Geocryological Conditions of Small Mountain Catchment in the Upper Kolyma Highland (Northeastern Asia)
Abstract
:1. Introduction
2. Study Area
The Anmangynda River Basin
3. Materials and Methods
3.1. Ground Temperature and Dynamic of Ground Water Characteristics
Borehole Title (Depth, m) | Elevation, m | Relief | Landscape and Vegetation [26] |
---|---|---|---|
Sopka (15) | 1027 | Slope | Mountain lichen and shrub stony tundra with occasional dwarf cedar bushes |
Solontcovy (5) Solontcovy (8) 1 | 803 | Floodplain terrace | Floodplain of rivers and its tributaries with larch sparse forest with areas of Chozenia, poplar, or willow forests, and meadows |
Aufeis (13.1) Upper Aufeis (8) 1 Lower Aufeis (8) 1 | 744 | Giant spring aufeis glade | |
GP2 (15) | 712 | Floodplain terrace of the Anmangynda River | Larch sparse forest with moist lichen-sphagnum, cloudberry-ledum-sedge dwarf birch bushes |
3.2. Active Layer
3.3. Meteorological Characteristics
3.4. Seasonal Frost Depth at Aufeis Glade
4. Results and Interpretation
4.1. Meteorological Conditions of the Observation Period
4.2. Geocryological Characteristics
4.3. Aufies Glade Freezing Depth, 2021
4.4. Groundwater
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makarieva, O.; Nesterova, N.; Post, D.; Sherstyukov, A.; Lebedeva, L. Warming temperatures are impacting the hydrometeorological regime of Russian rivers in the zone of continuous permafrost. Cryosphere 2019, 13, 1635–1659. [Google Scholar] [CrossRef]
- Streletskiy, D.A.; Suter, L.; Shiklomanov, N.I.; Porfiriev, B.N.; Eliseev, D.O. Assessment of climate change impacts on buildings, structures and infrastructure in the Russian regions on permafrost. Environ. Res. Lett. 2019, 14, 025003. [Google Scholar] [CrossRef]
- Makarieva, O.; Nesterova, N.; Shikhov, A.; Zemlianskova, A.; Luo, D.; Ostashov, A.; Alexeev, V. Giant Aufeis—Unknown Glaciation in North-Eastern Eurasia According to Landsat Images 2013–2019. Remote Sens. 2022, 14, 4248. [Google Scholar] [CrossRef]
- Shikhov, A.; Ilyushina, P.; Makarieva, O.; Zemlianskova, A.; Mozgina, M. Satellite-Based Mapping of Gold-Mining-Related Land-Cover Changes in the Magadan Region, Northeast Russia. Remote Sens. 2023, 15, 3564. [Google Scholar] [CrossRef]
- Kalabin, A. Permafrost and Hydrogeology of the North-East of the USSR; All-Russian Research Institute of Gold and Rare Metals: Moscow, Russia, 1960; Volume XVIII, 220p. (In Russian) [Google Scholar]
- Ershov, E. (Ed.) Geocryology in the USSR. Eastern Siberia and the Far East; Nedra: Moscow, Russia, 1989; 414p. (In Russian) [Google Scholar]
- Simakov, A.; Shilnikovskaya, Z. The Map of Aufeis Fields of the North-East USSR. Brief Explanatory Note; North-Eastern Geological Administration of the Main Directorate of Geology and Subsoil Resources Protection under the Council of Ministers of the RSFSR: Magadan, Russia, 1958; 40p. (In Russian) [Google Scholar]
- Observation Reports: Kolyma Water Balance Station; Kolyma UGKS: Magadan, Russia, 1959–1998; pp. 1–40. (In Russian)
- Sushansky, S. The Final Report of Research at KWBS; State Committee of the USSR on Hydrometeorology, Kolyma Department of Hydrometeorology: Magadan, Russia, 1990; 109p. [Google Scholar]
- Makarieva, O.; Nesterova, N.; Lebedeva, L.; Sushansky, S. Water balance and hydrology research in a mountainous permafrost watershed in upland streams of the Kolyma River, Russia: A database from the Kolyma Water-Balance Station, 1948–1997. Earth Syst. Sci. Data 2018, 10, 689–710. [Google Scholar] [CrossRef]
- Makarieva, O.; Nesterova, N.; Haghighi, A.T.; Ostashov, A.; Zemlyanskova, A. Challenges of Hydrological Engineering Design in Degrading Permafrost Environment of Russia. Energies 2022, 15, 2649. [Google Scholar] [CrossRef]
- Vasilenko, N.G. Hydrology of the Rivers of the BAM Zone: Expeditionary Research; Nestor-History: Saint Petersburg, Russia, 2013; p. 672. (In Russian) [Google Scholar]
- Practical Recommendations on the Calculation of Hydrological Characteristics in the Zone of Economic Development of the Baikal-Amur Mainline; Gidrometeoizdat: Leningrad, Russia, 1986; p. 180. (In Russian)
- Vasilenko, N.G.; Khersonskii, E.S. Calculation of the maximum discharge of rain floods in the area of the BAM trail. Proc. SHI 1986, 312, 93–104. (In Russian) [Google Scholar]
- Nesterova, N.; Makarieva, O.; Vinogradova, T.; Lebedeva, L. Modelling of runoff formation processes in the zone of Baikal-Amur Main line based on the data of the Mogot research site. Water Sect. Russ. Probl. Technol. Manag. 2017, 1, 18–36. (In Russian) [Google Scholar]
- Sergeev, D.; Stanilovskaya, J.; Perlshtein, G.; Romanovsky, V.; Bezdelova, A.; Alexutina, D.; Bolotyuk, M.; Khimenkov, A.; Kapralova, V.; Motenko, R.; et al. Background geocryological monitoring in Northern Transbaikalia Region. Earth’s Cryosphere 2016, 20, 24–32. (In Russian) [Google Scholar] [CrossRef]
- Makarieva, O.; Nesterova, N.; Ostashov, A.; Zemlyanskova, A.; Tumskoy, V.; Gagarin, L.; Ekaykin, A.; Shikhov, A.; Olenchenko, V.; Khristoforov, I. Perspectives of the development of complex interdisciplinary hydrological and geocryological research in the North-East of Russia. Vestn. St. Petersburg Univ. Earth Sci. 2021, 66, 74–90. [Google Scholar] [CrossRef]
- Zemlianskova, A.; Makarieva, O.; Shikhov, A.; Alekseev, V.; Nesterova, N.; Ostashov, A. The impact of climate change on seasonal glaciation in the mountainous permafrost of North-Eastern Eurasia by the example of the giant Anmangynda aufeis. CATENA 2023, 233, 107530. [Google Scholar] [CrossRef]
- Mikhailov, V. Floodplain Taliks of North-East of Russia; Geo: Novosibirsk, Russia, 2013; 244p. (In Russian) [Google Scholar]
- Afanasiev, V. Geological Map of USSR at a Scale 1: 200,000 (First Generation); Upper Kolyma Series; Sheet P-55-XXX. Explanatory note; Nedra: Moscow, Russia, 1968; 65p. [Google Scholar]
- Zemlianskova, A.A.; Alekseev, V.R.; Shikhov, A.N.; Ostashov, A.A.; Nesterova, N.V.; Makarieva, O.M. Long-Term Dynamics of the huge Anmangynda aufeis in the North-East of Russia (1962–2021). Water Resour. 2023, 50 (Suppl. S1), S89–S99. [Google Scholar] [CrossRef]
- Solovyova, G.V. Aufeis Regulation of Groundwater Runoff in the Areas of Widespread Occurrence of Permafrost; Final Report; VSEGINGEO: Moscow, Russia, 1967; Volume 1, 447p. (In Russian) [Google Scholar]
- Report of the Results of Water Balance Studies with an Aufeis Component in the Anmangynda River Basin; KUGMS: Magadan, Russia, 1977; 62p. (In Russian)
- Olenchenko, V.V.; Makarieva, O.M.; Zemlianskova, A.A.; Danilov, K.P.; Ostashov, A.A.; Kalganov, A.S.; Nesterova, N.V.; Khristoforov, I.I. Geophysical indicators of aufeis in the Anmangynda river (Magadan region). Geodyn. Tectonophys. 2023, 14, 702. (In Russian) [Google Scholar] [CrossRef]
- Olenchenko, V.; Zemlianskova, A.; Makarieva, O.; Potapov, V. Geocryological Structure of a Giant Spring Aufeis Glade at the Anmangynda River (Northeastern Russia). Geosciences 2023, 13, 328. [Google Scholar] [CrossRef]
- Vasiliev, A.I. Current state of the landscapes in the catchment area of the Anmangynda River. In Proceedings of the All-Russian Conference with International Participation Dedicated to the 150th Anniversary of M. I. Sumgin, “Sustainability of Natural and Technical Cryosphere Systems in the Context of Climate Change”, Yakutsk, Russia, 22–24 March 2023; pp. 465–471. [Google Scholar]
- Nelson, F.E.; Shiklomanov, N.I.; Christiansen, H.H.; Hinkel, K.M. The Circumpolar-Active-Layer-Monitoring (CALM) Workshop: Introduction. Permafr. Periglac. Process. 2004, 15, 99–101. [Google Scholar] [CrossRef]
- CALM Circumpolar Active Layer Monitoring. Available online: https://www2.gwu.edu/~calm/data/north.htm (accessed on 25 May 2023).
- Fyodorov-Davydov, D.G.; Sorokovikov, V.A.; Ostroumov, V.E.; Kholodov, A.L.; Mitroshin, I.A.; Mergelov, N.S.; Davydov, S.P.; Zimov, S.A.; Davydova, A.I. Spatial and Temporal Observations of Seasonal Thaw in the Northern Kolyma Lowland. Polar Geogr. 2004, 28, 308–325. [Google Scholar] [CrossRef]
- Maslakov, A.; Ruzanov, V.; Fyodorov-Davydov, D. Seasonal thawing of soils in Beringia region in changing climatic conditions. In Proceedings of the International Conference “Earth’s Cryosphere: Past, Present and Future”, Pushchino, Russia, 4–7 June 2017; pp. 44–45. [Google Scholar]
- Brown, J.; Hinkel, K.M.; Nelson, F.E. The Circumpolar Active Layer Monitoring (CALM) program: Research designs and initial results. Polar Geogr. 2000, 24, 165–258. [Google Scholar] [CrossRef]
- Kestrel Meters Official Site Kestrel Wind and Weather Meters. Available online: https://kestrelmeters.com/ (accessed on 25 May 2023).
- Fleet Management Escort—GPS Glonass Transport Control Monitoring System—Fuel Monitoring. Available online: https://www.fmeter.ru/en/produktsiya/meteo-kontrol/meteostanciya-sokol-m (accessed on 25 May 2023).
- Onset HOBO and in Temp Data Loggers. Available online: https://www.onsetcomp.com/ (accessed on 25 May 2023).
- Hydrometeorological Information—World Data Center. Available online: http://meteo.ru/ (accessed on 25 May 2023). (In Russian).
- Specialist’s Guide: Scientific and Applied Reference Book on the Climate of the USSR Series 3 Long-Term Data; Gidrometeoizdat: Leningrad, Russia, 1990; Parts 1–6, Issue 33, 567p. (In Russian)
- Weather and Climate—Meteorological Information. Available online: http://www.pogodaiklimat.ru/ (accessed on 25 May 2023). (In Russian).
- Janowicz, J.R.; Hedstrom, N.; Pomeroy, J.; Granger, R.; Carey, S. Wolf Creek Research basin water balance studies. PIAHS 2004, 290, 195–204. [Google Scholar]
- Medvedeff, A.; Iannucci, F.; Deegan, L.; Huryn, A.; Bowden, W. Long-term hydrological, biogeochemical, and ecological data for the Kuparuk River, North Slope, Alaska. Hydrol. Process 2021, 35, e14115. [Google Scholar] [CrossRef]
- Tolstikhin, O.N. (Ed.) Hydrogeology of the USSR. North-East of the USSR; Nedra: Moscow, Russia, 1972; Volume 26, 297p. (In Russian) [Google Scholar]
- Zamolotchikova, S.A.; Zuev, I.A. Yukagiro-Anuyskiy and Kolyma regions. In Geocryology of the USSR. Eastern Siberia and the Far East; Nedra: Moscow, Russia, 1989; pp. 293–309. (In Russian) [Google Scholar]
- Nesterova, N.; Makarieva, O.; Post, D.A. Parameterizing a hydrological model using a short-term observational dataset to study runoff generation processes and reproduce recent trends in streamflow at a remote mountainous permafrost basin. Hydrol. Process 2021, 35, e14278. [Google Scholar] [CrossRef]
- Fedorov, A.N.; Vasilyev, N.F.; Torgovkin, Y.I.; Shestakova, A.A.; Varlamov, S.P. Permafrost Landscape Map of the Republic of Sakha (Yakutia) on a scale 1:1,500,000. Geosciences 2018, 8, 465. [Google Scholar] [CrossRef]
- Herman-Mercer, N.M.; Schuster, P.F. Strategic needs of water on the Yukon: An interdisciplinary approach to studying hydrology and climate change in the Lower Yukon River Basin. U.S. Geol. Surv. Fact Sheet 2014, 3060, 4. [Google Scholar] [CrossRef]
- Stadnyk, T.A.; Tefs, A.; Broesky, M.; Déry, S.J.; Myers, P.G.; Ridenour, N.A.; Koenig, K.; Vonderbank, L.; Gustafsson, D. Changing freshwater contributions to the Arctic: A 90-year trend analysis (1981–2070). Elem. Sci. Anthr. 2021, 9, 00098. [Google Scholar] [CrossRef]
- Connor, M.T.; Cardenas, M.B.; Ferencz, S.B.; Wu, Y.; Neilson, B.T.; Chen, J.; Kling, G.W. Empirical models for predicting water and heat flow properties of permafrost soils. Geophys. Res. Lett. 2020, 47, e2020GL087646. [Google Scholar] [CrossRef]
- Liu, W.; Fortier, R.; Molson, J.; Lemieux, J.-M. A conceptual model for talik dynamics and icing formation in a river floodplain in the continuous permafrost zone at Salluit, Nunavik (Quebec), Canada. Permafr. Periglac. Process. 2021, 32, 468–483. [Google Scholar] [CrossRef]
- Khudyakov, O.I.; Reshotkin, O.V. Multidirectional changes in temperature of permafrost-affected soils during the growing season against the background increase in the mean annual air temperature. Eurasian Soil Sci. 2020, 53, 607–618. [Google Scholar] [CrossRef]
- Hobbie, J.; Kling, G. Alaska’s Changing Arctic: Ecological Consequences for Tundra, Streams, and Lakes; Oxford University Press: Oxford, UK, 2014; p. 331. [Google Scholar] [CrossRef]
- Yoshikawa, K.; Hinzman, L.D.; Kane, D.L. Spring and aufeis (icing) hydrology in Brooks Range, Alaska. J. Geophys. Res. 2007, 112, G04S43. [Google Scholar] [CrossRef]
- DeBeer, C.M.; Wheater, H.S.; Quinton, W.L.; Carey, S.K.; Stewart, R.E.; Mackay, M.D.; Marsh, P. The changing cold regions network: Observation, diagnosis and prediction of environmental change in the Saskatchewan and Mackenzie River Basins, Canada. Sci. China Earth Sci. 2015, 58, 46–60. [Google Scholar] [CrossRef]
- Kirpotin, S.N.; Berezin, A.; Bazanov, V.; Polishchuk, Y.; Vorobiev, S.; Mozgolin, B.; Akerman, E.; Mironucheva-Tokareva, N.; Volkova, I.; Dupré, B.; et al. Western Siberia wetlands as indicator and regulator of climate change on the global scale. Int. J. Environ. Stud. 2009, 66, 409–421. [Google Scholar] [CrossRef]
- Suzuki, K.; Park, H.; Makarieva, O.; Kanamori, H.; Hori, M.; Matsuo, K.; Matsumura, S.; Nesterova, N.; Hiyama, T. Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sens. 2021, 13, 4389. [Google Scholar] [CrossRef]
- Abramov, A.; Davydov, S.; Ivashchenko, A.; Karelin, D.; Kholodov, A.; Kraev, G.; Lupachev, A.; Maslakov, A.; Ostroumov, V.; Rivkina, E.; et al. Two decades of active layer thickness monitoring in northeastern Asia. Polar Geogr. 2021, 44, 186–202. [Google Scholar] [CrossRef]
- Anisimov, O.; Zimov, S. Thawing permafrost and methane emission in Siberia: Synthesis of observations, reanalysis, and predictive modeling. Ambio 2021, 50, 2050–2059. [Google Scholar] [CrossRef] [PubMed]
- Tregubov, O.D.; Gartsman, B.I.; Tarbeeva, A.M.; Lebedeva, L.S.; Shepelev, V.V. Spatial and temporal dynamics of sources and water regime of the Ugol’naya-Dionisiya River (Anadyr lowland, Chukotka). Water Resour. 2021, 48, 521–531. [Google Scholar] [CrossRef]
- Sysolyatin, R.; Kalinicheva, S.; Fedorov, A.; Rozhina, M. Eastern Siberia permafrost transect (ESPT). A first stage: The Verkhoyansk Range part. J. Mt. Sci. 2023, 20, 1499–1507. [Google Scholar] [CrossRef]
- Gaffey, C.; Bhardwaj, A. Applications of unmanned aerial vehicles in cryosphere: Latest advances and prospects. Remote Sens. 2020, 12, 948. [Google Scholar] [CrossRef]
- Brombierstäudl, D.; Schmidt, S.; Nüsser, M. Spatial and temporal dynamics of aufeis in the Tso Moriri basin, eastern Ladakh, India. Permafr. Periglac. Process. 2022, 34, 81–93. [Google Scholar] [CrossRef]
- Taylor, L.S.; Quincey, D.J.; Smith, M.W.; Baumhoer, C.A.; McMillan, M.; Mansell, D.T. Remote sensing of the mountain cryosphere: Current capabilities and future opportunities for research. Prog. Phys. Geogr. Earth Environ. 2021, 45, 931–964. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, G.; Yi, Y.; Chen, D.; Zhang, W.; Yang, K.; Miller, C.E. Progress and challenges in studying regional permafrost in the Tibetan Plateau using satellite remote sensing and models. Front. Earth Sci. 2020, 8, 560403. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Yongping, Q.; Pang, Q.; et al. Simulation of the present and future projection of permafrost on the Qinghai-Tibet Plateau with statistical and machine learning models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Semenova, O.; Lebedeva, L.; Vinogradov, Y. Simulation of subsurface heat and water dynamics, and runoff generation in mountainous permafrost conditions, in the Upper Kolyma River basin, Russia. Hydrogeol. J. 2013, 21, 107–119. [Google Scholar] [CrossRef]
- Pomeroy, J.; Gray, D.; Brown, T.; Hedstrom, N.; Quinton, W.; Granger, R.; Carey, S. The cold regions hydrological model: A platform for basing process representation and model structure on physical evidence. Hydrol. Process. 2007, 21, 2650–2667. [Google Scholar] [CrossRef]
- Fang, X.; Pomeroy, J.W.; Ellis, C.R.; MacDonald, M.K.; DeBeer, C.M.; Brown, T. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains. Hydrol. Earth Syst. Sci. 2013, 17, 1635–1659. [Google Scholar] [CrossRef]
- Schramm, I.; Boike, J.; Bolton, W.; Hinzman, L. Application of TopoFIow, a spatially distributed hydrological model, to the Imnavait Creek watershed, Alaska. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Kane, D.L.; Yang, D. (Eds.) Northern Research Basins Water Balance. In Proceedings of the Workshop Held at Victoria, Victoria, BC, Canada, 15–19 March 2004; IASH Publications: Edinburgh, UK, 2004; p. 290. [Google Scholar]
- Karjalainen, O.; Aalto, J.; Luoto, M.; Westermann, S.; Romanovsky, V.E.; Nelson, F.E.; Etzelmüller, B.; Hjort, J. Circumpolar permafrost maps and geohazard indices for near-future infrastructure risk assessments. Sci. Data 2019, 6, 190037. [Google Scholar] [CrossRef] [PubMed]
- Melnikov, V.P.; Osipov, V.I.; Brouchkov, A.V.; Falaleeva, A.A.; Badina, S.V.; Zheleznyak, M.N.; Sadurtdinov, M.R.; Ostrakov, N.A.; Drozdov, D.S.; Osokin, A.B.; et al. Climate warming and permafrost thaw in the Russian Arctic: Potential economic impacts on public infrastructure by 2050. Nat. Hazards 2022, 112, 231–251. [Google Scholar] [CrossRef]
- Batir, J.F.; Hornbach, M.J.; Blackwell, D.D. Ten years of measurements and modeling of soil temperature changes and their effects on permafrost in Northwestern Alaska. Glob. Planet. Chang. 2017, 148, 55–71. [Google Scholar] [CrossRef]
- Noetzli, J.; Arenson, L.; Bast, A.; Beutel, J.; Delaloye, R.; Farinott, D.; Gruber, S.; Gubler, H.; Haeberli, W.; Hasler, A.; et al. Best Practice for Measuring Permafrost Temperature in Boreholes Based on the Experience in the Swiss Alps. Front. Earth Sci. 2021, 9, 607875. Available online: https://www.frontiersin.org/articles/10.3389/feart.2021.607875 (accessed on 25 May 2023). [CrossRef]
- Yokohata, T.; Saito, K.; Takata, K.; Nitta, T.; Satoh, Y.; Hajima, T.; Sueyoshi, T.; Iwahana, G. Model improvement and future projection of permafrost processes in a global land surface model. Prog. Earth Planet. Sci. 2020, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Wang, H. CMIP5 permafrost degradation projection: A comparison among different regions. J. Geophys. Res. Atmos. 2016, 121, 4499–4517. [Google Scholar] [CrossRef]
Depth, m | Description | Depth, m | Description |
---|---|---|---|
0–3 | Sphagnum moss, dwarf birch roots. | 0–9 | The forest floor (a mixture of peat and grass). |
3–13 | Sphagnum moss, partially decomposed. | 9–27 | Dusty pale gray loam, slightly moist. |
13–31 | Slightly decomposed peat, moist, and brown. Total of 90% organic matter. ATL depth at 29 cm. | 27–33 | Decomposed peat, dark brown in color. Filler is 30% clay. |
31–43 | Frozen peat with massive cryogenic texture, brown color with some grayish impurities. Total of 70% organic matter mixed with clay. | 33–46 | Loam, slightly moist, grayish-brown, with 40% organic matter. |
Type | Period | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T | 1955–1980 * | −34.1 | −30.7 | −23.5 | −11.3 | 2.0 | 10.8 | 13.9 | 11.3 | 3.6 | −11.8 | −28.0 | −33.8 | −11.0 |
1967–2022 | −33.4 | −29.8 | −21.8 | −9.6 | 3.3 | 11.8 | 14.6 | 11.3 | 3.7 | −10.1 | −25.2 | −34.6 | −9.8 | |
2021 | −33.9 | −25.0 | −23.4 | −9.1 | 3.8 | 12.5 | 15.2 | 13.4 | 3.1 | −11.8 | −19.4 | −33.3 | −8.9 | |
2022 | −31.3 | −27.4 | −17.9 | −10.3 | 3.7 | 12.7 | 18.9 | 12.8 | 3.3 | −12.2 | −27.8 | −34.4 | −9.2 | |
2023 | −34.3 | −33.1 | −22.0 | −6.7 | 4.1 | |||||||||
P | 1945–1980 * | 15 | 12 | 7 | 10 | 23 | 47 | 60 | 50 | 40 | 20 | 17 | 16 | 317 |
1967–2022 | 13.6 | 10.7 | 9.0 | 10.2 | 23.5 | 49.3 | 59.5 | 65.8 | 42.2 | 26.0 | 19.1 | 13.2 | 341 | |
2021 | 7.5 | 11.9 | 9.7 | 14.8 | 48.4 | 40.2 | 65.6 | 17.7 | 42.6 | 48.1 | 25.3 | 32.4 | 362 | |
2022 | 23.8 | 4.6 | 18.5 | 2.1 | 35.6 | 46.5 | 19.5 | 70.0 | 39.9 | 14.5 | 28.0 | 25.1 | 328 | |
2023 | 15.0 | 7.6 | 8.9 | 14.1 | 35.5 | |||||||||
H | 1945–1980 * | 22 | 26 | 26 | 22 | 3 | 0 | 0 | 0 | 1 | 6 | 13 | 18 | 22 |
2000–2022 ** | 29 | 31 | 33 | 29 | 6 | 0 | 0 | 0 | 2 | 10 | 23 | 27 | 14 | |
2021 | 13 | 14 | 15 | 11 | 0 | 0 | 0 | 0 | 0 | 14 | 25 | 27 | 10 | |
2022 | 30 | 28 | 30 | 26 | 1 | 0 | 0 | 0 | 1 | 8 | 20 | 17 | 13 | |
2023 | 21 | 23 | 25 | 25 | 0 |
Monitoring Location (Elevation, m asl) | Average Snow Depth, cm | End of Snow Cover (Day) | Day of Investigation Snow Depth (cm)/Density (kg/m3)/SWE (mm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X | XI | XII | I | II | III | IV | V | X | XII | III | IV | ||
Sopka (1027) | 35 | 45 | 67 | 80 | 80 | 88 | n/a | n/a | 22 May | 7 43/172/45 | 23 90/249/224 | 31 84/252/257 | n/a |
Solontcovy (803) | 14 | 29 | 63 | 76 | 85 | 79 | 75 | 28 | 27 May | n/a | n/a | 29 * 60/123/74 | |
Base Camp (732) | 4 | 18 | 40 | 46 | 49 | 51 | 40 | 0 | 7 May | 8 6/146/9 | 20 57/133/75 | 31 49/137/67 | |
GP2 (712) | 5 | 15 | 44 | 46 | 50 | 49 | 43 | 0 | 10 May | 8 13/130/16 | 21 69/110/76 | 29 19/184/90 | |
w/s Ust-Omchug (576) | 8 | 20 | 17 | 21 | 23 | 25 | 25 | 0 | 1 May | n/a | |||
Snow pillow (732) | n/a | 15 4/155/5 | 20 54/114/62 | 29 59/178/105 | 11 63/154/97 |
Borehole (Depth, m) | Elevation, m | MAGT, °C | MALTT, °C | ALT, m | DZAA, m | Start—End of Thaw/Freeze (Month) |
---|---|---|---|---|---|---|
Sopka (15) | 1027 | −3.2 | −2.8 | 1.3 | 13.5 | VI–IX/IX–IX |
Solontcovy (5) | 803 | 1.5 | — | 2.6 | n/a | VI–VIII/X–V |
Aufies (13.1) | 744 | −0.1 | 0.3 | 3.6 | — | VI–VIII/X– |
GP2 (15) | 712 | −1.8 | −2.1 | 0.9 | 11.5 | V–IX/X–X |
Date | Mean | Max | Min | Cv |
---|---|---|---|---|
5 August 2022 | 40 | 62 | 31 | 0.12 |
2 October 2022 | 46 | 75 | 34 | 0.17 |
1 April 2023 1 | 69 | 94 | 45 | 0.14 |
12 June 2023 | 23 | 46 | 10 | 0.26 |
21 June 2023 | 29 | 60 | 14 | 0.25 |
Borehole (Elevation, m) | Logger Depth, m | Level, m | Temperature, °C | Period | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Min | Max | Amplitude | Average | Min | Max | Amplitude | |||
Upper Aufeis (744) | 5.15 | 1.96 | 3.52 | 0.74 | 2.78 | 0.44 | 0.0 | 1.9 | 1.9 | 29 August 2021–4 October 2022 |
Lower Aufeis (728) | 5.50 | 0.75 | 0.86 | 0.43 | 0.43 | 1.70 | 0.3 | 4.5 | 4.2 | 29 August 2021–6 October 2022 |
Solontcovy (803) | 6.65 | 5.39 | 6.45 | 2.94 | 3.51 | 1.52 | 0.1 | 3.3 | 3.2 | 1 September 2021–6 October 2022 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarieva, O.; Zemlianskova, A.; Abramov, D.; Nesterova, N.; Ostashov, A. Geocryological Conditions of Small Mountain Catchment in the Upper Kolyma Highland (Northeastern Asia). Geosciences 2024, 14, 88. https://doi.org/10.3390/geosciences14040088
Makarieva O, Zemlianskova A, Abramov D, Nesterova N, Ostashov A. Geocryological Conditions of Small Mountain Catchment in the Upper Kolyma Highland (Northeastern Asia). Geosciences. 2024; 14(4):88. https://doi.org/10.3390/geosciences14040088
Chicago/Turabian StyleMakarieva, Olga, Anastasiia Zemlianskova, Dmitriy Abramov, Nataliia Nesterova, and Andrey Ostashov. 2024. "Geocryological Conditions of Small Mountain Catchment in the Upper Kolyma Highland (Northeastern Asia)" Geosciences 14, no. 4: 88. https://doi.org/10.3390/geosciences14040088
APA StyleMakarieva, O., Zemlianskova, A., Abramov, D., Nesterova, N., & Ostashov, A. (2024). Geocryological Conditions of Small Mountain Catchment in the Upper Kolyma Highland (Northeastern Asia). Geosciences, 14(4), 88. https://doi.org/10.3390/geosciences14040088