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Abstract

:

Volcanic hazard assessment is generally based on past eruptive behavior, assuming that previous activity is representative of future activity. Hazard assessment can be supported by Artificial Intelligence (AI) techniques, such as machine learning, which are used for data exploration to identify features of interest in the data. Here, we applied a machine learning technique to automate the analysis of these datasets, handling intricate patterns that are not easily captured by explicit commands. Using the k-means clustering algorithm, we classified effusive eruptions of Mount Etna over the past 400 years based on key parameters, including lava volume, Mean Output Rate (MOR), and eruption duration. Our analysis identified six distinct eruption clusters, each characterized by unique eruption dynamics. Furthermore, spatial analysis revealed significant sectoral variations in eruption activity across Etna’s flanks. These findings, derived through unsupervised learning, offer new insights into Etna’s eruptive behavior and contribute to the development of hazard maps that are essential for long-term spatial planning and risk mitigation.
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1. Introduction


Volcanoes are complex dynamic systems, and understanding their activity at any given time poses an ongoing challenge, particularly for frequently erupting volcanoes in densely populated areas. One such case is Mount Etna (Sicily, Italy), where lava flows present the primary hazard. Although less frequent than explosive events, lava flows can have significant socio-economic impacts, especially given the densely populated areas surrounding the volcano. Over the past century, several large flank eruptions have caused extensive damage to agricultural land and disrupted towns and villages [1,2,3]. A marked increase in both eruption frequency and lava production has been observed since 1971 [4,5,6,7], with 20 major flank eruptions occurring along two prominent fracture zones trending south and northeast. This activity highlights the persistent threat posed by Etna’s eruptive behavior over the past 40 years [6,8].



Recent advances in Artificial Intelligence (AI) have greatly enhanced our ability to monitor, analyze, and predict volcanic processes, ultimately improving risk management and the protection of communities in hazard-prone regions. Machine Learning (ML), a key subset of AI, has transformed volcanology by enabling the analysis of vast and complex datasets from a wide range of sensors. These include data on ground deformation, seismic activity, geomagnetic and electromagnetic variations, and thermal anomalies, processed with high levels of accuracy [9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26]. Furthermore, ML algorithms can automatically analyze satellite imagery and aerial photographs to detect morphological changes in volcanoes, such as the formation of new vents, the collapse of crater walls, or the development of lava flow paths [13]. These capabilities allow for the real-time processing of data streams from monitoring stations, providing early warnings of impending eruptions and enabling real-time volcanic risk assessments [9,10,11,12,13,14].



In particular, machine learning techniques have proven invaluable for handling large volcanic datasets to uncover hidden patterns and extract meaningful insights [27,28,29]. Unsupervised learning models, which do not require explicit instructions, are particularly suited for analyzing the complex, multi-dimensional data associated with volcanic activity [18,30,31,32]. These models can learn the underlying structure of the data, helping to elucidate the dynamics of historical eruptions based on geophysical and volcanological observations (e.g., ground deformation and seismic events).



At the Etna Volcano Observatory (EVO), a continuous flow of geophysical and volcanological data is used to deepen our understanding of volcanic processes and improve our ability to identify signs of volcanic unrest, forecast eruptions, and assess hazards. Here, we apply Cluster Analysis (CA), an unsupervised learning approach, to classify Etna’s flank eruptions over the past 400 years. This technique groups similar eruptions and distinguishes those with different characteristics, providing new insights into the eruptive dynamics of Mount Etna’s volcanic system.




2. Etna Flank Eruptions


Mount Etna is a basaltic stratovolcano located along the Ionian coast of eastern Sicily, Italy (Figure 1), known for its persistent activity [33,34]. This activity includes continuous degassing, intermittent Strombolian eruptions, and more violent explosive events at its summit craters [35]. Frequent flank eruptions, characterized by lava flows and often accompanied by weak explosive activity, and rarer eccentric eruptions also define its eruptive behavior [2,35,36,37,38]. While summit eruptions are relatively frequent [2,36,37,39,40,41,42], lateral eruptions occur less often, with intervals of several years between events [2,37].



Etna’s eruptive history over the past three millennia is documented in historical sources, making it a unique case globally. However, comprehensive and accurate documentation of flank eruptions begins only after the mid-17th century [2,37,43], while the catalog of summit activity becomes reliable in the late 19th century [44]. Historical analyses, such as those by Branca and Del Carlo [2], indicate that following the major 1669 eruption, a period of reduced volcanic activity ensued. This pattern shifted after 1763, with a notable increase in flank activity, peaking between 1961 and 2003, when the frequency of eruptions quadrupled compared to earlier periods [37].



Geological data suggest that summit eruptions are generally more frequent than flank eruptions [12,45]. However, flank eruptions pose a greater hazard due to the dense population surrounding Etna [11,12]. In the last 400 years, the most destructive eruption occurred in 1669 [46]. In the 20th century, the town of Mascali was almost completely destroyed by lava flows in 1928 [47], and towns such as Fornazzo, Randazzo, and Zafferana Etnea were threatened in 1971, 1981, and 1992, respectively [48,49,50,51]. More recently, the 2001 and 2002–2003 eruptions caused significant damage to tourist facilities in the summit area [52,53,54,55,56].
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Figure 1. Sketch map of Etna flank lava flows over the last 400 years from historical catalogs [2,38,57,58,59,60]. The shaded relief image was derived from the 10 m resolution TINITALY DEM [61]. 
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3. Data Analysis


This study focuses on Etna’s flank eruptions from 1610 to 2019 (Figure 1 and Table 1), drawing primarily on historical catalogs that document 60 lateral eruptions [2,38,57,58,59,60]. These catalogs provide detailed information on eruption duration, lava volumes, and the spatial distribution of past effusive events.



We analyzed the temporal distribution of these lateral eruptions over the past 400 years, focusing on their duration, lava volume, and the position of effusive vents (or fissures) to identify distinct eruptive clusters. The Mean Output Rate (MOR) was also calculated by dividing the final volume of erupted lava by the total duration of each eruption (Table 1). The use of MOR allows for better discrimination of the subclasses previously considered in studies, e.g., [62], as it characterizes eruptions independently of nominal volume or duration, shedding light on the different effusive dynamics of eruptive episodes. Relying solely on duration and volume intervals does not fully capture these effusive dynamics. This approach allowed us to classify the eruptions and better understand the varying dynamics of Etna’s flank activity over the centuries.




4. Method


A detailed classification based on lava volumes, MOR, and the duration of these effusive eruptions was performed using the k-means function in MATLAB. Volcanic features are given as input to an unsupervised learning algorithm to group similar data, where similarity is evaluated quantitatively using a distance function in the space of feature vectors. We chose the non-hierarchical k-means algorithm because it is simple and efficient. It is an iterative procedure that partitions data into a predetermined number of clusters. Firstly, inside the feature space, cluster centroids are randomly initialized, and observations are assigned to the nearest centroid according to the cosine distance. The cosine distance is one minus the cosine of the included angle between feature vectors. Secondly, cluster centroids are updated with the mean location within their cluster. These steps are repeated until an optimal convergence is reached. A cluster analysis using the k-means algorithm was applied to the normalized input data, i.e., z-score normalization is needed to scale the data and reduce variability across arrays [63].



A critical parameter in the k-means clustering algorithm is the number of clusters, k. Estimating k can be challenging as it depends on the data’s complexity and the desired resolution. Too many clusters can complicate interpretation, while too few may overlook significant patterns. When the optimal number of clusters is not known beforehand, three common techniques can help determine k: (1) the elbow method, e.g., [64,65]; (2) the gap statistic, e.g., [31,66,67]; and (3) the silhouette method, e.g., [68,69]. These methods involve performing k-means clustering for a range of k values and computing different metrics to identify the optimal k.



We used the elbow method to find the right number of clusters. The elbow method is a graphical routine for finding the optimal K value in a k-means clustering algorithm. The elbow graph shows the within-cluster sum-of-square (WCSS) values on the y-axis corresponding to the different values of k (on the x-axis). The optimal k value is the point at which the graph forms an elbow.




5. Results


Using the elbow method, the optimal number of clusters to be set is six (Figure 2). Thus, a k-means clustering defining k = 6 is applied to the entire dataset. The centroids (duration, volume, MOR) of the randomly initialized clusters can be seen in Table 2. By combining these considerations on the distributions of the durations, volumes, and MOR, six eruptive classes can be defined (see also Table 2 and Table 3; Figure 3):




	
Cluster 1 is characterized by eruptions of short duration, low lava volume, and high MOR (Table 2 and Table 3; Figure 3a,b).



	
Cluster 2 is characterized by a very low MOR, high duration, and low lava volume (Table 2 and Table 3; Figure 3a).



	
Cluster 3 is characterized by low volume and low duration but medium to high MOR (Table 2 and Table 3; Figure 3a,b).



	
Cluster 4 is characterized by a high volume, high duration, and low MOR (Table 2 and Table 3; Figure 3a).



	
Cluster 5 is characterized by medium duration, high lava volume, and high MOR (Table 2 and Table 3; Figure 3a).



	
Cluster 6 is characterized by eruptions of short duration, low volume, and low MOR (Table 2 and Table 3; Figure 3a).








We also investigated the spatial distribution of these past effusive events. The boundary angles for each sector were determined using the zeros and minima of the fissure orientation distribution over the last 15,000 years [70]. Following the analysis by Duncan et al. [71], the sectors are defined as follows: Sector 1 spans from 355° to 115°, Sector 2 extends from 115° to 225°, and Sector 3 ranges from 225° to 355°. Thus, we divided the Etna area into three different sectors: the E-S, N-E, and W sectors (Figure 4):




	
Clusters 1 and 3 affect all three Etna sectors, with greater incidence in the E-S and N-E flanks of Etna (Figure 4a,c).



	
Cluster 2 includes events that occurred in the E-S sector, except for three episodes (Figure 4b).



	
Cluster 4 is characterized by eruptive events that occurred mostly in the E-S sector of Etna, except for one eruption in the N-NE sector and another one in the W sector (Figure 4d).



	
Cluster 5 includes events that occurred in the E-S and W sectors (Figure 4e).



	
Cluster 6 is characterized by two events located in the E-S sector and one eruption in the N-NE sector (Figure 4f).








In addition, the number of eruptive episodes within the six clusters across the three sectors was analyzed and is illustrated in Figure 5. This allows for the identification of the most recurrent clusters, which differ between the various sectors.




6. Discussion


The use of unsupervised learning enabled the classification of Etna’s flank eruptions over the last 400 years into six distinct clusters based on duration, lava volume, and MOR (Figure 3; Table 1 and Table 3). Clusters 1 and 3 share similarities in terms of short eruption durations (<35 days) and low lava volumes (<80 Mm3), but the inclusion of MOR and the clustering technique allowed us to distinguish between them (Figure 3b). Cluster 1 has a significantly higher MOR (2.8 Mm3/day) compared to Cluster 3 (0.5 Mm3/day), indicating different eruptive behaviors despite similar duration and volume. From a volcanological perspective, these clusters correspond to two types of activity defined by Branca and Del Carlo [37]. Cluster 1 is associated with Strombolian activity limited to the early stages of lava effusion, producing hornitos and small scoria cones, consistent with Class A eruptions. In contrast, Cluster 3 represents more explosive eruptions, often extending until the end of lava effusion, characteristic of Class B eruptions, which include vigorous strombolian and lava-fountaining activity.



The two eruptive classes reflect distinct mechanisms. Class A eruptions (Cluster 1) involve magmas that have undergone multi-stage decompression and volatile loss before reaching the surface [72,73]. Meanwhile, Class B eruptions (Cluster 3) are fed by magma rising from deeper levels, retaining higher volatile content [73]. Spatially, Cluster 1 events are predominantly located in the N-NE sector, with a few occurrences in the E-S and W sectors (Figure 4a). In contrast, Cluster 3 events are distributed across the E-S and W sectors (Figure 4c), with notable examples such as the formation of Mt. De Fiore (1974 [74,75]) and Mt. Nuovo (1763 [75]) in the W sector and the 1874 eruption in the N sector [76].



Cluster 2, comprising 12 eruptions, is defined by intermediate durations (90–187 days) and volumes (30–80 Mm3). Most of these events occurred in the E-S sector, with three exceptions in the NE sector (Figure 4b). Cluster 4 includes longer-duration eruptions (173 to 530 days, up to 3650 days in one case) and large volumes (120 to 1070 Mm3). These eruptions are mostly concentrated in the E-S sector, with a few exceptions in the NE and W sectors (Figure 4d). Cluster 5 includes three notable eruptions with volumes between 100 and 120 Mm3 and durations of 80–90 days, with the exception of the 1669 eruption, which lasted 122 days and produced 600 Mm3 of lava. These eruptions are primarily located in the E-S sector, except for the 1610 eruption, which occurred in the W sector (Figure 4e [62]). Finally, Cluster 6 represents three short-duration events (6–9 days) with low volumes (7–10 Mm3), with the exception of the 1942 eruption [2], which lasted just one day and had a volume of 2 Mm3. Two of these events occurred in the E-S sector, while one (the October 2002 eruption) took place in the NE sector (Figure 4f).



The differences between Clusters 2, 4, 5, and 6 are explained by variations in the driving and lithostatic pressures, as well as the thermal evolution of the magma and host rock. Bruce and Huppert [77] proposed that during an eruption, the driving pressure decreases over time, reducing the flow rate. High-volume eruptions (>100 Mm3) tend to have longer durations (over 170 days) and lower average flow rates (under 6 m3/s), as eruptions falling into Clusters 4 and 5, indicating a steady discharge maintained by the balance between internal dike pressure and lithostatic pressure, with cooling eventually closing the dike [78]. Shorter eruptions (<45 days; Clusters 2 and 6) likely result from insufficient internal pressure, while short-lived but high-volume eruptions are driven by high initial pressures.



A sectoral analysis of the volcano (Figure 5), considering three radial sectors (N-NE, E-S, and W), revealed that the N-NE sector is primarily characterized by Cluster 1 events. Both Clusters 2 and 3 also occur here, though Cluster 5 is absent. The E-S sector includes all six clusters, with Cluster 3 being the most prevalent, followed by Clusters 2 and 1. In the W sector, fewer events have occurred, and only Clusters 1, 3, 4, and 5 are present. The concentration of eruptions in the N-NE and E-S sectors suggests that these areas, particularly the densely inhabited eastern flanks, are at greater risk and should be the focus of hazard assessments.




7. Conclusions


The application of the k-means unsupervised machine learning algorithm, combined with MOR, lava volume, and eruption duration data, has yielded new insights into the eruptive behavior of Etna over the last 400 years. This clustering method identified, for the first time, two groups with similar eruption durations and volumes but differing MOR values. Cluster 1 is associated with Strombolian activity, primarily occurring during the early stages of lava effusion, leading to the formation of hornitos and small scoria cones (Class A of Branca and Del Carlo [37]). In contrast, Cluster 3 represents more explosive eruptions (Class B of Branca and Del Carlo [37]). The remaining clusters (2, 4, 5, and 6) exhibit variations in duration and volume, which are related to differences in eruptive pressures and magma evolution. This demonstrates the capability of unsupervised machine learning techniques to discern nuanced patterns in volcanic data that may not be immediately evident through traditional methods.



Sectoral analysis of the volcano indicates that the N-NE sector is predominantly represented by Cluster 1, with Clusters 2 and 3 also present, while Cluster 5 is absent. The E-S sector contains all six clusters, with Cluster 3 being the most frequent, followed by Clusters 2 and 1. In contrast, the W sector has fewer events, comprising only Clusters 1, 3, 4, and 5. This analysis reveals that the N-SE and S flanks have been more volcanically active compared to the N-SW flank. Notably, the E-S sector is characterized by eruptions with low duration, low lava volume, and medium to high MOR (Clusters 1 and 3), setting it apart from other sectors. Over the past 400 years, flank eruptions have primarily been concentrated in the densely populated eastern flanks, indicating a higher hazard for these areas. Consequently, these regions should be prioritized in volcanic risk assessments.



Because volcanic hazard assessment is generally based on past eruptive behavior, assuming that previous activity is representative of future activity, the characterization of duration, volume distributions, and MOR, as well as the spatial distributions of these past lateral eruptions, are essential to define the input for numerical simulations. These simulations can then be used to create more accurate volcanic hazard maps. Thus, the identification of these clusters not only enhances our understanding of Etna’s eruptive history but also provides a foundation for improving hazard maps. These maps are crucial for long-term planning and risk mitigation, especially in highly populated areas on Etna’s eastern slopes.



Our findings emphasize the importance of incorporating historical volcanological parameters—such as MOR, volume, and duration—into hazard assessment frameworks, providing a more comprehensive perspective of volcanic risk.
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Figure 2. Elbow graph showing the within-cluster sum-of-square (WCSS) values on the y-axis corresponding to the different values of K (on the x-axis). 
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Figure 3. (a) Distribution of durations, MOR, and volumes of the 60 lava flows and their subdivision into six clusters. (b) Detail of clusters 1, 3, and 6. 
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Figure 4. Sketch map of Etna flank lava flows over the last 40