Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach
Abstract
:1. Introduction
2. Previous Studies
3. Study Area
4. Data and Methods
4.1. Data
4.2. Methods
4.2.1. Pre-Processing of SAR Data
4.2.2. DebCovG-Carto Algorithm
4.2.3. Semi-Automatic Processing
5. Results
6. Discussion
6.1. Regional Distribution of Supra-Glacial Debris Cover
6.2. Increased Supra-Glacial Debris Cover between 2014 and 2020
6.3. Possible Causes of Increased Supra-Glacial Debris Cover
6.4. Limitation of the DebCovG-Carto Toolbox
6.5. Comparison with Other Mountainous Regions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Satellite | Acquisition Date | Spatial Resolution (m) | Orbit | Pass | Polarisation | Scene ID |
---|---|---|---|---|---|---|
Sentinel-1B | 07/09/2020 | 5 × 20 | 145 | Ascending | VV-VH | S1B_IW_SLC__1SDV_20200907T151029_20200907T151055_023271_02C31A_D7C6 |
Sentinel-1A | 03/09/2020 | 5 × 20 | 174 | Ascending | VV-VH | S1A_IW_SLC__1SDV_20200903T145435_20200903T145502_034196_03F8FE_EEA3 |
Sentinel-1A | 03/09/2020 | 5 × 20 | 174 | Ascending | VV-VH | S1A_IW_SLC__1SDV_20200903T145410_20200903T145437_034196_03F8FE_30A6 |
Sentinel-1B | 02/09/2020 | 5 × 20 | 72 | Ascending | VV-VH | S1B_IW_SLC__1SDV_20200902T150201_20200902T150234_023198_02C0DB_5C4F |
Sentinel-1A | 29/08/2020 | 5 × 20 | 101 | Ascending | VV-VH | S1A_IW_SLC__1SDV_20200829T144559_20200829T144627_034123_03F67C_0DD0 |
Sentinel-1B | 26/08/2020 | 5 × 20 | 145 | Ascending | VV-VH | S1B_IW_SLC__1SDV_20200826T151028_20200826T151055_023096_02BDA5_7424 |
Sentinel-1A | 22/08/2020 | 5 × 20 | 174 | Ascending | VV-VH | S1A_IW_SLC__1SDV_20200822T145434_20200822T145501_034021_03F2D7_9136 |
Sentinel-1A | 22/08/2020 | 5 × 20 | 174 | Ascending | VV-VH | S1A_IW_SLC__1SDV_20200822T145409_20200822T145436_034021_03F2D7_2728 |
Sentinel-1B | 21/08/2020 | 5 × 20 | 72 | Ascending | VV-VH | S1B_IW_SLC__1SDV_20200821T150200_20200821T150234_023023_02BB67_E53B |
Sentinel-1A | 17/08/2020 | 5 × 20 | 101 | Ascending | VV-VH | S1A_IW_SLC__1SDV_20200817T144552_20200817T144619_033948_03F04C_28A9 |
Sentinel-1A | 04/09/2020 | 5 × 20 | 6 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200904T025226_20200904T025253_034203_03F940_A473 |
Sentinel-1A | 02/09/2020 | 5 × 20 | 152 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200902T030826_20200902T030853_034174_03F840_683E |
Sentinel-1B | 01/09/2020 | 5 × 20 | 50 | Descending | VV-VH | S1B_IW_SLC__1SDV_20200901T031546_20200901T031616_023176_02C019_FEA2 |
Sentinel-1A | 31/08/2020 | 5 × 20 | 123 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200831T032428_20200831T032455_034145_03F74A_71BA |
Sentinel-1A | 28/08/2020 | 5 × 20 | 79 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200828T030027_20200828T030054_034101_03F5A9_15D7 |
Sentinel-1A | 28/08/2020 | 5 × 20 | 79 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200828T030002_20200828T030029_034101_03F5A9_F446 |
Sentinel-1A | 23/08/2020 | 5 × 20 | 6 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200823T025225_20200823T025252_034028_03F31A_D6BE |
Sentinel-1A | 21/08/2020 | 5 × 20 | 152 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200821T030825_20200821T030852_033999_03F213_751F |
Sentinel-1B | 20/08/2020 | 5 × 20 | 50 | Descending | VV-VH | S1B_IW_SLC__1SDV_20200820T031545_20200820T031615_023001_02BA9B_A183 |
Sentinel-1A | 19/08/2020 | 5 × 20 | 123 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200819T032427_20200819T032454_033970_03F121_5D1A |
Sentinel-1A | 16/08/2020 | 5 × 20 | 79 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200816T030026_20200816T030053_033926_03EF81_1BDB |
Sentinel-1A | 16/08/2020 | 5 × 20 | 79 | Descending | VV-VH | S1A_IW_SLC__1SDV_20200816T030001_20200816T030028_033926_03EF81_CFE8 |
Satellite | Spatial Resolution (m) | Acquisition Date | Spectral Bands | Scene |
---|---|---|---|---|
Sentinel-2B | 10 (B11–20 m) | 04/09/2020 | B3, B4, B8, B11 | 37TFJ |
Sentinel-2B | 10 (B11–20 m) | 04/09/2020 | B3, B4, B8, B11 | 37TFH |
Sentinel-2B | 10 (B11–20 m) | 04/09/2020 | B3, B4, B8, B11 | 37TGH |
Sentinel-2B | 10 (B11–20 m) | 04/09/2020 | B3, B4, B8, B11 | 37TEJ |
Sentinel-2B | 10 (B11–20 m) | 04/09/2020 | B3, B4, B8, B11 | 37TGJ |
Sentinel-2B | 10 (B11–20 m) | 05/09/2020 | B3, B4, B8, B11 | 38TQL |
Sentinel-2B | 10 (B11–20 m) | 05/09/2020 | B3, B4, B8, B11 | 38TPM |
Sentinel-2B | 10 (B11–20 m) | 05/09/2020 | B3, B4, B8, B11 | 38TPL |
Sentinel-2B | 10 (B11–20 m) | 11/09/2020 | B3, B4, B8, B11 | 38TMN |
Sentinel-2B | 10 (B11–20 m) | 11/09/2020 | B3, B4, B8, B11 | 38TLN |
Sentinel-2B | 10 (B11–20 m) | 15/08/2019 | B3, B4, B8, B11 | 38TNN |
Sentinel-2B | 10 (B11–20 m) | 15/08/2019 | B3, B4, B8, B11 | 38 TNM |
Sentinel-2B | 10 (B11–20 m) | 22/08/2019 | B3, B4, B8, B11 | 39TTF |
Sentinel-2B | 10 (B11–20 m) | 23/08/2019 | B3, B4, B8, B11 | 38TMN |
DEM Type | Spatial Resolution (m) | Acquisition Date | Scene ID |
---|---|---|---|
ALOS-PALSAR | 12.5 | 08/06//2007 | ALPSRP074500820 |
ALOS-PALSAR | 12.5 | 10/01/2008 | ALPSRP104550840 |
ALOS-PALSAR | 12.5 | 07/01/2007 | ALPSRP050870840 |
ALOS-PALSAR | 12.5 | 11/06/2007 | ALPSRP073480840 |
ALOS-PALSAR | 12.5 | 08/07/2007 | ALPSRP077420860 |
ALOS-PALSAR | 12.5 | 08/07/2007 | ALPSRP077420870 |
ALOS-PALSAR | 12.5 | 06/09/2007 | ALPSRP073190860 |
ALOS-PALSAR | 12.5 | 03/07/2007 | ALPSRP076690860 |
ALOS-PALSAR | 12.5 | 15/07/2007 | ALPSRP078440840 |
ALOS-PALSAR | 12.5 | 15/07/2007 | ALPSRP078440850 |
ALOS-PALSAR | 12.5 | 22/07/2008 | ALPSRP132850850 |
ALOS-PALSAR | 12.5 | 22/07/2008 | ALPSRP132850860 |
ALOS-PALSAR | 12.5 | 03/07/2007 | ALPSRP076690850 |
ALOS-PALSAR | 12.5 | 03/07/2007 | ALPSRP076690840 |
ALOS-PALSAR | 12.5 | 21/06/2007 | ALPSRP074940860 |
ALOS-PALSAR | 12.5 | 21/06/2007 | ALPSRP074940850 |
ALOS-PALSAR | 12.5 | 16/06/2007 | ALPSRP074210860 |
ALOS-PALSAR | 12.5 | 16/06/2007 | ALPSRP074210850 |
ALOS-PALSAR | 12.5 | 16/06/2007 | ALPSRP074210840 |
ALOS-PALSAR | 12.5 | 26/12/2006 | ALPSRP049120850 |
ALOS-PALSAR | 12.5 | 26/12/2006 | ALPSRP049120840 |
ASTER-GDEM | 30 | 01/03/2000–30/11/2013 | ASTGTMV003_N42E045 |
ASTER-GDEM | 30 | 01/03/2000–30/11/2013 | ASTGTMV003_N42E046 |
ASTER-GDEM | 30 | 01/03/2000–30/11/2013 | ASTGTMV003_N41E046 |
ASTER-GDEM | 30 | 01/03/2000–30/11/2013 | ASTGTMV003_N41E047 |
References
- Lin, R.; Mei, G.; Xu, N. Accurate and automatic mapping of complex debris-covered glacier from remote sensing imagery using deep convolutional networks. Geol. J. 2022, 58, 2254–2267. [Google Scholar] [CrossRef]
- Herreid, S.; Pellicciotti, F. The state of rock debris covering Earth’s glaciers. Nat. Geosci. 2020, 13, 621–627. [Google Scholar] [CrossRef]
- Istrem, G. Ice Melting under a Thin Layer of Moraine, and the Existence of Ice Cores in Moraine Ridges. Geogr. Ann. 1959, 41, 228–230. Available online: https://www.jstor.org/stable/4626805 (accessed on 9 March 2024).
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Pellicciotti, F.; Stephan, C.; Miles, E.; Herreid, S.; Immerzeel, W.W.; Bolch, T. Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, from 1974 to 1999. J. Glaciol. 2015, 61, 373–386. [Google Scholar] [CrossRef]
- Brun, F.; Wagnon, P.; Berthier, E.; Jomelli, V.; Maharjan, S.B.; Shrestha, F.; Kraaijenbrink, P.D.A. Heterogeneous Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia. J. Geophys. Res. Earth Surf. 2019, 124, 1331–1345. [Google Scholar] [CrossRef]
- Reid, T.; Brock, B. Assessing ice-cliff backwasting and its contribution to total ablation of debris-covered Miage glacier, Mont Blanc massif, Italy. J. Glaciol. 2014, 60, 3–13. [Google Scholar] [CrossRef]
- Brun, F.; Wagnon, P.; Berthier, E.; Shea, J.M.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Vincent, C.; Reverchon, C.; Shrestha, D.; Arnaud, Y. Ice cliff contribution to the tongue-wide ablation of Changri Nup Glacier, Nepal, central Himalaya. Cryosphere 2018, 12, 3439–3457. [Google Scholar] [CrossRef]
- Miles, K.E.; Hubbard, B.; Irvine-Fynn, T.D.; Miles, E.S.; Quincey, D.J.; Rowan, A.V. Hydrology of debris-covered glaciers in High Mountain Asia. Earth-Sci. Rev. 2020, 207, 103212. [Google Scholar] [CrossRef]
- Sakai, A.; Takeuchi, N.; Fujita, K.; Nakawo, M. Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. Int. Assoc. Hydrol. Sci. 2000, 264, 119–130. [Google Scholar]
- Sahu, R.; Ramsankaran, R.; Bhambri, R.; Verma, P.; Chand, P. Evolution of Supraglacial Lakes from 1990 to 2020 in the Himalaya–Karakoram Region Using Cloud-Based Google Earth Engine Platform. J. Indian Soc. Remote Sens. 2023, 51, 2379–2390. [Google Scholar] [CrossRef]
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on Ocean and the Cryosphere in a Changing Climate (SROCC); IPCC: Geneva, Switzerland, 2019; pp. 131–202. [Google Scholar] [CrossRef]
- Le Bris, R.; Paul, F.; Frey, H.; Bolch, T. A new satellite-derived glacier inventory for western Alaska. Ann. Glaciol. 2011, 52, 135–143. [Google Scholar] [CrossRef]
- Fleischer, F.; Otto, J.; Junker, R.R.; Hölbling, D. Evolution of debris cover on glaciers of the Eastern Alps, Austria, between 1996 and 2015. Earth Surf. Process. Landf. 2021, 46, 1673–1691. [Google Scholar] [CrossRef]
- Stokes, C.R.; Popovnin, V.V.; Aleynikov, A.; Shahgedanova, M. Recent glacier retreat in the Caucasus Mountains, Russia, and associated changes in supraglacial debris cover and supra/proglacial lake development. Ann. Glaciol. 2007, 46, 196–203. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Bolch, T.; Wheate, R.D.; Kutuzov, S.S.; Lavrentiev, I.I.; Zemp, M. Supra-glacial debris cover changes in the Greater Caucasus from 1986 to 2014. Cryosphere 2020, 14, 585–598. [Google Scholar] [CrossRef]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.; Kamp, U. Expanded and Recently Increased Glacier Surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Bhambri, R.; Bolch, T.; Chaujar, R.K. Mapping of debris-covered glaciers in the Garhwal Himalayas using ASTER DEMs and thermal data. Int. J. Remote Sens. 2011, 32, 8095–8119. [Google Scholar] [CrossRef]
- Shukla, A.; Garg, P.K. Evolution of a debris-covered glacier in the western Himalaya during the last four decades (1971–2016): A multiparametric assessment using remote sensing and field observations. Geomorphology 2019, 341, 1–14. [Google Scholar] [CrossRef]
- Sahu, R.; Gupta, R.D. Glacier mapping and change analysis in Chandra basin, Western Himalaya, India during 1971–2016. Int. J. Remote Sens. 2020, 41, 6914–6945. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Arnaud, Y.; Williams, M.W.; Ordoñez, J. Decadal changes in glacier parameters in the Cordillera Blanca, Peru, derived from remote sensing. J. Glaciol. 2008, 54, 499–510. [Google Scholar] [CrossRef]
- Janke, J.R.; Bellisario, A.C.; Ferrando, F.A. Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 2015, 241, 98–121. [Google Scholar] [CrossRef]
- Röhl, K. Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand. J. Glaciol. 2008, 54, 867–880. [Google Scholar] [CrossRef]
- Anderson, B.; Mackintosh, A. Controls on mass balance sensitivity of maritime glaciers in the Southern Alps, New Zealand: The role of debris cover. J. Geophys. Res. Earth Surf. 2012, 117, 1–15. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.K.; Snehmani; Singh, M.K.; Sam, L.; Gupta, R.D. Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Reg. Sci. Technol. 2014, 106–107, 161–174. [Google Scholar] [CrossRef]
- Herman, F.; De Doncker, F.; Delaney, I.; Prasicek, G.; Koppes, M. The impact of glaciers on mountain erosion. Nat. Rev. Earth Environ. 2021, 2, 422–435. [Google Scholar] [CrossRef]
- Benn, D.; Bolch, T.; Hands, K.; Gulley, J.; Luckman, A.; Nicholson, L.; Quincey, D.; Thompson, S.; Toumi, R.; Wiseman, S. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Sci. Rev. 2012, 114, 156–174. [Google Scholar] [CrossRef]
- Huggel, C.; Zgraggen-Oswald, S.; Haeberli, W.; Kääb, A.; Polkvoj, A.; Galushkin, I.; Evans, S.G. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat. Hazards Earth Syst. Sci. 2005, 5, 173–187. [Google Scholar] [CrossRef]
- Chernomorets, S.S.; Petrakov, D.A.; Aleynikov, A.A.; Bekkiev, M.Y.; Viskhadzhieva, K.S.; Dokukin, M.D.; Kalov, R.K.; Kidyaeva, V.M.; Krylenko, V.V.; Krylenko, I.V.; et al. The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 2017. Earth’s Cryosph. 2018, 22, 70–80. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Charton, J.; Jomelli, V.; Solomina, O.N. Glacial geomorphology of the Notsarula and Chanchakhi river valleys, Georgian Caucasus. J. Maps 2023, 19, 2261490. [Google Scholar] [CrossRef]
- Alifu, H.; Vuillaume, J.-F.; Johnson, B.A.; Hirabayashi, Y. Machine-learning classification of debris-covered glaciers using a combination of Sentinel-1/-2 (SAR/optical), Landsat 8 (thermal) and digital elevation data. Geomorphology 2020, 369, 107365. [Google Scholar] [CrossRef]
- Holobâcă, I.-H.; Tielidze, L.G.; Ivan, K.; Elizbarashvili, M.; Alexe, M.; Germain, D.; Petrescu, S.H.; Pop, O.T.; Gaprindashvili, G. Multi-sensor remote sensing to map glacier debris cover in the Greater Caucasus, Georgia. J. Glaciol. 2021, 67, 685–696. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Nosenko, G.A.; Khromova, T.E.; Paul, F. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020. Cryosphere 2022, 16, 489–504. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Nosenko, G.; Kutuzov, S.; Rototaeva, O.; Khromova, T. Deglaciation of the Caucasus Mountains, Russia/Georgia, in the 21st century observed with ASTER satellite imagery and aerial photography. Cryosphere 2014, 8, 2367–2379. [Google Scholar] [CrossRef]
- Tielidze, L.G. Glacier change over the last century, Caucasus Mountains, Georgia, observed from old topographical maps, Landsat and ASTER satellite imagery. Cryosphere 2016, 10, 713–725. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Jomelli, V.; Nosenko, G.A. Analysis of Regional Changes in Geodetic Mass Balance for All Caucasus Glaciers over the Past Two Decades. Atmosphere 2022, 13, 256. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Hagg, W.; Popovnin, V.; Rezepkin, A.; Lomidze, N.; Svanadze, D. A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. Cryosphere 2011, 5, 525–538. [Google Scholar] [CrossRef]
- Popovnin, V.V.; Rezepkin, A.A.; Tielidze, L.G. Superficial moraine expansion on the Djankuat Glacier snout over the direct glaciological monitoring period. Earth Cryosphere 2015, 1, 79–87. [Google Scholar]
- Tielidze, L.G.; Svanadze, D.; Gadrani, L.; Asanidze, L.; Wheate, R.D.; Hamilton, G.S. A 54-year record of changes at Chalaati and Zopkhito glaciers, Georgian Caucasus, observed from archival maps, satellite imagery, drone survey and ground-based investigation. Hung. Geogr. Bull. 2020, 69, 175–189. [Google Scholar] [CrossRef]
- Scherler, D.; Wulf, H.; Gorelick, N. Global Assessment of Supraglacial Debris-Cover Extents. Geophys. Res. Lett. 2018, 45, 11798–11805. [Google Scholar] [CrossRef]
- Postnikova, T.; Rybak, O.; Gubanov, A.; Zekollari, H.; Huss, M.; Shahgedanova, M. Debris cover effect on the evolution of Northern Caucasus glaciers in the 21st century. Front. Earth Sci. 2023, 11, 1256696. [Google Scholar] [CrossRef]
- Gobejishvili, R.; Lomidze, N.; Tielidze, L. Late Pleistocene (Wurmian) glaciations of the Caucasus. In Quaternary Glaciations: Extent and Chronology; Ehlers, J., Gibbard, P.L., Hughes, P.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 141–147. [Google Scholar] [CrossRef]
- Bochud, M. Tectonics of the Eastern Greater Caucasus in Azerbaijan. Ph.D. Thesis, Faculty of Sciences of the University of Fribourg, Fribourg, Switzerland, 2011. [Google Scholar]
- Rototaeva, O.V.; Nosenko, G.A.; Tarasova, L.N.; Khmelevskoy, I.F. Obschaya kharakteristika oledeneniya severnogo sklona Bolshogo Kavkaza (General characteristics of glacierization of the north slope of the Gteater Caucasus). In Sovremennoe Oledenenie Severnoi i Tsentralnoi Evrazii (Glaciation in North and Central Eurasia at Present Time); Kotlakov, V.M., Ed.; Nauka Press: Moscow, Russia, 2006; pp. 141–144. (In Russian) [Google Scholar]
- Volodicheva, N. The Caucasus. In The Physical Geography of Northern Eurasia; Shahgedanova, M., Ed.; Oxford University Press: Oxford, UK, 2002; pp. 350–376. [Google Scholar]
- Toropov, P.A.; Aleshina, M.A.; Grachev, A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. Int. J. Climatol. 2019, 39, 4703–4720. [Google Scholar] [CrossRef]
- Sylvén, M.; Reinvang, R.; Andersone-Lilley, Ž. Climate Change in Southern Caucasus: Impacts on Nature, People and Society; World Wildlife Fund Overview Report; WWF Norway WWF Caucasus Programme; Zoï Environment Network: Geneva, Switzerland, 2008. [Google Scholar]
- Holobâcă, I.-H. Recent retreat of the Elbrus glacier system. J. Glaciol. 2016, 62, 94–102. [Google Scholar] [CrossRef]
- Popovnin, V.V.; Rozova, A.V. Influence of Sub-Debris Thawing on Ablation and Runoff of the Djankuat Glacier in the Caucasus. Hydrol. Res. 2002, 33, 75–94. [Google Scholar] [CrossRef]
- Holobâcă, I.-H. Glacier Mapper–a new method designed to assess change in mountain glaciers. Int. J. Remote Sens. 2013, 34, 8475–8490. [Google Scholar] [CrossRef]
- Raup, B.; Racoviteanu, A.; Khalsa, S.J.S.; Helm, C.; Armstrong, R.; Arnaud, Y. The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob. Planet. Chang. 2007, 56, 101–110. [Google Scholar] [CrossRef]
- Graceson, A.; Hare, M.; Hall, N.; Monaghan, J. Use of inorganic substrates and composted green waste in growing media for green roofs. Biosyst. Eng. 2014, 124, 1–7. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Cicoira, A.; Nosenko, G.A.; Eaves, S.R. The First Rock Glacier Inventory for the Greater Caucasus. Geosciences 2023, 13, 117. [Google Scholar] [CrossRef]
- Hambrey, M.J.; Quincey, D.J.; Glasser, N.F.; Reynolds, J.M.; Richardson, S.J.; Clemmens, S. Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal. Quat. Sci. Rev. 2008, 27, 2361–2389. [Google Scholar] [CrossRef]
- Xie, F.; Liu, S.; Wu, K.; Zhu, Y.; Gao, Y.; Qi, M.; Duan, S.; Saifullah, M.; Tahir, A.A. Upward Expansion of Supra-Glacial Debris Cover in the Hunza Valley, Karakoram, During 1990∼2019. Front. Earth Sci. 2020, 8, 1–18. [Google Scholar] [CrossRef]
- Deline, P.; Gruber, S.; Delaloye, R.; Fischer, L.; Geertsema, M.; Giardino, M.; Hasler, A.; Kirkbride, M.; Krautblatter, M.; Magnin, F.; et al. Ice loss and slope stability in high-mountain regions. In Snow and Ice-Related Hazards, Risks and Disasters; Haeberli, W., Whiteman, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 521–561. [Google Scholar] [CrossRef]
- Nakawo, M.; Iwata, S.; Watanabe, O.; Yoshida, M. Processes which Distribute Supraglacial Debris on the Khumbu Glacier, Nepal Himalaya. Ann. Glaciol. 1986, 8, 129–131. [Google Scholar] [CrossRef]
- Shokory, J.A.N.; Lane, S.N. Patterns and drivers of glacier debris-cover development in the Afghanistan Hindu Kush Himalaya. J. Glaciol. 2023, 69, 1–15. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, G.; Lv, X.; Zhou, L.; Wang, X.; He, X.; Tian, Z. Warming Has Accelerated the Melting of Glaciers on the Tibetan Plateau, but the Debris-Covered Glaciers Are Rapidly Expanding. Remote Sens. 2022, 15, 132. [Google Scholar] [CrossRef]
- Glasser, N.F.; Holt, T.; Evans, Z.D.; Davies, B.J.; Pelto, M.; Harrison, S. Recent spatial and temporal variations in debris cover on Patagonian glaciers. Geomorphology 2016, 273, 202–216. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Zhou, J.M.; Zhang, P. An automatic method for clean glacier and nonseasonal snow area change estimation in High Mountain Asia from 1990 to 2018. Remote Sens. Environ. 2021, 258, 112376. [Google Scholar] [CrossRef]
Data Type | Resolution (m) | First Image Acquisition Date | Last Image Acquisition Date | Number of Images |
---|---|---|---|---|
Sentinel-1 | 5 × 20 | 16.08.2020 | 07.09.2020 | 22 |
Sentinel-2 | 10 * | 15.08.2019 | 11.09.2020 | 14 |
PALSAR DEM | 12.5 | 08.06.2007 | 22.07.2008 | 21 |
ASTER-GDEM | 30 | 17.11.2011 | 17.11.2011 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tielidze, L.G.; Iacob, G.; Holobâcă, I.H. Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach. Geosciences 2024, 14, 178. https://doi.org/10.3390/geosciences14070178
Tielidze LG, Iacob G, Holobâcă IH. Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach. Geosciences. 2024; 14(7):178. https://doi.org/10.3390/geosciences14070178
Chicago/Turabian StyleTielidze, Levan G., George Iacob, and Iulian Horia Holobâcă. 2024. "Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach" Geosciences 14, no. 7: 178. https://doi.org/10.3390/geosciences14070178
APA StyleTielidze, L. G., Iacob, G., & Holobâcă, I. H. (2024). Mapping of Supra-Glacial Debris Cover in the Greater Caucasus: A Semi-Automated Multi-Sensor Approach. Geosciences, 14(7), 178. https://doi.org/10.3390/geosciences14070178