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Abstract: Pipe jacking is a trenchless technology used to install buried pipelines, such as sewer lines
in wastewater management systems. Existing mechanistic approaches based on geomaterial strength
parameters (i.e., friction angle and apparent cohesion) can provide an estimation of the potential
jacking forces during construction. However, extracting intact rock cores for strength characterisation
is challenging when dealing with highly weathered ‘soft rocks’ which exhibit RQD values of zero.
Such was the case for a pipe jacking drive traversing the highly weathered lithology underlying
Kuching City, Malaysia. Furthermore, mechanistic approaches face limitations during construction
when jacking forces are dependent on operation parameters, such as jacking speed and lubrication.
To address these knowledge gaps, the primary objectives of this study are the development of rock
strength parameters based on in situ pressuremeter testing for the purpose of estimating jacking forces.
Furthermore, this study investigates the influence of various pipe jacking operation parameters, with
a particular focus on their impact on jacking forces in weathered ‘soft rocks’. To achieve this, a
novel deep learning model with an attention mechanism is introduced. The proposed methods of
rock strength parameters derived from pressuremeter testing and the utilisation of deep learning
will help to provide insights into the key factors affecting the development of jacking forces. This
paper successfully shows the use of in situ pressuremeter testing in developing Mohr–Coulomb (MC)
parameters directly from the site. In addition, the developed deep learning model with an attention
mechanism successfully highlights the significance of pipe jacking operation parameters with an
accuracy of 88% in predicting the jacking forces.

Keywords: pipe jacking; jacking forces; weathered phyllite; pressuremeter test; operation parameters;
deep learning; attention mechanism

1. Introduction

A unique challenge was faced in the construction of trunk sewer lines beneath the
central business district (CBD) of Kuching. Under the Kuching Wastewater Management
System project, 14.7 km of 1.5 m diameter trunk sewer lines were constructed via the
pipe jacking method. These sewer lines were constructed to transport gravity-fed wastew-
ater from over 7000 properties to a centralised wastewater treatment plant catering for
100,000 population equivalent (PE) [1]. The pipe jacking drives encountered highly weath-
ered lithology [2], when the installation of these sewer pipelines reached depths of up to
35 m below the ground surface. At these depths, the trunk sewer lines were effectively
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embedded within the weathered rocks underlying the Kuching CBD. The geology beneath
Kuching city is relatively young and weathered Tuang formation which consists of highly
fractured lithology such as sandstone, shale, phyllite and metagraywacke [2].

The highly weathered lithology caused difficulties in extracting sufficiently intact rock
cores for rock strength testing. With adequate lengths of intact rock cores, it would be
possible to conduct rock strength tests [3], such as the uniaxial compression strength test,
triaxial test, point load test, shear wave velocity test or Brazilian tensile test [4–9]. However,
the majority of recovered cores demonstrated rock quality designation (RQD) values of
zero, where RQD is defined as the percentage of recovered cores exceeding 100 mm in
length [10]. The phyllite underlying Kuching city has been reported to have characteristics
of heavy weathering conditions with slickensides and steep dips [2]. The petrographic thin
section analysis of phyllite in Kuching city showed compositions of mica, chlorite, grains
of sericite, clay minerals, fine-grained quarts and carbonaceous materials, which have also
been corroborated by the Geological Survey Department of Malaysia [2]. Some phyllite
cores extracted from the project are shown in Figure 1, illustrating the lack of sufficient
cores for rock strength testing.
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Rock strength parameters are necessary for computing frictional jacking forces. Many
contemporary frictional jacking force models comprise closed-form mechanistic equations
using rock strength parameters. These predictive frictional jacking force models are useful
during the planning and design stages of pipe jacking construction. They rely on the
geomaterial strength parameters, which are obtained from rock (or soil) strength tests
performed on samples obtained from boreholes typically located at jacking shafts during the
soil investigation phase. The accrued frictional resistance is dependent on lithology [11,12]
as well as pipe jacking operation parameters [3,11,13–20].

Operation parameters can influence jacking forces, including jacking speed [15,17–19]
and lubricant volume [11,13,14,21]. During construction, these operation parameters can
deviate along the pipeline alignment. Additionally, borehole exploration is not commonly
performed along the pipe alignment, leading to uncertainties in the geotechnical properties
along the drive. Therefore, the precise impact of these operation parameters on jacking
forces still needs to be better understood.

The current study aims to introduce methods for assessing the frictional jacking forces
in highly weathered lithology. These methods will be demonstrated through a case study
of a pipe jacking drive with a total drive distance of 120 m through highly weathered
phyllite. In situ pressuremeter testing was used to develop rock strength parameters for the
evaluation of jacking forces, which is fairly novel in direct measurements of weathered rock



Geosciences 2024, 14, 55 3 of 21

masses from sites. The existing literature mainly focuses on laboratory conducted experi-
ments such as using direct shear test for back analysis on jacking forces [3,11] and studying
the arching phenomenon observed during pipe jacking [22]. Subsequently, deep learning
techniques were applied to assess the influence of pipe jacking operation parameters on
jacking forces through weathered rock, where most of the studies were performed to obtain
higher prediction accuracy when predicting the complicated behaviour of underground
soils and rocks [23]. The details of these techniques are described hereinafter.

2. Current Approaches for Assessing Frictional Jacking Forces

Existing predictive models of frictional jacking forces are based on Mohr–Coulomb
(MC) strength parameters, i.e., apparent cohesion, C, and friction angle, ϕ. There have been
previous attempts to develop MC strength parameters of rock masses, such as from direct
measurements during drilling [24], and reconstitution of tunnelling rock spoil [11]. Table 1
shows some of these predictive models which incorporate soil arching effects. Soil arching
reduces the normal stresses (and subsequently frictional forces) acting on the pipes. Some
models considered the pipe–soil interface friction. However, it is important to note that
the existing models are designed for drives encountered in soil conditions and could not
be directly applied to pipe jacking drives traversing weathered rocks. Furthermore, these
mechanistic models do not consider the influence of operation parameters towards frictional
jacking forces. Table 2 shows the qualitative effects of different operation parameters on
jacking forces.

Table 1. Mechanistic approach to predict the frictional jacking forces.

Reference Jacking Force Model Definition and Soil Strength Parameters

[19] F = µint
γrcos(45+ ϕr

2 )
tanϕr

πdl

µint = pipe–soil interface frictional coefficient
γ = unit weight of soil
d = diameter of pipe
r = radius of pipe
l = length of pipe
∅r = residual friction angle

[25] F = β(πDeq + w)tan ϕ′

2 + πBcC′

C′ = soil–pipe adhesion
β = reduction factor of jacking force

De = outer diameter of pipe
q = normal force
ϕ′ = interface friction angle
w = pipe weight

[17]

F =
µLDe

π
2

[(
σEV + γDe

2

)
+ K2

(
σEV + γDe

2

)]
σEV =

b(γ− 2C
b )

2Ktan ∅

(
1 − e−2Ktan ∅ h

b

)
b = De

[
1 + 2tan

(
π
4 − ∅

2

)]

C = soil cohesion
∅ = soil internal friction angle
µ = pipe–soil interface frictional coefficient
L = length of pipe

De = outer diameter of pipe
γ = unit weight of soil
K = lateral earth pressure, 1
K2 = thrust coefficient of soil acting on pipe, 0.3
b = influencing soil width above pipe

Table 2. The influences of operation parameters on jacking forces.

Operation Parameters Influence on the Jacking Forces References

Lubrication Reduction in frictional force [11,13,14]
Stoppage Increase in frictional static resistance [13,15]

Progress drive length Increase in frictional force [3,16,17]
Jacking speed Increase in face pressure force [15,17–19]
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Although the influences of these operation parameters are identified, the quantitative
measurements of these operation parameters on jacking forces remain absent. Recent
research has shown the use of machine learning and deep learning techniques in the pipe
jacking process, such as predicting the changes in geological conditions [26–29], changes in
ground settlement [30–35] and prediction of various operation parameters [36–40]. Hence,
this paper will use deep learning techniques, such as gated recurrent units (GRUs) with
an attention mechanism, to predict jacking forces through a region of weathered phyllite
based on pipe jacking operation parameters as the input features. The model evaluates
prediction performances and visualises the contribution of operation parameters to the
jacking forces, the specifics of which will be discussed hereinafter.

3. Project Background

A pipe jacking drive spanning 120 m through weathered phyllite drive was performed
using the Iseki Unclemole Super TCS 1500. This paper proposes two approaches used for
assessing jacking forces in weathered phyllite through pressuremeter tests for the rock
strength parameters and a deep learning model using field-measured operation parameters.
The location of the pipe jacking drive is shown in Figure 2.
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Figure 3 shows the field measured data of ten (10) pipe jacking operation parameters
used to train the deep learning model and predict the jacking forces. The inputs of operation
parameters consist of operator-dependent decisions (jacking speed, lubricant, cumulative
lubricant, slurry bypass pressure, and cutter torque) with responses from the pipe jacking
machine (drive progress, days, cumulative days, face slurry pressure, and minimum
thrust load).
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4. Methodology

Utilising rock strength properties through in situ pressuremeter tests and integrating
pipe jacking operation parameters with a deep learning model incorporating an attention
mechanism, this paper presents a novel methodological framework for evaluating the
jacking forces in a phyllite drive, as illustrated in Figure 4.
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4.1. Cavity Expansion Theory and Pressuremeter Testing

An in situ test using a pressuremeter (PMT) was introduced to study the strength
properties and stiffness of lithology by expanding the probe using pressurised gas or water,
which is commonly used for the applications of foundation design [41,42], determining
the bearing capacity of the pile [43] and settlement predictions [41]. The PMT was utilised
by lowering the probe into the test borehole at the required test depth [44]. Pressure and
deformation of the geomaterial were measured during the expansion of the probe, which
were subsequently interpreted to characterise the strength properties. Figure 5 shows the
PMT results obtained from weathered phyllite.
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The PMT curve was plotted using the corrected probe pressure against the corrected probe
volume, including creep indices, to identify the PMT testing stages. Creep Index = V60 −V30,
were calculated using the volume readings taken at 30 s and 60 s for each increment of 100 kPa at
1 min intervals [21]. PMT testing stages can be observed from the creep indices where minimal
creep indicates elastic deformations (pseudo-elastic stage), which is significant for calculating
pressuremeter modulus, EPMT = 2(1+ v)(V0 +Vm)

∆P
∆V , where v = Poisson’s ratio, V0 = volume

of the uninflated probe, ∆P
∆V = gradient of the pseudo-elastic stage, Vm = corrected volume

reading at the midpoint of linear line in pseudo-elastic stage (linear stress–strain result).
To characterise the strength properties of weathered phyllite from the measured PMT

results, an analytical approach based on cavity expansion theory was developed to derive
equivalent Mohr–Coulomb (MC) strength properties [45]. Since the initiation stage of the
PMT result does not represent the true pressure-expansion behaviour of weathered phyllite,
modification of the measured PMT result was performed by shifting the deformation
axis to omit this initiation stage from the subsequent analysis, as shown in Figure 6.
The circumferential strain, εθ , was calculated εθ = a−a0

a0
, where a = cavity radius, and

a0 = initial cavity radius [21]. The theoretical pressure–expansion curve based on cavity
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expansion theory will be calibrated with the measured PMT result by plotting εθ as the
deformation axis.
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Cavity expansion theory was used to optimise the theoretical pressure–expansion
curve that fits the measured pressuremeter test result [45]. This allowed for the charac-
terisation of rock strength properties via an equivalent Mohr–Coulomb (MC) strength
parameters (c′ and φ′) [21]. Table 3 shows a series of equations developed to generate a
theoretical pressuremeter pressure–strain curve based on cavity expansion theory [45].

Table 3. Equations used to generate theoretical pressuremeter pressure–strain curve based on cavity
expansion theory [45].

Shear Modulus Function of Material Properties
Function of

Cohesion and
Friction Angle

Function of
Friction Angle

Function of
Dilation Angle

G[MPa] = E
2(1+ν)

M[MPa] = E
1−ν2

Y [−] = 2c cos∅
1−sin∅ α [−] = 1+sin∅

1−sin∅

β [−] =
1+sin ψ
1−sin ψ

where
ψ = dilation angle

γ [−] =
α(β+1)
(α−1)β

δ [−] =
γ+(α−1)po

2(α+1)G
Where:

p0 = in-site pressure, derived from creep
index plot

η [−] = e (β+1)(1−2ν)[Y+(α−1)po ][1+ν]
E(α−1)β

ξ [−] =

[
2(1−ν2)δ

(1+ν)(α−1)β

][
αβ + 1 − ν(α+β)

1−ν

]
Young’s modulus, E, determined from the PMT modulus, EPMT , Poisson’s ratio, ν

and MC rock strength properties, cohesion, c′ and friction angle, ∅′, were considered
for the equations to obtain the theoretical pressure–expansion curve. The MC strength
parameters were interpreted from the theoretical pressure–expansion curve that fitted from
the beginning of the plastic stage.

4.2. Development of Rock Strength Parameters for Back-Analysis of Jacking Forces

The developed MC strength parameters from PMT were applied to the frictional
jacking force model developed by Pellet-Beaucour and Kastner [17]. Measured jacking
forces were used to back-analyse the frictional coefficient, µ. Table 4 shows the expressed
equation from the developed frictional jacking force model to suit the back-analysis.
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Table 4. Frictional jacking force model for back-analysis of jacking forces.

Frictional Jacking Force Model Expressed Jacking Force Model

F = µLDe
π
2

[(
σEV + γDe

2

)
+ K2

(
σEV + γDe

2

)]
σEV =

b(γ− 2C
b )

2Ktan ∅

(
1 − e−2Ktan ∅ h

b

)
b = De

[
1 + 2tan

(
π
4 − ∅

2

)]
µ = F/L

De
π
2 [(σEV+

γDe
2 )+K2(σEV+

γDe
2 )]

Where:
F/L = measured jacking forces

F = jacking forces; µ = friction coefficient; L = length of pipe; De = outer diameter of pipe; γ = unit weight of soil;
K = coefficient of lateral earth pressure = 1; K2 = thrust coefficient acting on pipe = 0.3; σEV = soil stresses due to
arching acting on pipe crown; h = soil cover depth from ground level to the pipe crown; b = influencing soil width
above the pipe; C = cohesion; ∅ = friction angle (in degrees).

4.3. Deep Learning Technique for Predicting Operation Parameters

During pipe jacking construction, field-measured operation data were collected. The
raw handwritten data were digitised and normalised to train the deep learning model,
namely the gated recurrent unit (GRU). GRUs have the ability to handle long sequential
data, such as the aforementioned measurements of pipe jacking operation parameters. The
prediction performance from the model will be evaluated by calculating the R2 values
between the predicted and ground truth jacking forces. Subsequently, visualisation of the
attention to the respective operation parameters for the prediction of jacking forces will be
discussed. Table 5 shows the studies in the literature where machine learning (ML) and
deep learning (DL) have been applied to various objectives in tunnelling.

Table 5. Past studies on ML and DL techniques used in tunnelling.

Authors ML/DL Techniques Used *

Objective

Prediction of
Geological
Conditions

Prediction of
Changes in

Ground
Settlement

Prediction of
Operation
Parameters

[26] SVM ✔

[36] LSTM ✔

[37] RNN, LSTM ✔

[38] RNN ✔

[39] ANNs, GA-ANNs ✔

[27] ANNs, LSTM ✔

[30] ANNs, LSTM, GRU, Conv1d ✔

[28] GCN, LSTM ✔

[40] ANNs, LSTM ✔

[29] RF, SVM, AdaBoost ✔

[20] GRU, Attention mechanism ✔

* SVM = support vector machine; LSTM = long short-term memory; RNN = recurrent neural network;
ANNs = artificial neural networks; GA-ANN = hybrid genetic algorithm optimised ANNs; GRU = gated recurrent
unit; Conv1d = 1D convolutional neural networks; GCN = graph convolutional network; RF = random Forest.

ML and DL techniques can understand the complicated behaviour of underground
soils and rocks [23]. The past studies shown in Table 5 used tunnelling operation parameters
(jacking speed, cutter torque, etc.) as input features to predict the changes in jacking
forces. However, the prediction accuracy depends on geological conditions that are fairly
homogenous, which was not the case in the weathered lithology from the current study.
Furthermore, the contributions of the respective input features (i.e., tunnelling operation
parameters) towards the predicted features were not discussed. In the current study, we
will use an attention mechanism to identify the significance of inputs on the prediction.
This will be achieved through the visualisation of the attention weightage assigned to each
input to achieve the prediction of jacking forces.

Deep neural networks have often been characterised as a black box model [23,46,47].
Despite their success in matching input data to output prediction, limited work has been
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conducted to explore the underlying features influencing predictions related to pipe jacking
forces. Such insights would not only uncover the black box, they could also potentially allow
interpretation of the deep learning networks through verification against human understanding.

An attention mechanism was introduced to explain the influential features derived from
the prediction of the deep learning networks. Incorporating attention mechanisms represents
a technique that guides deep learning models toward the most suitable features during
prediction. It has been widely used in applications such as computer vision and speech pro-
cessing [48–51]. In geotechnical engineering, variable and uncertain geological environments
can cause challenges during the operation of the tunnelling process [52–54]. Although deep
learning models used in tunnelling such as RNN, LSTM, GRU, and Conv1D [36,37,47,55–57]
show the ability to handle such complex data, they do not provide insights into which
features of the data have the most influence on the predictions. By applying the attention
mechanism in the deep neural networks, it can effectively learn to focus on specific features
that are significant to the prediction, addressing the challenges caused by heterogeneous
geological conditions during the prediction such as jacking forces [20,39,58], controlling
the alignment of the machine [55], and ground settlement [30]. Thus, the coupling of at-
tention mechanism can align the insights of deep neural networks with human expertise
and geological understanding.

Figure 7 compares the prediction accuracy of the proposed global-attention-mechanism-
based LSTM network with the conventional LSTM network to predict the lithology in shield
tunnelling [56]. In addition, the improvement in prediction using the attention mechanism
has been validated by comparing the ground truth jacking forces with the predicted jacking
forces [20]. This concluded that the attention mechanism can further improve the deep
learning model prediction performance. However, visualising the model using attention
mechanisms remains relatively unexplored.
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LSTM network to predict lithology in TBM tunnelling [56]. Upper curve indicates the global-
attention-mechanism-based LSTM network which shows better accuracy than the lower curve of the
conventional LSTM network.

Therefore, the current study will be utilising attention mechanism to locate the impor-
tant features of pipe jacking operation parameters, which capture the relationship among
multivariate variables spanning across the drive length, ultimately enhancing the prediction
of jacking forces.

4.4. Feature Visualisation of Operation Parameters through Attention Mapping

Attention-based RNN models were chosen due to their ability to handle sequential
data. GRU, which is a type of RNN, was used to better understand the influence of pipe
jacking operation parameters on jacking forces. The GRU enables faster learning with less
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data when compared to other deep learning techniques, such as LSTM [30]. Furthermore,
GRU has been previously applied for predicting jacking forces [20,59]. Figure 8 shows
the comparison of using different deep learning models (GRU, LSTM, Conv1D) when
predicting the jacking forces in this weathered phyllite. It is clearly shown that the GRU
model outperformed the other deep learning models with an R2 of 0.82, showing that the
model was able to handle limited data [30,60,61].
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Figure 8. Comparison using different deep learning models to predict the jacking forces in
weathered phyllite.

Figure 9 shows the comparison of the jacking force (JF) prediction performance of GRU
with attention and without attention. It can be seen that the attention mechanism in the
deep learning model resulted in an R2 of 0.82 compared to the model without the attention
mechanism, which demonstrated an R2 of 0.77. This implied that the attention mechanism
can effectively capture the significant input features, resulting in enhanced prediction
of jacking forces. The prediction of jacking forces was evaluated using R2 by training
the attention-based GRU model using field-measured pipe jacking operation parameters,
which will be discussed hereinafter.
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Figure 10 shows insight into the deep learning model using GRU with an attention
mechanism used in previous studies to predict jacking forces using pipe jacking operation
parameters [20]. The data will be pre-processed by normalising between 0 and 1 before
being fed into the model. Thus, all the data fed into the model are given equal impor-
tance (same scale across all the features) without being affected by their original scale
measurement (different scales from different features).
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The input features (xt) from the collected pipe jacking operation parameters will be
fed into the GRU model incorporating the attention mechanism with the previous hidden
states (ht−1) to generate a new hidden state (ht). The model will continue with this process
by updating the previous data with current input features until the end of the prediction
step. Within the attention mechanism, the attention weight (λt) was calculated based on
the input features (xt), to determine the weighted average of the features (εt). The attention
function f : xt, ht−1 → εt is defined as follows:

ζt = {tanh(xtWx + ht−1Wh)}Wa (1)

λt = so f tmax(ζt) (2)

εt = ∑ λtxt (3)

This paper proposes a deep learning model incorporating attention mechanism, as
shown in Figure 11, which has the ability to quantify the attention of each input feature at
each time step (Inputt) on the prediction (Outputt) using the attention mechanism.

The integration of the attention mechanism is aimed not only at improving the model
prediction performance, but also at facilitating the visualisation of the significance of features
contributing to the prediction of jacking forces. This can further help to understand the
importance of each operation parameter contributing to the jacking forces by extracting the
attention weights obtained with respect to each individual input (operation parameters) from
the model. The model was trained using a dataset of 120 data points which covered the entire
drive length of 120 m. The dataset was equally divided into five sections. In each section, 80%
of the data were used for training while the remaining 20% were used for testing [20]. The
model and the hyperparameters used in this study are shown in Table 6 below.
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Table 6. Parameters used in this study.

Parameters Specification

Recurrent neural network type Gated recurrent unit (GRU)
Attention mechanism type Bahdanau Attention

Layers 2
Neurons 100
Epochs 50

Step size 10
Batch size 1
Activation Rectified Linear Unit (ReLU)

Training set 80%
Testing set 20%

5. Results
5.1. Back-Analysis of Jacking Forces

An in situ pressuremeter test was carried out at a depth of 15 m in weathered phyllite.
Figure 12 shows the result of the in situ pressuremeter test performed in accordance with
ASTM D4719-07 [62], and the theoretical pressure–strain curve.

The theoretical pressuremeter pressure–strain curve was calculated using a series of
equations based on the cavity expansion theory developed by [43,45]. The Mohr–Coulomb
parameters (rock strength properties) of cohesion, C′, and internal friction angle, ∅′, were
obtained from pressuremeter results with cavity expansion theory to back-analyse the
jacking forces in the weathered phyllite drive. Table 7 shows the rock strength properties
calculated from the pressuremeter test based on the cavity expansion theory.

The frictional jacking force model developed by Pellet-Beaucour and Kastner [17] will be
used for back-analysis using strength properties obtained from the cavity expansion theory.
Furthermore, the model assumes a linear relationship between drive length and jacking forces,
which prompts the plot of best fit (linear trend) for field-measured jacking forces. Thus,
measured jacking forces from the best fit line show the forces increased at a rate of 4.8 kN/m,
as shown in Figure 13, which will be used to back-analyse the frictional coefficient.
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Table 7. Strength properties derived from the cavity expansion theory.

Strength Properties from Cavity Expansion Theory Values

Young’s modulus, E 173 MPa
Poisson’s ratio, ν 0.3

Cohesion, C′ 3.6 MPa
Friction angle, ∅′ 53◦
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For the back-analysis, the MC strength parameters interpreted from the pressuremeter
testing will be applied to the Pellet-Beaucour and Kastner model [17]. Table 8 shows the
results of back-analysis of the jacking forces, with the back-analyzed µ compared against
µ < 0.3 for lubricated drives [11,58,63].

The back-analyzed frictional coefficient for the highly weathered phyllite drive was
0.08, which was less than the threshold of 0.3 for well-lubricated drives. This was further
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validated by the volume of injected lubricant (181 L/m) into the theoretical overcut volume
(113 L/m), which showed a lubricant utilisation ratio of 1.6, indicating the injected lubricant
had fully occupied the overcut region without significant loss of lubrication.

Therefore, the interpreted strength properties from pressuremeter testing were able to
perform back-analysis of frictional jacking forces in weathered phyllite through a mecha-
nistic approach. Nevertheless, the influences of the pipe jacking operation parameters on
jacking forces remain uncertain. Hence, the influences of these operation parameters on
jacking forces in weathered phyllite will be visualised and discussed using deep learning
with an attention mechanism.

Table 8. Results from back-analysis of jacking forces.

External Pipe Diameter, De 1.78 m

Effective overburden pressure, σ′v 162 kPa
Best fit linear regression of measured jacking force, JFmeas 4.8 kN/m
Cohesion, C′ 3600 kPa
Friction angle, ∅′ 53.0◦

Friction coefficient, µ 0.08 < 0.3

5.2. Attention Mapping of Operation Parameters

Figure 14 shows the attention allocated for each input feature of operation parameters
on the prediction of jacking forces in weathered phyllite. This process provides insights
into pipe jacking construction, highlighting the significance of operation parameters on
jacking forces.
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6. Discussion

Generally, it was observed that cutter torque received the most attention (0.24) followed
by lubricant, drive length, face slurry, incremental jacking speed (i.e., jacking acceleration),
thrust load and incremental jacking force, respectively. For these latter operation parame-
ters, the average attention weightages were quite similar, ranging between 0.09 and 0.12.
The remaining input features (i.e., days, jacking speed and bypass slurry pressure) received
minimal attention, with attention weightages ranging between 0.03 and 0.06. Detailed
discussions of these attention weightages will be described hereinafter.

6.1. Influence of Operation Parameters at Micro-Tunnel Boring Machine (mTBM) Face

Cutter torque, thrust load and face slurry pressure are the operation parameters
measured at the face of the mTBM. Cutter torque is related to the rotational resistance
of the cutter face. Thrust load is measured from a load cell located behind the cutter
face [58,64]. Face slurry pressure is applied to remove loose excavated rock spoil away
from the tunnel face.

Based on the attention results shown in Figure 14, it was observed that cutter torque
received more attention compared to thrust load and face slurry pressure. Cutter torque
values generally ranged between 40% and 50%. Despite this, there were two distinct patterns
in attention. Attention towards cutter torque increased during instances when cutter torque
experienced sudden increases up to attention values of 0.50, for example at drive sections
from 25 m to 40 m, and from 80 m to the end of the drive. From 40 m to 80 m, the attention
was fairly consistent at approximately 0.25, owing to the minimal variations in cutter torque.
Thrust load was minimally attended, with attention values generally reaching only up to
0.20. Greater attention was observed from 90 m to the end of the drive. This coincided with
significant fluctuations in jacking forces between 45 tons and 70 tons. While the attention of
cutter torque and thrust load fluctuated throughout the drive, face slurry pressure tended
to reduce gradually throughout the drive. Face slurry pressure was generally maintained at
0.050 and 0.040 up to 100 m, beyond which the face slurry pressure reduced to 0.020. The
attention values reduced from 0.050 at the start of the drive down to almost 0 at the end of
the drive, indicating that the slurry face pressure was contributing less and less to the jacking
forces as the drive progressed.

As discussed in the previous section, the jacking force is made up of two components,
which are the face pressure and frictional force along the pipeline. Ideally, the face pressure
should be kept constant when driving through the same lithology throughout the design
span. With the face pressure being kept constant, frictional force would eventually become
more important than face pressure as drive length increases. Nonetheless, at the beginning
of the drive, where frictional force was yet to be accumulated, the face pressure would
contribute to most of the jacking force. The deep learning model with attention mechanism
was able to show similar findings by focusing initially more on the face mTBM parameters.

Apart from that, it was also found that the face mTBM parameters were being focused
more than other parameters, such as jacking speed and lubricant injected. The rankings of
importance level for cutter torque, face slurry pressure and thrust load were as follows: first
place, third place and fourth place, respectively. This finding was obtained because this
phyllite drive was a well-lubricated drive, having a lubricant utilisation ratio of 1.6. Hence,
frictional force was well-controlled. More attention would be given to the face pressure
which was partly affected by the face mTBM parameters such as cutter torque, face slurry
pressure and thrust load.

6.2. Influence of Jacking Speed on Jacking Force

The attention results for jacking speed in phyllite drive are shown in Figure 15, with
the blue line indicating the jacking speed and the orange line indicating attention weights.
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Overall, the jacking speed in the phyllite drive was not heavily focused. The model
focused only on jacking speed when it was extraordinarily high, as observed at the drive
length of 62 m in Figure 15.

Jacking speed is an important operation parameter during the pipe jacking operation
as it governs the duration required to complete a drive. In ideal conditions, jacking speed
should be high to reduce the construction period. On the other hand, a high jacking speed
would lead to a dramatic increase in the jacking force, elevating the risks of sinkholes or
pipe ruptures. The model suggested that the jacking speed should be given extra attention
when a higher jacking speed is applied for transversing through phyllite. This observation
matches the findings from [11], where it is mentioned that in phyllite drives, increases in
jacking speed would not cause significant changes in the jacking force.

6.3. Influence of Lubricant on Jacking Force

As discussed in the previous section, the injection of lubricant reduces the frictional
resistance along the pipeline through the introduction of uplifting force to the pipe and
hence, reducing the contact area between the pipeline and surrounding soil [65]. Ideally,
the overcut space, which is the space between the pipeline and soil, should be entirely
filled with lubricant. Hence, the volume of lubricant injected should be the same as the
theoretical overcut volume. Having more lubricant injected than the theoretical volume
while jacking force is not instantaneously reduced could possibly represent that there is a
loss of lubricant through the fissures to the surroundings. Such a situation shows that the
lubrication is ineffective.

The lubrication performance can be assessed by computing the utilisation ratio [21],
which is to find the ratio of average lubricant injected to the theoretical overcut volume as
shown below. Obtaining a lubricant utilisation ratio that is significantly higher than one
could represent that there is a significant loss of lubricant to the surroundings, instead of
being utilised to reduce the jacking force.

Lubricant Utilisation Ratio =
Average injected lubricant volume

Theoretical overcut volume
(4)

Figure 16 shows the plot of the volume of lubricant injected at each drive length (in
blue) with attention weights (in orange). The theoretical overcut volume for this drive was
113 L/m (in red), with an allowance of 20 mm clearance between the pipelines and the
outer diameter of the mTBM. The average lubricant injected computed was 181 L/m (in
green). Thus, the lubricant utilisation ratio obtained was 1.6, indicating that the overcut
space is entirely filled by the lubricant without having any major loss of lubricant. The
effective lubricant performance is also reflected in the jacking force, where the highest
recorded jacking force for this drive was 75 tons, without having a significant increase in
jacking force, as shown in Figure 14.
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The results showed that the deep learning model focused on this operation parameter
when the instantaneous lubricant utilisation ratio at a drive length is higher than one
(the volume of lubricant injected was more than the theoretical overcut volume). Such
a situation can be observed at a drive length of 45 m to 96 m, where the majority of the
volume of lubricant injected was 500 L/m. In contrast, at the drive length of 99 m and
101 m where the lubricant injected was 100 L/m, the lubricant is not paid much attention
by the model.

Lubricant injected was not given high attention weights by the deep learning model
as compared to other operation parameters (parameters related to face mTBM), showing
that lubricant is comparatively less important in phyllite drives. This observation matched
the findings from [3], where phyllite was found to be characteristically bedded and tightly
folded. Such geological characteristics form a water-tight and stable bore to trap the
lubricant in the overcut region, instead of dissipating it to the surrounding geology. Hence,
in the phyllite drive, frictional force along the pipeline was well-controlled, making a
limited contribution to the jacking force. Such findings were validated by back-analysing
the friction coefficient of 0.08 for phyllite drive [11,65], which is lower than the suggested
range of friction coefficient (0.1–0.3) for a well-lubricated drive by [63], indicating that this
was a well-lubricated drive.

7. Conclusions

This paper successfully uses two approaches, namely a mechanistic approach utilising
pressuremeter testing and a deep learning approach with an attention mechanism for the
assessment of jacking forces in weathered phyllite. The conclusions in this paper can be
drawn as follows:

(1) The pressuremeter testing was implemented to develop equivalent rock strength
properties (C′ and ∅′) based on cavity expansion theory, which will be used for
back-analysing the frictional jacking forces model developed by Pellet-Beaucour and
Kastner [17] on the friction coefficient.

(2) The back-analysed friction coefficient using rock strength properties identified that the
selected pipe jacking drive in weathered phyllite was well-lubricated. Furthermore,
the discussed method using the pressuremeter test for the mechanistic approach was
validated for back analysis on jacking forces in ‘soft rock’ [11,14].

(3) The influences of pipe jacking operation parameters on jacking forces were visualised
using the attention-based GRU model with an accuracy of 88%. From the overall
analysis, the attention focused on the cumulative parameters, such as drive length,
cumulative days and cumulative lubricant injected, became increasingly significant as
the drive progressed.

(4) The cumulative parameters contribute significantly to jacking forces. When the total
number of days increases, it produces higher static frictional resistance along the pipes.
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When the pipe jacking progressed, the drive lengths increased, which caused higher
frictional resistance pushing from the opposite direction, requiring larger jacking
forces to overcome.

(5) The operation parameters from the cutter face, such as thrust load, cutter torque
and face slurry pressure, became less significant as the pipe jacking progressed.
This observation is reasonable, considering the weathered phyllite has stable bore
conditions, in which the jacking forces are more likely to be influenced by the increased
friction along the surface of the pipe than the activities at the tunnel face.

To conclude, it is challenging to extract intact phyllite cores from highly weathered
formations for the purpose of laboratory strength testing. To overcome this challenge,
previous studies had reconstituted phyllite spoil using direct shear apparatus [11], while
this paper highlights the potential of using pressuremeter testing to develop equivalent rock
strength properties. Moreover, the significance of pipe jacking operation parameters has
been effectively visualised and discussed using an attention-based deep learning model.

The findings of the development of MC parameters from cavity expansion theory
established using the pressuremeter test are transferable to other geological conditions,
which have been established by Yu and Houlsby [45]. The main limitation here is the maxi-
mum expansion pressure the pressuremeter test can reach when dealing with significantly
stronger rock masses [44]. Additionally, the use of GRU with an attention mechanism is
applicable to pipe jacking drives in other geological conditions, which could potentially
highlight changes in the importance of operation parameters on jacking forces in other
geological conditions.
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