
signs of fracture reactivation, as oxidized iron minerals have been observed [45].

The second structure, the Paatsikkajoki fault, is 6 km long and oriented to the W-E,
bending towards the NE at the east of the structure. The fault scarp is 1.7–2 m high, which
translates into an estimated maximum magnitude of Mw ~6.7 [49]. A second 2 km long
segment with a displacement between 0.3 and 1.5 m in height is located 1 km south of the
main structure. According to the offset, the formation magnitude was Mw~ 6.5 [45]. This
structure seems to have been formed in subaerial conditions, after deglaciation.

The last segment, called the Kultima fault, differs from the others as it trends SE-NW.
Its scarp is 30 m at its highest point, which reflects a moment magnitude Mw > 7.0. This
fault might have been formed by the late glacial isostatic rebound.

2.1.3. Lainio–Suijavaara Fault System (LSFS)

The Lainio–Suijavaara fault is a continuous fault of about 50 km long, accompanied
by three shorter fault scarps, each about 2–3 km long, centrally located in front of the main
fault. The average scarp heights is between 10 and 20 m. Two-thirds of the fault from the
north strikes NNE-SSW, while the southernmost section strikes SSE. The northern part
of the fault was formed prior to deglaciation. Some other segments show evidence of
postglacial faulting, according to the presence of geological structures that cross-cut the
main fault [42,50]. The moment magnitude of the main formation event was estimated
at Mw ~7.1 [14]. Ample groundwater discharge at the fault scarps indicates considerably
fractured bedrock in the fault.

2.1.4. Merasjärvi (MFS)

The Merasjärvi fault, located in northern Sweden 25 km south of the LSFS, strikes
NNE-SSW and has an approximate length of 8 km. Its scarp maximum height is 15 m,
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located in the southern part of the fault [42]. This fault probably originated in two rupture
events, although the timing of these ruptures is still not well-understood [50,51]. However,
it is known that both ruptures are younger than the Middle Weichselian, as fault scarps
indicate that faulting occurred at the end of or after the last deglaciation in the area.

The tectonic connection through regional structures between PGFs is still unknown,
as the trace extension of the faults in depth has not been monitored. However, the similar
spatial locations and strikes of the PGFs suggest a regional tectonic link between them,
even though each individual fault has well-distributed local seismicity (Figure 2). Recent
progress in airborne LiDAR (Laser Imaging Detection and Ranging) detection allows
the discovery of new potential PGFs, making it possible to better interpret the available
seismicity data and structural models. As an example, seismicity maps reveal current
deformation between the SFC and the airborne detected PFS in Finland (Figure 1) [45].
The latter is consistent with fault plane solutions, which reveal a strike–slip event between
PGFs [23].
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Figure 2. Map of the study area for the period of 2007–2015. Blue lines represent major postglacial
faults. Triangles represent the seismic stations used in this study. Stations are color-coded according
to the network to which they belong. Shovel cross symbols represent active mines in the study area.
Dots represent earthquakes: yellow dots are seismicity reported by FENCAT, and gray dots represent
mining events (explosion, induced or triggered events) from NNSN and ISUH bulletins. The black
dotted line represents a profile (P0) along the main traces of the PGFs.

2.2. Seismicity in Fennoscandia

The tectonic seismicity in Fennoscandia has been compiled in the Fennoscandian
earthquake catalog (FENCAT) by the Institute of Seismology of the University of Helsinki
(ISUH) [52]. This seismicity is characterized by low to moderate magnitudes (Mw ≤ 4.0)
and strictly intraplate activity, both onshore and offshore on the passive continental
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shelf [4,44]. On the other hand, anthropogenic seismic activity in Fennoscandia represents
most of the seismic signals from monitoring centers in the region, such as the Norwegian
National Seismic Network (NNSN), ISUH, and Svenska Nationella Seismiska Nätet (SNSN).
In the NNSN catalog [53], anthropogenic seismicity (classified by NNSN as explosions,
induced or triggered events) represents ~80% of the total. In the case of ISUH, seismicity
associated with explosions presented in the latest monthly bulletins from 2009 to 2016 [54]
represents ~97% of the records. And in the case of SNSN, [55] described that the recorded
events are mainly correlated with anthropogenic seismic activity, whose distribution is
dominated by the two underground iron mines in northern Sweden.

Northern Fennoscandia

To form one of the PGFs in northern Fennoscandia during a single seismic event [14]
would require an earthquake of Mw = 6.0–7.5 [2,4,24,56]. This contrasts with the present-
day intraplate pattern, which is characteristic of a stable continental region, even though
such a tectonic setting seems to be necessary for the formation of a glacial fault [57,58].
The earthquake epicenter locations (Figure 1) are correlated with the mapped locations
of PGFs [58]. Many earthquakes are distributed in clusters southeast of the fault scarps,
in relation to their dip direction [58,59], and with depths varying approximately between
2 and 30 km depth. This distribution of events suggests that PGFs represent relevant
tectonic structures at a crustal scale, which are currently seismically active [27,60]. The
cause of these increased present-day seismicity levels related to PGFs is still unknown. One
hypothesis mentions the static stress change induced by the earthquakes that caused the
faults, which would suggest very long lithospheric relaxation times and a very low tectonic
stress rate [1]. Other possibilities are the remnants of GIA stresses or tectonic stress [61].
As it is, the accumulated stress is episodically released through high-magnitude—e.g.,
historical earthquakes—or smaller events, which leads to stress stabilization. However,
all the above-mentioned stress mechanisms are consecutively building up a new stress
field. It is not known when this stress will be drastically released through a high- or
medium-magnitude event.

3. Data and Methods
3.1. The Study Area

The study area was selected with the primary objective of improving the official
catalog of these faults and surrounding areas by reprocessing seismological records of the
past decade.

To delineate our study area and the time period in which the catalog would be im-
proved, we used as criteria the coverage and distribution of active seismological sta-
tions with open records around the faults. In addition, we considered active mines
that azimuthally cover the faults and generate seismic activity associated with their
production processes:

• Seismological stations: Using the map from the Seismological Facility for the Advance-
ment of Geoscience [62], we searched for all networks installed in the vicinity of the
faults and their recording period. Five permanent networks were found: FN [63],
HE [64], NO [65], NS [66], and UP [67]. Through the open data centers (GEOFON,
IRIS, ORFEUS, RESIF, and UIB-NORSAR), we checked the stations with open and
downloadable seismological records. Then, we searched for temporary networks that
would support the coverage of the faults and found two temporary networks: XK [68]
and 1G [69].

Based on the increased availability of recording stations, the study period was selected
as from 2007 to 2015, a timeframe during which both temporary networks were operational.

• Active mines: The history of mining activity in Fennoscandia began more than
2000 years ago. It has been increasing since the end of the Second World War [30].
Currently, more than 100 mines are active in Norway, Finland, and Sweden [30]. In
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northern Fennoscandia, large mines are located near the PGFs [70], such as the Lille-
bukt, Gamasnes, and Bjørnefjell mines in Norway, the Kevitsa and Suurikuusikko (or
Kittilä) mines in Finland, and the Kiruna and Malmberget mines in Sweden.

3.2. Official Seismic Catalog

The study area presents natural earthquakes and mining activity (explosions, induced
or triggered events), which is shown with gray and yellow dots in Figure 2 (data obtained
from the FENCAT catalog [52], NNSN catalog [53], and ISUH bulletins [54]). Given our
focus on tectonic earthquakes associated with PGFs, we used the FENCAT catalog as a
baseline, which we further refined and expanded in this study (see Supplements S1 and S2).

The natural earthquakes in the official catalogs are low-magnitude and cortical, most
of them near faults extending from the SFC to the MFS, and located up to 30 km deep
(yellow dots in Figure 3). Mining earthquakes are shallow, most of them located at the
near-surface (gray dots in Figure 3).
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events, respectively.

3.3. Preprocessing of Historical Seismic Data

The obtained dataset comes from a total of 46 stations (triangles in Figure 2), covering
the period between the years 2007 and 2015. All the waveforms used in this study were
downloaded in mseed format from different open data centers (GEOFON, IRIS, ORFEUS,
RESIF, and UIB-NORSAR).

The coverage of seismological stations in the study area varies over time due to the
installation of new stations in permanent networks (FN, HE, NO, NS, and UP) over the
years and the existence of temporary networks (XK and 1G) (Table 1). The temporary
network XK covered the southwestern zone of the network between the end of 2007 and
2009, and the network G1 covered the northeastern to southwestern zone of the faults
between the end of 2012 and 2015. For the rest of the time, only permanent stations with a
non-homogeneous distribution were available. Station coordinates and recording times of
all considered networks can be found in Supplement S3.

The downloaded datasets were merged and transformed into SAC format using the
ObsPy Python library [71]. This served as the input file for the autopicking program,
discarding corrupted or non-readable data.
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Table 1. Number of seismic stations per network with available open data downloaded in the study
area, categorized by permanent and temporary stations, covering the period from 2007 to 2015.

2007 2008 2009 2010 2011 2012 2013 2014 2015

Permanent Networks

FN 1 1 1 1 1 1 1 1 1

HE 4 4 4 4 4 4 4 4 4

NO 1 1 1 1 1 1 1 1 2 2

NS 2 2 2 2 3 3 3 3 3

UP 1 1 1 1 1 1 1 1 1

Sub-Total 9 9 9 9 10 10 10 11 11

Temporary Networks

XK 19 19 19 0 0 0 0 0 0

1G 0 0 0 0 0 5 13 13 13

Sub-Total 19 19 19 0 0 5 13 13 13

Total of Stations 28 28 28 9 10 15 23 24 24
1 NORSAR Station Network (NO) contains a 3 km aperture array of 26 stations. Due to the size of the study area,
we only used 1 station: ARA0.

3.4. Making a New Earthquake Catalog
3.4.1. Automatic Earthquake Detection Code

Several types of automatic earthquake detection programs have been developed in
academia and industry, designed to facilitate the processing of seismic records to identify
and locate seismic events. Examples include STA/LTA (Short-Term Average/Long-Term
Average) [72,73], waveform correlation [74], machine-learning-based methods [75,76], and
autoregressive approaches [77], among others. These types of programs have been widely
used for seismic monitoring, allowing us to update and/or generate new seismic catalogs.

To create the improved PGF earthquake catalog (hereafter referred as the “new cata-
log”), we generated a pre-catalog of potential seismic events by analyzing the downloaded
and preprocessed seismic records using the Regressive ESTimator (REST) algorithm de-
scribed in [78]. REST is a body wave arrival time autopicking program that uses autore-
gressive approaches to generate seismic event catalogs from existing seismic recordings,
allowing a rapid analysis of large datasets. REST has been applied in various studies to
create new catalogs and improve existing ones [79,80], including contexts such as cortical
active faults [79], subduction zones [78,81–83], and mining exploration [84,85]. The REST
process starts by analyzing the vertical -Z- components of the seismic traces for all available
stations, performing automatic phase detection, and generating an onset file of potential
P-wave picks. In the second step, the algorithm clusters these detections in time to generate
a list of possible events using criteria based on station coverage and detection intervals.
Finally, REST uses an iterative process based on [86,87] followed by data windowing
procedures [88] to locate and filter the list of possible events: In the first step, events with
P-wave arrival times are located. Once located, the predicted P-wave arrival times are
calculated for all stations, and the P-wave onset estimates are redone using windows based
on the predicted P-wave arrival times. This process is iterative. When a reasonable location
is found, the second step is repeated, including the estimation of the S-wave arrival. In
this way, a P- and S-wave onset plus event relocation is performed. If the location is again
reasonable, the last step is repeated with more exhaustive criteria to define whether the
onset corresponds to a cataloged event. The output file obtained with REST is a catalog of
possible P- and S-wave arrival times associated with a seismic event, along with its location
and time of origin. The program does not classify earthquake types or the source of origin.
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3.4.2. Calibration of REST Parameters

Before running the REST algorithm on the entire dataset, we performed a calibration
process to adjust the parameters of the algorithm to the specific seismic characteristics of
the study area. This involved cutting time windows from SAC files for earthquakes listed
in the FENCAT catalog and running REST on these windows several times. By analyzing
the detection performance and adjusting the parameters accordingly, we optimized the
algorithm’s ability to distinguish seismic signals in this region.

The final calibration shows that the results are improved if the phase detection process
is performed twice with two different filter ranges and the final result is merged into a
single P-wave onset. In this case, a Bessel filter with a high-pass of 3 Hz and a low-pass at
the Nyquist frequency was first applied, followed by a high-pass of 2 Hz and a low-pass
of 4 Hz. Then, detections were clustered within 30 s for low station coverage and 10 s
for high coverage, requiring at least 4 detections to mark a candidate event. For iterative
relocation, we used the 1D velocity model presented in [89], and the process involved
three steps: initial P-wave location, refined onset estimation using predicted windows, and
incorporation of S-waves for final relocation.

The final criteria for a signal to be considered as a potential event for the pre-catalog
were a minimum of 4 phases (3 P-waves and 1 S-wave) with less than a 1.2 s absolute travel
time residual and a 5% relative travel time residual, and a maximum standard deviation of
1.5 s for all residuals, producing a pre-catalog with 25,046 potential seismic events.

3.4.3. Checking the Pre-Catalog

To verify the results of the pre-catalog of potential events centered on the PGF, we
separated earthquakes associated with PGF zones from other seismic events in the study
area by location:

1 Earthquakes associated with PGF zones: The earthquakes located in the zones associ-
ated with the PGFs were filtered by location and manually checked to improve the
precision of the P-wave and S-wave arrival times. It is worth mentioning that this
manual review was performed using the Bessel filter for better visualization, using
bandwidths between 9 Hz and 4 Hz for a first revision of the events. Then, in necessary
cases, bandwidths between 23 Hz and 3 Hz and between 4 Hz and 2 Hz were used to
improve the P- and S-wave picks, respectively;

2 Events outside the PGF zones: Events outside the PGF zones were subjected to a more
stringent filtering process to ensure data quality and accuracy. The filtering criteria
were dynamically adjusted based on the number of seismic stations available at the
time of each event and the minimum number of P- and S-wave phases required to be
considered as a seismic event. These criteria are shown in Table 2.

Table 2. Minimum P-wave and S-wave phase criteria required for earthquake inclusion in the new
catalog for events outside the PGF zone, based on the number of stations available at the time of
the event.

N◦ of Stations Available N◦ of P-Waves N◦ of S-Waves

Up to 6 3 2

6–10 4 3

11–15 5 4

16–20 6 5

More than 20 7 6

3.4.4. Determining the Improved New Catalog

After a thorough filtering and manual review process, the pre-catalog obtained by
REST was refined from 25,046 to 2179 events, achieving a reduction of approximately 92%.
The locations of the remaining events were recalculated and the established criteria for
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event validation were reapplied. The new catalog is composed of 2179 events, with a total
of approximately 24,000 P-wave arrivals and 20,000 S-wave arrivals (see Supplement S4).

4. Results and Discussion

The final catalog of seismic events was classified into two distinct groups based on
epicentral locations: events potentially related to the PGFs (indicated by yellow dots in
Figure 4) and other seismic events (gray dots in Figure 4). This classification allows a clearer
analysis of the seismic activity in the study area by distinguishing between tectonic and
non-tectonic events, such as those induced by mining.
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Figure 4. Map of the new earthquake catalog. Yellow dots represent earthquakes that may be
associated with the PGFs present in the study area. Gray dots represent events outside the PGF zone
picked by REST, and red dots represent FENCAT events that were not identified by REST. Black lines
indicate the location of vertical profiles: P0 along the main strike of the fault systems, and P1 to P4
perpendicular to each fault system shown in Figure 5. In blue are the PGFs: SFC: Stuoragurra fault
complex; PFS: Palojärvi fault system; LSFS: Lainio–Suijavaara fault system; MFS: Merasjärvi fault
system. Triangles represent seismic stations. Shovel cross symbols represent active mines in the study
area. Gray dotted line boxes represent the filter area for each mine.
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4.1. Comparative Analysis of the New Catalog and FENCAT

A comparative analysis between the new catalog and the FENCAT catalog revealed
important differences in the detection of seismic events. In the new catalog, a total of 336
earthquakes are located within the PGF zones, while 1843 events occur outside these zones.

When focusing the comparison on PGFs’ seismicity, one of the major improvements
in the new catalog is the identification of 63 additional events within the PGF zones that
were not captured in the FENCAT catalog, representing a 22% increase in detected relevant
seismicity. However, 25 events listed in FENCAT were not captured in the new catalog by
the autopicking process. This discrepancy highlights the potential limitations of automated
detection methods, which may miss certain low-magnitude or complex events that require
manual verification.

The temporal distribution of the events (Table 3) shows that of the 65 newly identified
events, 78% occurred between 2007 and 2011, after which there is a decrease in the number
of detected events. This decrease coincides with the installation of the HAMF station (part
of the NS network) in 2011, located in the northern region of the PGF zone, a previously
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poorly monitored area. The new station has likely improved detection capabilities in
this region.

Table 3. Number of new events to be added in the new catalog compared to the FENCAT catalog
per year.

Year N◦ of New Events %

2007 10 16%

2008 19 30%

2009 7 11%

2010 5 8%

2011 8 13%

2012 3 5%

2013 5 8%

2014 4 6%

2015 2 3%

TOTAL 63 100%

Analysis of the spatial distribution of the newly detected events (Table 4) shows that
49 are located in the Stuoragurra fault complex (SFC) zone, 4 in the Pärvie fault system
(PFS), 3 in the Lainio–Suijavaara fault system (LSFS), and 7 in the Merasjärvi fault system
(MFS). Especially in the vicinity of the MFS zone, many of the shallow events are likely
to be related to mining activity. Consequently, 14 of the 65 newly identified earthquakes
are classified as potential explosions or induced events, with all new events in the MFS
classified as mining-related.

Table 4. Number of new events to be added in the new catalog compared to the FENCAT catalog
per PGFs.

PGFs N◦ of New Events %

SFC 49 78%

PFS 4 6%

LSFS 3 5%

MFS 7 11%

Of the total number of events outside the PGF zones, 1633 (approximately 89%) are
clustered within identified mining zones. Based on their locations and frequency, this
seismicity is likely related to mining activities, including explosive, induced, or triggered
events. However, due to the presence of other postglacial faults in the area, such as
the Pärvie and Suasselkä faults, which are close to active mines, the final classification
as either tectonic or man-made must be made manually based on the characteristics of
each earthquake. The new catalog fails to detect 259 earthquakes listed in FENCAT (red
dots in Figure 4) outside the PGF zones, with most of these events concentrated in the
southwestern part of the study area. This discrepancy is largely due to the sparse cover-
age of seismological stations with open data in this region throughout the study period.
The detection gap underscores the critical role that a consistent monitoring network den-
sity plays in ensuring accurate seismic detection and event classification. A comparison
between the number of events detected by REST outside the PGF zones and those not
included in the FENCAT catalog was not made because FENCAT is filtered exclusively for
tectonic earthquakes.
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4.2. Seismicity from the Stuoragurra Fault Complex to the Merasjärvi Fault System

To better understand the spatial distribution of earthquakes from the SFC to the MFS,
hypocenters were plotted in a map view and using 40 km depth vertical profiles, as shown
in Figures 4 and 5, respectively.

As shown in Figure 4, the seismic events are spatially continuous from the SFC to the
MFS. This is consistent with [42,45], which suggest the possibility of a deeper connection
between the various SW-NE striking, thrusting PGF faults described in the area. However,
a geophysical imaging study needs to be conducted to confirm this assertion. For now,
we can only make this assumption based on the spatial locations of the earthquakes. In
addition, Figure 5a shows the events’ depth distribution. As expected, earthquakes are
distributed in the first 25 km of the crust. However, some events are deeper, reaching
depths corresponding to the regional Moho discontinuity. These events must be carefully
reviewed; an explanation for them is beyond the results produced in this study.

When observing the vertical seismicity distribution for each profile (Figure 5b–e), it
is possible to note that the area around the SFC and PFS shows higher seismicity rates
than those associated with the LSFS and MFS. In this regard, there are no seismic events
associated with the MFS in the new catalog.

During the manual review of earthquakes associated with the PGFs, it was observed
that the waveforms of these earthquakes had similar shapes that corresponded to the
specific fault system from which they originated, as detected by the network of available
seismological stations. This similarity in waveform shapes suggests a distinct pattern
associated with each fault system. Figure 6 shows representative examples of waveforms
from each of the fault systems studied, providing a visual illustration of the consistent
characteristics observed across different fault zones.
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Figure 6. Examples of earthquake waveforms for each PGF. From left to right, SFC: Stuoragurra fault
complex; PFS: Palojärvi fault system; LSFS: Lainio–Suijavaara fault system; MFS: Merasjärvi fault
system. Figure shows the vertical component waveforms recorded at each station.
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4.3. Seismicity of Mining Activity

Mining activities can generate a variety of seismic signals, both intentional and
unintentional, due to the mechanical and explosive processes involved [90,91]. This
type of seismicity accounts for a significant portion of the seismic signals recorded in
Norway, Finland, and Sweden, largely exceeding tectonic events in both frequency and
magnitude [53–55]. The seismic waveforms generated by mining activities typically have
distinct characteristics that allow them to be distinguished from tectonic events. In our
manual review process, we observed that the waveforms from mining events exhibited
consistent patterns across different mining zones, regardless of the source location. Figure 7
shows a representative waveform example from each mining zone to illustrate the similari-
ties in signal patterns that led to these reclassifications. This consistency was a key criterion
for identifying and reclassifying several events as mining-related in our revised catalog.
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5. Conclusions

This study highlights the importance of continuously updating and refining seismic
catalogs, especially in regions of low tectonic seismicity such as northern Fennoscandia.
The use of automated selection software such as REST, combined with rigorous manual
verification, can significantly improve seismic datasets. This approach is particularly
relevant in areas where traditional, purely human detection tends to miss a significant
number of low-magnitude events.

The initial automated pre-catalog identified 25,046 potential seismic events. After ex-
tensive filtering and verification, 2179 of these events were considered eligible for inclusion
in the new catalog, representing a 92% reduction. This significant reduction demonstrates
the effectiveness of the process in removing noise, false positives, and irrelevant signals,
thereby improving the reliability and accuracy of the seismic dataset. At the same time, this
reduction can be translated into a software shortcoming, as its output needs to be carefully
checked to catalog an earthquake.

One of the most significant improvements in the new catalog is the enhancement and
improved identification of earthquakes within the postglacial fault (PGF) zones. The new
catalog identifies 336 events within these zones compared to 285 in the FENCAT catalog,
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representing a 26% increase. This increase is critical for studying intraplate seismicity and
advancing the understanding of the tectonic activity associated with the PGFs. In contrast,
outside the PGF zones, the new catalog records 1,843 events, of which approximately 89%
are associated with known mining areas.

Compared to FENCAT, the new catalog shows a more precise differentiation between
tectonic and mining events. FENCAT lists 407 events outside the PGF zones, of which
only 28% are related to mining activities, highlighting the improved classification achieved
in this study. However, the new catalog does not include 25 PGF-associated events and
259 events outside the PGF zones listed in FENCAT. These omissions are largely due to
low-magnitude events with noisy signals, the sparse coverage of seismological stations in
certain areas, and the challenge of tuning detection algorithms for a region characterized
by diverse signal types, most of which are man-made.

Spatial analysis of the seismicity reveals a continuous cluster of earthquakes along the
Merasjärvi, Lainio–Suijavaara, Palojärvi, and Maze and Iešjávri fault systems, extending to
depths of up to 30 km. In particular, most events deeper than 5 km are concentrated between
the Stuoragurra fault complex (SFC) and the Palojärvi fault system, while seismicity in the
southern regions (LSFS and MFS) is predominantly shallow (~0 km depth). This spatial dis-
tribution suggests that these fault systems may be part of a larger, 300 km long deformation
complex, which we propose naming the Merasjärvi–Stuoragurra fault complex.

Despite the advances in automated detection methods, distinguishing between tectonic
and mining events remains a significant challenge due to the dominance of low-magnitude
seismicity. In the Norwegian context, where natural tectonic activity is sparse and low-
magnitude, mining signals can easily be misinterpreted as natural events. This challenge is
exacerbated by the proximity of mining areas to fault zones, where tectonic and induced
events may spatially overlap. Manual review remains necessary in many of these cases.
The revised catalog addresses these ambiguities through detailed waveform analysis and
event relocation. Key indicators such as P- and S-wave arrival patterns, frequency content,
and event duration were instrumental in distinguishing the impulsive, high-frequency
nature of mining explosions from the more complex waveforms of tectonic earthquakes.

It is proposed as future work that the catalog should be completed, including pro-
cessing more years in the dataset, and that the catalog data should be used to obtain a
3D velocity model through local earthquake tomography. Our main goal will be to image
the fault zone in order to unravel the seismic processes in the fault, which could help to
estimate possible large earthquakes in the future. This work may facilitate the construc-
tion of a more complete structural analysis of the area. It is also proposed that a seismic
monitoring network should be installed, focused on the study of PGFs.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/geosciences14110293/s1, S1: FENCAT catalog of study area; S2:
Bulletin report of NNSN and ISUH catalog of study area; S3: Station list; S4: New catalog.
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