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Abstract: Given the rapid expansion of offshore wind development in the United States (US), the
accurate mapping of benthic habitats, specifically surficial sediments, is essential for mitigating
potential impacts on these valuable ecosystems. However, offshore wind development has outpaced
results from environmental monitoring efforts, compelling stakeholders to rely on a limited set of
public geospatial data for conducting impact assessments. The present study therefore sought to
develop and evaluate a systematic workflow for generating regional-scale sediment maps using
public geospatial data that may pose integration and modeling challenges. To demonstrate this
approach, sediment distributions were characterized on the northeastern US continental shelf where
offshore wind development has occurred since 2016. Publicly available sediment and bathymetric
data in the region were processed using national classification standards and spatial tools, respectively,
and integrated using a machine learning algorithm to predict sediment occurrence. Overall, this
approach and the generated sediment composite effectively predicted sediment distributions in
coastal areas but underperformed in offshore areas where data were either scarce or of poor quality.
Despite these shortcomings, this study builds on benthic habitat mapping efforts and highlights
the need for regional collaboration to standardize seafloor data collection and sharing activities for
supporting offshore wind energy decisions.

Keywords: offshore wind; benthic habitat mapping; sediment distribution; geospatial datasets;
acoustic remote sensing data; sediment observations; machine learning; spatial analysis

1. Introduction

Offshore wind is widely recognized as a valuable source of clean and renewable energy
for addressing energy demands and climate change impacts [1,2]. In the United States
(US), the Biden–Harris Administration set an ambitious goal of deploying 30 gigawatts
(GW) of offshore wind energy capacity by 2030 and establish a pathway to deploying
at least 110 GW by 2050 to strengthen energy security and reduce carbon emissions [3].
Since the first commercial offshore wind farm became operational in 2016, the US has
made significant strides in the development of commercial offshore wind energy projects
to decrease fossil fuel dependency, limit carbon emissions, and mitigate climate change
impacts. However, while driven by the desire to mitigate climate change, offshore wind
technology and construction processes are relatively novel and there is growing concern
among ocean user groups about potential impacts on marine ecosystems. With a potential
generating capacity of over 50 GW across 32 active lease developments in the US offshore
wind energy project pipeline to date [4,5], there is a significant need to understand these
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interactions to avoid, minimize, and mitigate adverse impacts and ensure coexistence of
offshore wind development with marine ecosystems and the communities they support [6].

While observed to exert pressure on various ecological [7] and socio-economic
systems [8], all offshore wind development activities will interact with and potentially alter
the seafloor and its benthic ecosystems. Marine benthic habitats are physically distinct
areas of seabed that provide essential resources, such as space for shelter, feeding, and
reproduction, to the biological communities that are associated with them [9]. Structurally
complex habitats, including natural hard bottom environments composed of gravel, cobble,
and boulder substrates, are particularly valuable to the regions they occupy as they directly
and indirectly support a variety of ecosystems services that benefit ecological processes and
society [10–12]. However, habitat disturbances and losses can cause significant changes
in species richness and abundance [13,14] and are expected to be increasingly dominant
threats to marine wildlife [15]. Even in instances where a habitat is not lost but altered, like
with the introduction of new habitats from offshore wind infrastructure, ecosystem struc-
ture and functioning can be impacted [16,17]. Given the rapid expansion of offshore wind
planning into new areas on the US outer continental shelf, understanding the distribution
of benthic habitats over large areas is fundamental to the long-term sustainability of these
benthic ecosystems and the communities they support.

Mapping the distribution of benthic habitats, particularly surficial sediments, is a
challenging task due to the availability and coverage of environmental data [18]. Benthic
habitats are inherently variable as they are influenced by a variety of physical, chemical,
and biological elements over multiple temporal and spatial scales that make it difficult to
sample and obtain comprehensive geospatial datasets for analysis [19]. Direct sediment or
in situ sampling field efforts provide detailed sediment information for the small portion of
seafloor that they sample. However, these methods are typically costly in terms of effort and
financial investment and make it difficult to accurately represent seafloor characteristics
over broad areas [19,20]. Acoustic remote sensing methods, in contrast, collect wide
swaths of seafloor information and can effectively map an entire study area [21–24]. Multi-
beam echosounders, for instance, can simultaneously collect bathymetric and backscatter
data, which have been used effectively to interpret sediment distributions by identifying
seafloor features with geologic relevance [22,25] and seafloor physical properties [26],
respectively. Yet, characterizing seafloor sediment types from remote sensing data requires
the integration of direct sampling or “ground truth” information to derive geologically
meaningful maps, which have been reviewed by [19].

With the dramatic increase in digital data, computational processing, and spatial
analysis software, there are now a variety of modern approaches for integrating sedi-
ment information from direct sampling and remotely sensed environmental datasets to
accurately map benthic sediment distributions. Supervised empirical models, including
regression and generalized models and classifiers, have been broadly adopted over the last
decade due to their predictive performance and objectivity for producing habitat maps, as
reviewed by [19]. In comparison to manual interpretation methods, supervised empirical
models identify statistical relationships between ground truth sediment samples (response
variable) and environmental data at sampling locations (explanatory variables), allowing
for the prediction of sediment types at unsampled locations and generation of full-coverage
maps when coupled with continuous environmental data [27]. However, the validity and
predictive accuracy of empirical models depend on how well data meet underlying model
assumptions [28], which is challenging when working with data collected from complex
benthic ecosystems. Consequently, more automated machine learning algorithms, includ-
ing random forests, maximum entropy, and clustering techniques, are being favored due
to their ability to model complex and nonlinear relationships without needing to satisfy
restrictive assumptions required by empirical models [29]. Such approaches can explain
and predict ecological patterns with high accuracy [29] and have shown great promise
when mapping the distribution of benthic habitats [27,30–33].
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Despite these technological and analytical advancements, most of the ocean floor
remains unmapped and unexplored [34]. To complicate matters further, offshore wind
development has progressed faster than the establishment of monitoring plans that gather
sediment distribution data and objectively contextualize potential impacts. Proactive siting
and pre-construction impact assessments therefore often capitalize on in situ sediment
observations and remotely sensed environmental data from online public repositories to
guide decision-making activities. However, differences in mapping objectives, the intro-
duction of new technologies over time, and lack of technical processing standards have
resulted in an assortment of seafloor data that not only vary by coverage but also type
and quality. For instance, despite the value of backscatter information for interpreting
seafloor substrates and benthic habitats [22,26], current global seafloor mapping efforts
focus primarily on acquiring bathymetry over a range of resolutions [35]. Reported metrics
for in situ sediment observations can also vary depending on sampling method, ranging
from quantitative measures (e.g., grain size) to more qualitative classifications (e.g., sedi-
ment type). Such differences and gaps can prevent the integration of mutually exclusive
datasets and effectively interfere with the transfer of knowledge for evaluating complex
processes [36].

Given the ever increasing need to understand baseline conditions to inform offshore
wind development activities, the development of objective, quantitative, and repeatable
workflows with seafloor information from public repositories is vital for making environ-
mentally sustainable decisions in a timely manner. To this end, the overall goal of this
study was to develop and evaluate a standardized approach for generating comprehensive
and regional-scale sediment maps using publicly accessible data that may pose integration
and modeling challenges. This study specifically sought to illustrate the utility of national
classification standards and spatial analysis tools for establishing consistent data structures
and machine learning algorithms and other statistics for modeling complex, non-linear
relationships and making objective decisions. The results of this study will establish recom-
mendations for pursuing similar desktop-based mapping efforts to inform stakeholders
invested in project-specific and regional scale offshore energy development.

2. Materials and Methods
2.1. Study Area

To demonstrate our methodology, we characterized sediment distributions on the
northeastern U.S. continental shelf, specifically off the coast of southern New England
between Long Island, New York and Nantucket Island, Massachusetts (Figure 1). The
study area includes over 3100 square kilometers (km2) of continental shelf gently sloping to
depths of 95 m and encompasses features such as Rhode Island Sound, Nantucket Sound,
and the Nantucket Shoals. Sand is the predominant surficial sediment type on the shelf
with small, localized areas of sand–shell and sand–gravel. Fine sediments are also common
in the study area off southern New England, where tidal currents slow significantly and
allow silts and clays to settle out and mix with sand [37]. Hard bottom habitats consisting
of gravel, cobble, or boulders, while limited in their spatial distribution over this region, are
known to support a diverse and abundant assemblage of economically important resources,
including American lobsters (Homarus americanus) [38], longfin squid (Loligo pealei) [39,40],
and Atlantic cod (Gadus morhua) [41].

Given the predominance of bathymetric resources both globally [34] and in this
region [42] over other remotely sensed environmental data, we only considered bathy-
metric data in this study to demonstrate spatial processing and modeling challenges that
could be encountered in other regions. Preliminary investigations of publicly available
geospatial data also indicated sediment sample locations and bathymetric features occurred
more frequently in shallow areas on the continental shelf. Therefore, to increase confidence
in outputs from the modeling approach, we divided the study area into two subareas
(i.e., “nearshore” and “offshore”) using the 45 m bathymetric contour.
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Figure 1. Data collected within the study area off the northeastern United States in the waters south of
Connecticut (CT), Rhode Island (RI), and Massachusetts (MA). Bathymetric data are visually depicted
using a color gradient in the background, whereas in situ sediment sampling data are shown with
black dots in the foreground.

2.2. Data Collection and Formatting

A desktop study was conducted to collect and evaluate the suitability of existing and
publicly accessible geospatial datasets within the designated study area. Regional in situ
sediment observations and bathymetric raster data were collected from various public
sources, including those hosted by federal agencies (e.g., Bureau of Ocean Energy Manage-
ment, US Geological Survey [USGS], National Oceanic and Atmosphere Administration),
academic institutions, and non-governmental organizations. Data from the Bureau of
Ocean Energy Management also included sediment observations listed in site assessment
and characterization reports from recent offshore wind activities in the study area. Search
queries were limited to georeferenced (i.e., spatially defined) datasets across all study
years to maximize sediment observations and bathymetric data coverage over the study
area. Tabular sediment observation records were preferred over other popular geospatial
file types (e.g., vector polygons, raster imagery) to exclude interpolated sediment results.
Given that no laboratory analyses were anticipated to further process sediment field data
(e.g., text extractions, review of towed video data), only sediment observation records with
grain size estimates and other quantitative information were considered. As mentioned
previously, only bathymetry raster data were considered due to their availability over other
seafloor data types (e.g., backscatter) and ability to provide continuous environmental data
throughout the study area.

In brief, a total of twelve geospatial datasets, including nine sediment datasets and
three bathymetric datasets, were found on websites hosted by federal and state agencies and
non-profit organizations. In situ sediment observations (n = 11,744) were primarily sourced
from the USGS US Seafloor Sediment Database (usSEABED), USGS East-Coast Sediment
Texture Database, and directed benthic assessments for select areas off southern New
England, including efforts within offshore wind development areas. The usSEABED and
East-Coast Sediment Texture databases are comprehensive repositories of sediment texture
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data from numerous marine sampling programs over several decades. Consequently,
sediment records were collected primarily between 1930 and 2020 with some records
dating back to 1842 (Supplementary Figure S1) and sampled with a variety of sediment
sampling (e.g., sediment grabs, cores) and underwater imagery (e.g., sediment profile
imaging, plan view imaging, drop-camera, and towed video) methods. Bathymetric data
products were available from data repositories hosted by federal agencies (i.e., USGS) and
non-profit organizations (i.e., The Nature Conservancy). These products ranged from 2-m
to 250-m in resolution and were compiled using acoustic remote sensing data primarily
collected in the early 21st century (2001–2015) and extending as far back as 1851. Sediment
observations and bathymetric data products were provided in a variety of file formats for
ingestion and processing, including spreadsheets, geospatial features, and printed tables
in reports for sediment datasets and software-specific raster files for bathymetric data
products. Additional metadata for each sediment and bathymetric dataset are available in
Supplementary Table S1.

Collected geospatial data were then processed accordingly to ensure data structures
were consistent for anticipated modeling routines. In situ sediment observations, for
instance, were reclassified into Substrate Group and Substrate Subgroup sediment classifi-
cations defined by the Coastal and Marine Ecological Classification Standard (CMECS), a
US-based framework for classifying and describing coastal and marine ecosystems [43].
Sediment results presented as grain sizes were converted to these CMECS sediment classes
using grain size descriptor crosswalks (Table 1) [43,44]. CMECS sediment class definitions
were also used to reclassify in situ sediment observations presented as proportions of each
major Substrate Group. Given the number of Substrate Group and Substrate Subgroup
combinations, CMECS sediment groupings were used to generalize in situ sediment ob-
servations into five “determined sediment classes”, specifically Gravel (n = 1178), Gravel
Mixes (n = 613), Gravelly (n = 413), Sand (n = 6358), and Sand–Mud Mix (n = 3182), to
reduce complexity.

Table 1. Sediment grain size classification descriptors for the Wentworth Scale [44] and the Coastal
and Marine Ecological Classification Standard (CMECS) [43].

Wentworth Scale CMECS 1

Phi Size
(Φ)

Size Range
(mm) Size Class

Substrate Group
(Substrate

Subgroup) 2

Grain Size
(mm)

Class Sizes
(phi)

Gravel 3 2 to <4096 −1 to <−12
<−8 >256 Boulder (Boulder) 256 to <4096 −8 to <−12

−7 to −8 128 to 256 Cobble
(Cobble) 64 to <256 −6 to <−8−6 to −7 64 to 128 Cobble

−5 to −6 32 to 64 Very coarse pebble

(Pebble) 4 to <64 −1 to <−6
−4 to −5 16 to 32 Coarse pebble
−3 to −4 8 to 16 Medium pebble
−2 to −3 4 to 8 Fine pebble
−1 to −2 2 to 4 Very fine pebble (Granule) 2 to <4 −1 to <−2

Sand 0.0625 to <2 4 to <−1
0 to −1 1 to 2 Very coarse sand (Very Coarse Sand) 1 to <2 0 to <−1
1 to 0 0.5 to 1 Coarse sand (Coarse Sand) 0.5 to <1 1 to <0
2 to 1 0.25 to 0.5 Medium sand (Medium Sand) 0.25 to <0.5 2 to <1
3 to 2 0.125 to 0.25 Fine sand (Fine Sand) 0.125 to <0.25 3 to <2
4 to 3 0.0625 to 0.125 Very find sand (Very Fine Sand) 0.0625 to <0.125 4 to <3

>4 <0.0625 Silt/clay
Mud <0.0625 >4
(Silt) 0.004 to <0.0625 >4 to 8

(Clay) <0.004 >8
1 CMECS uses the term Mud to describe all particles smaller than sand (less than 0.0625 mm). 2 Values in
parentheses represent Subgroups of the overarching Substrate Group (e.g., Boulder is a Subgroup of the Substrate
Group Gravel). 3 The term Gravel is used to describe all rock fragment particles that are 2 mm or larger.
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Bathymetric data were processed and reviewed to ensure available data provided
full coverage of the study area. High-resolution geophysical raster data (i.e., 2-m reso-
lution, NOAA National Ocean Service) were down-sampled to a minimum resolution
of 8-m to balance the competing needs of data quality and computational performance.
Preliminary investigations confirmed that a decrease from the initially targeted 4 m to
8 m resolution reduced computing time and preserved patterns in predicted results
(Supplementary Figure S2). Processed geophysical raster data were finally merged into
a single mosaic dataset (that varied in resolution depending on the final source data) to
provide continuous environmental data over the study area for subsequent modeling.
Given that mosaic datasets retain the resolution of input raster data, the resolution of the
generated mosaic dataset ranged from 8 to 250 m.

2.3. Data Analysis

A systematic workflow was developed to produce a habitat delineation data product
from sediment observations and bathymetric data (Figure 2). This protocol consisted of the
following steps:

1. Selection of explanatory and response variables from the collected datasets;
2. Evaluation of bathymetric characteristics for predicting the presence of individual

sediment types (i.e., classes);
3. Generation of a sediment presence composite map from individual sediment

class predictions.
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Figure 2. Established workflow for generating a sediment composite using publicly available
geospatial data and machine learning. The workflow includes (1) the extraction and preparation of
explanatory and response variables from collected data, (2) the building and testing of maximum
entropy (MaxEnt) machine learning models for each sediment class, and (3) the generation of a
sediment composite by converting predicted sediment class likelihoods to presence–absence outputs
and overlaying them. The number of predictor variables are indicated within parentheses, whereas
the number of categories for the single response variable are shown inside brackets.

Geospatial data processing and variable extraction were conducted using Esri’s Ar-
cGIS software suite (version 10.8.2) and the Benthic Terrain Modeler extension [45], which
requires the Spatial Analyst extension. Statistical analyses were performed with the com-
puting software R (version 4.1.3) [46] and the packages “dismo” (version 1.3-5) [47] and
“rJava” (version 1.0-6) [48].

2.3.1. Variable Preparation

Sediment observations and bathymetric data were further processed to identify ap-
propriate variables for properly modeling the influence of bathymetric characteristics on
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sediment-type presence. A set of explanatory variables were initially considered and
extracted from the bathymetric mosaic dataset described previously using the Benthic
Terrain Modeler extension in Esri’s ArcGIS software suite (version 10.8.2) (Table 2). Pearson
correlation coefficients were calculated to measure the strength and direction of linear rela-
tionships between pairs of these explanatory variables, where highly correlated variables
(r > 0.6) were removed to limit model multicollinearity (Figure 3). In the end, seven of the
nine explanatory variables were retained from the bathymetric mosaic dataset to predict
the presence of benthic sediments. These seven variables included depth, slope, aspect
in both north–south and east–west components, plan (positive values, convergence) and
profile (positive values, divergence) curvatures, and fine-scale bathymetric position index
(inner radius of 8 m and outer radius of 25 m) (Table 2).

Table 2. Explanatory variables extracted from the bathymetric mosaic dataset using Benthic Terrain
Modeler [45]. Inner and outer radii were used to calculate bathymetric position indices. Abbreviations
serve as a reference for the Pearson correlation coefficient analysis between these nine variables (see
Figure 3).

Variables Abbreviation Definition

Depth (m) * Depth Water depth in meters
Geodesic Slope * Slope Measure of gradient
Aspect—N/S * AspectN Gradient in north/south direction
Aspect—E/W * AspectE Gradient in east/west direction

Curvature, Profile * Curv-Profile Measure of ‘exposure’; parallel direction, benthic flow

Curvature, Planar * Curve-Plan Measure of ‘exposure’; perpendicular direction,
benthic convergence

Bathymetric Position Index, Fine (8, 10) BPI 8–10 Measure of relative surrounding elevation, fine
(peaks+, depressions−, plateau 0)

Bathymetric Position Index, Broad (8, 25) * BPI 8–25 Measure of relative surrounding elevation, broad
(peaks+, depressions−, plateau 0)

Bathymetric Position Index, Broad (8, 75) BPI 8–75 Measure of relative surrounding elevation, broad
(peaks+, depressions−, plateau 0)

* Variable was retained in the final maximum entropy (MaxEnt) model.
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2.3.2. MaxEnt Modeling

While many approaches exist for modeling the geographic occurrence of a given
species or feature, like sediment class, the type of model used depends heavily on what
kind of data are available. The publicly available datasets collected for this study, for
instance, only specify the locations where a sediment type was observed (i.e., presence-
only) and rarely specify absence. Because the intent and methods for collecting these data
are rarely known, presence-only data lack explicit information needed to infer the absence
of sediment types, and such inferences would contain errors and biases [49].

As such, presence-only modeling has received great attention in recent years as mod-
els have continually developed to address such concerns. Maximum entropy (MaxEnt)
modeling, in particular, is an increasingly popular and powerful presence-only approach
that consistently competes with the top performing methods in terms of predictive per-
formance [49,50]. MaxEnt modeling estimates the occurrence likelihood of a feature
(e.g., sediment type) in space by finding the maximum entropy probability distribution, or
the most uniform distribution, given a set of constraints (e.g., bathymetric characteristics)
over the area of interest. In other words, this machine learning approach can estimate the
distribution of a species or habitat across geographic areas without making any assump-
tions of what is not known [51]. Although traditionally used to model species distributions,
MaxEnt modeling has been successful in mapping benthic sediments [30] and vulnerable
marine ecosystems including deep sea coral habitats [52,53].

For these reasons, MaxEnt modeling was used to predict the likelihood of each sed-
iment class occurring as a function of bathymetric characteristics within the study area.
When using MaxEnt modeling, as with other machine learning approaches, to make ac-
curate predictions, background data are separated into “training” and “test” datasets to
prevent overfitting where the model cannot generalize patterns beyond the provided data
and can cause inaccurate predictions on new, unseen data. The training dataset typically
comprises a larger portion (70–80%) of available data and is used to teach machine learning
models patterns and relationships based on known outcomes. The test dataset constitutes
the remaining 20–30% of the available data and is employed to validate the predictive per-
formance of these models on new data and identify and mitigate overfitting. Independent
MaxEnt models were therefore generated for each sediment class using a randomized train-
ing dataset (70% of presence-only data; Supplementary Table S2) and the seven bathymetric
variables identified previously (Table 2). Model building protocols resulted in five sedi-
ment occurrence models as well as post hoc assessments to evaluate variable importance
(i.e., the predictive importance of each variable) and response (i.e., how variables affect
model predictions).

The performance of each model was then evaluated to determine how often a model
was truly correct or incorrect in their prediction and how often it was false in the predic-
tion (i.e., false positives and false negatives). Several model performance metrics were
calculated using a 2 × 2 confusion matrix generated from a randomized test dataset (30%
of the remaining presence-only data; Supplementary Table S2), a set of randomly gener-
ated pseudo-absences, and the model output from each sediment class. One such model
performance metric included assessing variation among the independent runs using the
area under curve (AUC) value from the receiver-operating characteristic curves (ROCs),
which measures the ability of the model to discriminate between a sediment class being
present or absent on a scale from 0 to 1 [54]. An AUC value of 0.5 is considered poor
predictive performance (i.e., the model predicts outcomes no better than random), 0.7 to 0.8
is acceptable, 0.8 to 0.9 is excellent, and 0.9 and greater is outstanding, as reviewed by [55].
Additional model performance metrics were calculated from the model specific confusion
matrix to evaluate a model’s performance (i.e., accuracy, sensitivity [true positive rate],
specificity [true negative rate], F1 score) in predicting sediment occurrence in each grid cell.

Model uncertainty in occurrence data was also estimated by comparing model pre-
diction variation (standard deviation) between the randomly partitioned test datasets,
essentially quantifying where sediment occurrence data disagreed with prediction outputs
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(i.e., high levels of uncertainty equal more disagreement). The test set was also used to
calculate model threshold values for binary classification (see Section 2.3.3—Sediment
Composite for details).

2.3.3. Sediment Composite

To visualize the presence of multiple sediment class model predictions in a single
composite image, thresholds were first calculated for each of the five modeled sediment
classes using Cohen’s kappa maximum to classify sediment likelihoods as either present
or absent. For example, sediment presence likelihoods were converted to a value of 0
(i.e., absent) if less than the calculated threshold or a value or 1 (i.e., present) if above
said threshold. However, in the study area’s offshore region, sediment class presence was
sparsely predicted (i.e., low sediment class likelihood) due to the disparity in bathymetric
features and sediment sampling compared to nearshore areas. Therefore, to improve the
prediction of sediment class presence offshore, thresholds were estimated for each sediment
class in areas less (i.e., nearshore) and greater (i.e., offshore) than 45 m in depth (Table 3).
In other words, two thresholds were calculated for each sediment class based on area,
resulting in a total of ten thresholds. When a threshold was calculated below 0.5, a default
threshold of 0.5 was used to conservatively estimate the presence of sediment classes.

Table 3. Estimated threshold values for converting the predicted likelihood of each sediment class
occurring within each nearshore and offshore location into a binary presence–absence output.

Region
Sediment Class Nearshore Offshore

Gravel 0.46 * 0.49 *
Gravel Mixes 0.74 0.67

Gravelly 0.81 0.71
Sand 0.45 * 0.40 *

Sand–Mud Mix 0.39 * 0.76
* In instances where estimated thresholds were low, a default value of 0.50 was used to conservatively estimate
sediment occurrence.

Presence–absence distributions for each sediment class were then merged and sum-
marized to properly characterize benthic habitat complexity for each grid cell. To achieve
this, presence values for each sediment class were reclassified as unique non-zero values
(e.g., Gravel = 1, Gravel Mixes = 2, etc.). By stacking reclassified sediment class distribu-
tions and summing unique non-zero presence values, a sediment composite was generated
where each grid cell contained mutually exclusive scores and thus sediment class combi-
nations. The sediment composite was qualitatively compared between regions with high
and low bathymetric sources as well as against publicly available regional sediment data
products to gauge composite accuracy and performance.

3. Results
3.1. Sediment Class Predictions

Overall, the generated sediment composite indicated high confidence in sediment
occurrence for coastal areas, especially for bathymetric relief associated with Nantucket
Shoals, and low predictive confidence in offshore areas (Figure 4). Given the overlay
protocol applied to the MaxEnt modeling outputs for the original five sediment classes,
nine unique sediment class combinations were used to characterize surficial sediment
distributions (Table 4; Figure 4). Sand–Mud Mix with Gravel (10.1%) and Gravel and Mixed
Gravel Classes (8.7%) were the most prominent sediment class combinations predicted to
occur in the study area. When examining the nearshore and offshore regions, the Sand–Mud
Mix with Gravel (17.4%) and Gravel and Mixed Gravel classes (14.9%) were still the most
common classes in the nearshore region as compared to Gravelly (0.2%) and Sand–Mud
Mix (0.1%) in the offshore region.
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Figure 4. Predicted occurrence of nine sediment class combinations within the study area using
a systematic workflow. The nearshore–offshore region boundary identifies where different sets of
thresholds were used to classify sediment occurrence likelihoods as either present or absent prior to
raster calculations. The term “Sediment Type Non-Detect” references areas where sediment classes
could not be properly characterized due to low prediction confidence.

Table 4. Estimated area occurrence of nine sediment class combinations within the study area. Area
of occurrence estimates are provided in square kilometers [km2] and percent (%) by sediment class
combination for the entire study as well as nearshore and offshore portions.

Overall Nearshore Offshore
Sediment Class Area (km2) Area (%) Area (km2) Area (%) Area (km2) Area (%)

Gravel 6.67 0.21 6.67 0.36 0 0
Gravel Mixes 3.16 0.10 3.14 0.17 0.02 0

Gravel and Mixed Gravel Classes 274.17 8.65 274.15 14.87 0.01 0
Gravelly 54.49 1.72 52.25 2.83 2.24 0.17

Mixed Gravel Classes 4.58 0.14 4.55 0.25 0.03 0
Sand 94.22 2.97 94.22 5.11 0 0

Sand–Mud Mix 57.01 1.80 56.32 3.05 0.69 0.05
Sand–Mud Mix with Gravel 320.85 10.12 320.85 17.40 0 0

Sand–Mud Mix and Mixed Gravel Classes 69.14 2.18 68.97 3.74 0.17 0.01
Not Classified 2284.73 72.10 962.38 52.20 1322.34 99.76

Due to the paucity of data, the model successfully characterized sediment in only
27.9% (884.3 km2) of the entire study area. Sediment classes in the remaining 72.1%
(2284.73 km2) of the study area could not be characterized given the low confidence in
sediment predictions. When separated by region, the model confidently characterized a
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larger percentage of the nearshore area (48.8%) as compared to the offshore region (~0.2%)
(Table 4; Figure 4).

3.2. Model Performance

The bathymetric explanatory variables of depth (80.5%) and geodesic slope (16.5%)
were deemed most important, on average, when predicting sediment class occurrence
(Table 5). Variable responses curves indicated that, in general, sediment occurrence pre-
dictions decreased with increasing depths except for Gravelly, which had an increase in
prediction at approximately 40 m. With respect to geodesic slope, occurrence predictions for
most sediment classes increased at seafloor slopes greater than 0 degrees (i.e., no seafloor
gradient); Gravelly was more likely to occur at moderate seafloor slopes (0 to 40 degrees)
before decreasing. AUC values for all sediment classes ranged from 0.74 (Gravelly) to 0.85
(Gravel) (Table 6), which are considered acceptable in terms of model predictive capabil-
ity. The average true positive rate across all sediment classes, 0.71, was higher than the
average true negative rate of 0.59, indicating that the models overall were better at positive
detections of sediment classes. The multi-class weighted F1 score, which accounts for class
imbalance, was estimated at 0.7. Model prediction uncertainty in occurrence data ranged
from 0 to 0.6 (standard deviation) across the study area for all sediment classes with greater
uncertainty occurring in the coastal areas of the nearshore region.

Table 5. Variable importance of bathymetric variables for predicting sediment occurrence in terms
of percent contribution. A mean percent contribution identifies the average contribution of each
variable across sediment classes.

Percent Contribution
Variable Gravel Mixes Gravel Gravelly Sand Sand–Mud Mix Mean

Depth (m) 68.2 67.9 77.9 94.4 94 80.48
Geodesic Slope 28.8 31.8 11.8 5.2 5 16.52
Aspect—N/S 1.2 0.2 8 0.3 0.6 2.06
Aspect—E/W 1.3 0.1 1.9 0.1 0.1 0.70

Curvature, Profile 0 0 0 0 0 0.00
Curvature, Planar 0.4 0 0 0 0 0.08

Bathymetric Position Index (8, 25) 0 0 0.3 0 0.3 0.12

Table 6. Model performance metrics derived from sediment class-specific confusion matrices, includ-
ing the area under curve (AUC) value from the receiver-operating characteristic curves, accuracy,
sensitivity (true positive rate), specificity (true negative rate), and F1 score.

Metrics
Sediment Class AUC Accuracy Sensitivity Specificity F1

Gravel 0.85 0.66 0.73 0.63 0.61
Gravel Mixes 0.82 0.59 0.77 0.56 0.40

Gravelly 0.74 0.55 0.72 0.53 0.28
Sand 0.82 0.65 0.66 0.64 0.73

Sand–Mud Mix 0.77 0.64 0.66 0.60 0.72

4. Discussion
4.1. Assessment of Sediment Composite

In general, the generated sediment composite effectively predicted the occurrence of
various surficial sediments in the nearshore areas of southern New England where the
survey density and resulting data were the greatest. Combinations of Sand–Mud Mix
were the most prevalent in the study area and predicted in several areas, including in and
around Buzzards Bay and Nantucket Sound and shallow portions of Nantucket Shoals
south of Massachusetts, and often bordered by Sand. Gravel and Mixed Gravel classes were
also predicted in nearshore areas, mainly in Vineyard Sound and off the southern coast of
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mainland Rhode Island and Block Island. Yet, due to the paucity and quality of publicly
available data in the region, the current workflow could not confidently predict and classify
sediment distributions over most of the study area (~70%). Individual sediment occurrence
models were reasonably effective in distinguishing sediment presence, but overall accuracy
and uncertainty estimates suggest there is room for improvement.

Nevertheless, the provided workflow and generated sediment composite contribute
to the expanding body of research on benthic habitat mapping, especially existing efforts
off northeastern US. Predicted distributions in the current sediment composite, for in-
stance, generally agree with seafloor characterizations described for nearshore areas of
Massachusetts (e.g., Buzzards Bay, Vineyard Sound, and the southern margin of Martha’s
Vineyard) [56], Nantucket Shoals [37], and the northern margin of Block Island [57]. Yet,
due to the applied methodology and available bathymetric data, the sediment composite’s
fine-scale patterning identifies complex patterns of habitat composition and distribution
over a large spatial extent that are not identified by other studies and regional data prod-
ucts. This is particularly true for the Northwest Atlantic Marine Ecoregional Assessment
(NAMERA) interpolated soft sediment data product updated in 2020 [58], which does not
accurately depict the large and distinct bathymetric relief and sandy composition of the
Nantucket Shoals area (Figures 5 and 6). However, the NAMERA data product is based on
interpolated grain size data and does not set thresholds for data inclusion, allowing it to
yield grain size estimates for offshore areas where sediment occurrences could not be confi-
dently predicted in the current sediment composite. Therefore, given its observed strengths
and limitations, the sediment composite is intended to complement other surficial sediment
data products and should be used in conjunction with them for drawing conclusions.
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4.2. Review of Systematic Workflow

The use of an objective and systematic workflow was essential for utilizing public
geospatial data and proactively mapping surficial sediment distributions, especially when
schedule and financial resources are constrained. The use of CMECS, for instance, increased
the size of machine learning datasets as it was able to standardize sediment observations
from multiple projects with varying objectives and reporting styles. Spatial processing tools
similarly generated a regional-scale environmental dataset from disjointed bathymetric
data products that reconciled data quality and computational performance challenges.
The results presented herein also show that combining bathymetric data with sediment
observations using machine learning produces accurate surficial sediment maps more
efficiently and with less supervision than manual analysis methods. Finally, instead of
interpreting the occurrence likelihood for individual sediment classes, robust statistical
thresholds and raster calculations were utilized to produce a comprehensive sediment
composite to facilitate easier interpretation.

However, there were several limitations that could have potentially influenced the
generation and interpretation of the sediment composite. Given that these challenges are
mentioned in greater detail by other studies, e.g., [19,30,59–61], the following discussion
is not meant to be an exhaustive review but only to demonstrate potential impacts on the
outlined workflow and interpretation of the final data product.

4.2.1. Sediment Observations

The paucity and quality of publicly available sediment observations in the region
presented a major challenge to confidently predicting and classifying sediments based on
model accuracy and uncertainty estimates. Similar modeling efforts by Poti et al. [30] noted
several potential hurdles when using sediment observations from public repositories. For
instance, the uneven distribution of survey density in the study area could impact model
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accuracy by failing to capture finer scale patterns in sediment distributions for offshore
areas where sampling effort was low. Laboratory-based analyses used to generate the
comprehensive USGS usSEABED database may omit hard components like shell and gravel
and potentially skew results towards finer particles [18]. Additional challenges stem from
the inclusion of sediment observations over multiple decades (Supplementary Figure S1),
which introduces temporal variation in grain size and sediment composition information.
Samples gathered in earlier years may therefore not accurately portray current seafloor
conditions, potentially affecting model accuracy, which can be further exacerbated by
increased positional uncertainty for older survey data [30,62].

The lack of true absence records in the study area also poses a significant obstacle to
accurately predicting sediment distributions. In the present study, for instance, MaxEnt
models were informed on the occurrence of specific sediment classes using presence-only
data. These models demonstrated higher sensitivity than specificity, indicating they were
more adept in correctly identifying instances where sediments were present as compared
to the absence of said sediments. While presence record patterns are influenced by various
factors that impact absences, the actual distribution of a species or habitat cannot be esti-
mated without data on its absence from suitable areas [63,64]. The collection of true absence
records, however, is a resource-intense and complex process, especially considering the
inherent biases of characterizing sediments when using various sampling techniques [20].
For instance, sediment grabs offer direct access to sediment samples for estimating grain
size but often exhibit biases towards capturing more fine sediments. Although underwater
imagery techniques like sediment profile imaging and plan view imaging can capture
high-resolution images of undisturbed sediment conditions, characterization requires addi-
tional laboratory analysis that can be impacted by overall visibility, angle of observation,
and ability to discern small sediment structures. Consequently, a comprehensive set of
sampling techniques is therefore necessary to reliably identify absence records and support
the development of accurate sediment distribution models.

4.2.2. Environmental Data

Publicly available bathymetric data were vital to the proposed workflow, providing
essential environmental information for prediction sediment distributions across the study,
but posed their own analytical challenges. For instance, similar to sediment observations,
current bathymetric data products in the region were generated from historical survey
efforts that could mispresent current seafloor morphological characteristics and impact
model accuracy. Spatial scale is another important consideration when collecting acoustic
remote sensing data as derived resolutions are often not appropriate for detecting or repre-
senting important topographic features [65]. High-resolution bathymetric data (2 m to 8 m)
were available for only a portion of the study area, while the rest was comprised by lower-
resolution data (250 m). Low-resolution data in the present study, while more detailed than
global data products [35], could not capture the fine-scale environmental characteristics
necessary for characterizing sediment distributions, e.g., models relying solely on such
low-resolution bathymetric data in areas with minor slope changes fail to accurately capture
and predict the diversity of benthic habitats. Such differences are evident in the generated
sediment composite where more natural sediment distribution patterns were predicted
in Vineyard and Nantucket Sound (10 m resolution) as compared to coarser characteriza-
tions in areas south of Martha’s Vineyard (250 m resolution) (Figure 7). Future seafloor
mapping efforts should use a multi-scale approach, or one that considers data at multiple
successive scales, to ensure that scale-dependent benthic processes and distributions are
fully captured [61].



Geosciences 2024, 14, 186 15 of 21

Geosciences 2024, 14, x FOR PEER REVIEW 16 of 22 
 

 

considers data at multiple successive scales, to ensure that scale-dependent benthic pro-
cesses and distributions are fully captured [61]. 

 
Figure 7. Comparison of predicated sediment occurrence patterns using bathymetric environmental 
data of varying resolutions, specifically 10 m resolution in Vineyard Sound and 250 m resolution in 
the coastal areas south of Martha’s Vineyard. 

Although vital for providing environmental predictor information throughout the 
study area, the use of bathymetric data for surficial sediment mapping is not a substitute 
for other acoustic remote sensing data. Indeed, bathymetric data and derived terrain var-
iables (e.g., slope, orientation, curvature) have provided the basis for numerous benthic 
habitat mapping initiatives, e.g., [25,33,52,66,67]. However, these variables only provide 
information on seafloor morphology and are indirectly used to identify substrates, e.g., 
local relief is used as a substitute since rocky areas typically exhibit high local relief [24]. 
Acoustic backscatter data, in contrast, can provide information regarding the seafloor’s 
physical properties and composition that can support the characterization of benthic sed-
iments [22,26]. The combination of high-resolution bathymetric data and calibrated 
backscatter information has enhanced the accuracy and interpretation of surficial sedi-
ment maps, e.g., [24,31,32,62,68–70]. Yet, despite the demonstrated performance using 
both types of data, the acquisition, processing, and interpretation of backscatter data are 
difficult, impacting the integration of results from different mapping systems and regional 
efforts [60]. 

4.2.3. MaxEnt Modeling 
MaxEnt modeling was critical to successfully predicting the occurrence likelihood of 

specific sediment classes due to the accessibility of presence-only sediment data. How-
ever, MaxEnt modeling assumes that presence-only data were sampled in either a 

Figure 7. Comparison of predicated sediment occurrence patterns using bathymetric environmental
data of varying resolutions, specifically 10 m resolution in Vineyard Sound and 250 m resolution in
the coastal areas south of Martha’s Vineyard.

Although vital for providing environmental predictor information throughout the
study area, the use of bathymetric data for surficial sediment mapping is not a sub-
stitute for other acoustic remote sensing data. Indeed, bathymetric data and derived
terrain variables (e.g., slope, orientation, curvature) have provided the basis for numer-
ous benthic habitat mapping initiatives, e.g., [25,33,52,66,67]. However, these variables
only provide information on seafloor morphology and are indirectly used to identify sub-
strates, e.g., local relief is used as a substitute since rocky areas typically exhibit high local
relief [24]. Acoustic backscatter data, in contrast, can provide information regarding the
seafloor’s physical properties and composition that can support the characterization of
benthic sediments [22,26]. The combination of high-resolution bathymetric data and cali-
brated backscatter information has enhanced the accuracy and interpretation of surficial
sediment maps, e.g., [24,31,32,62,68–70]. Yet, despite the demonstrated performance using
both types of data, the acquisition, processing, and interpretation of backscatter data are
difficult, impacting the integration of results from different mapping systems and regional
efforts [60].

4.2.3. MaxEnt Modeling

MaxEnt modeling was critical to successfully predicting the occurrence likelihood of
specific sediment classes due to the accessibility of presence-only sediment data. However,
MaxEnt modeling assumes that presence-only data were sampled in either a systematic
or random fashion over the entire area [59]. In practice, presence-only data are often
collected unevenly across an area where survey effort is strongly biased towards more
accessible or better-surveyed areas [59,71]. Such spatial bias can severely impact model
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quality and predictive accuracy as it can incorrectly emphasize the significance of some
environmental predictors and under-report the significance of others [59,72]. Publicly
available sediment observations in the present study were distributed unevenly in the study
area where survey effort was over-represented in nearshore areas. Because survey effort
distribution was unavailable, such bias was not corrected for and could have influenced
overall model accuracy.

One potential solution to addressing survey bias is the use of presence–absence model-
ing approaches. Presence–absence data, in contrast to presence-only, are less susceptible to
issues associated with survey bias as they provide information on where a species or habitat
is present and absent, thereby allowing models to better account for the true environmental
parameters and delineate suitable areas [59,72]. Although the use of pseudo-absences, or
locations where a species or habitat is assumed to be absent based on available information,
have become increasingly common to address survey bias, e.g., [59], these are not true ab-
sence records and do not fully mitigate bias in model training, as reviewed in [72]. As such,
it is generally advisable to use presence–absence modeling methods when said data are
available to reduce these biases and capitalize on all available data for accurately mapping
distributions [50]. Although presence–absence data were not publicly available for use in
the present study, the explanatory value provided by said data highlights the importance
of more comprehensive sediment sampling efforts in the future.

4.3. Recommendations and Future Directions

Based on the limitations presented herein and their impact on mapping products
generated, access to a larger collection of publicly available seafloor data is essential to
support proactive investigations. Indeed, this in itself poses a significant challenge for many
entities that are conducting seafloor data collection activities due to the effort and resources
required to cover sufficient temporal and spatial scales. Yet, while these factors limit
data collection by government agencies and academic institutions, offshore wind energy
developers collect seafloor data to fulfill permitting requirements and, at later intervals, to
inform engineering and construction design decisions. These site characterization activities
collect sediment and acoustic remote sensing data in offshore wind project areas and
transmission cable corridors, often yielding observations and environmental data that
better represent true seafloor conditions compared to historical information. Furthermore,
this suite of developer acoustic remote sensing data, including bathymetry, backscatter,
and side-scan sonar, is collected at resolutions finer than many of the publicly available
datasets used in the present study (e.g., <1 m), which can improve the predictive accuracy
of modeling approaches and detect fine-scale habitat changes.

Nevertheless, while government agencies provide general guidance and recommenda-
tions to wind developers regarding the collection of these seafloor data [73–75], no standard
protocols exist for collecting, sharing, or reporting these data. As a result, offshore wind
developers lack a consistent approach to field data collection, processing, and analysis,
leading to variations in spatial coverage, applied methods, and sampled parameters. A
review of publicly available Construction and Operations Plans, for instance, found that
seafloor acoustic remote sensing, imagery, and grab methods are often not used consistently,
and the footprints of data collection activities vary dramatically within and around projects
areas [76]. Acoustic remote sensing data were typically unavailable for public inspection
due to containing propriety information, while sediment observations were provided in a
variety of parameters and file formats that hinder integration efforts.

With the rapid expansion of the offshore wind industry in the US, there is a paramount
need for the consistent collection of seafloor data across studies to inform the responsible
and cost-effective development of offshore wind energy. Therefore, to ensure regional
coordination and address developer concerns, future discussions on seafloor data collection
activities should include not only offshore wind developers but also other regional entities.
Collaborative forums like the Regional Wildlife Science Collaborative for Offshore Wind
(RWSC) are already well positioned to facilitate communication between these stakeholder
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groups to identify and coordinate seafloor data needs, establish data collection standards,
and explore secure data sharing agreements that address confidentiality concerns between
stakeholders. Adherence to these community recommendations will dramatically enhance
the transfer and integration of multiple collection efforts to aid in the development and
maintenance of regional data products. Such efforts will ultimately benefit offshore wind
energy developer and stakeholder activities, such as improving the accuracy and detail of
environmental assessments, expediting the permitting process, and supporting long-term
planning and monitoring decisions.

5. Conclusions

Overall, the present study illustrates the value of using a systematic workflow to
integrate public geospatial data and generate regional-scale surficial sediment maps when
field data collection activities are not feasible. The approach was capable of transforming a
limited set of independently collected sediment observations and acoustic remote sensing
data into an ecologically meaningful data product for use by multiple stakeholders. How-
ever, despite using national classification standards, spatial processing tools, and machine
learning models, the availability and quality of public geospatial data presented several
challenges for accurately predicting and characterizing surficial sediments throughout the
designated study area. Although the supposition that ongoing seafloor data collection
efforts will bolster these public repositories, the lack of defined data collection standards
and data sharing agreements may only maintain the status quo when synthesizing regional
products. As such, regional coordination with existing and ongoing seafloor mapping
efforts is crucial to the standard collection and delivery of environmental data that will
ultimately support ecologically responsible offshore wind energy decisions.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/geosciences14070186/s1, Table S1: Publicly available sed-
iment and bathymetric datasets used to predict and characterize sediment class occurrence in the
study area. Datasets are organized by type, specifically sediment observations and bathymetric data
products, and accompanied by various metadata, including dataset title, source, date published,
survey dates for collecting data, applied sampling technique, file format, and online hyperlink for
access; Table S2: Number of sediment records collected during the desktop data review and applied to
the machine learning approach for each sediment class. Machine learning values identify the number
of observations used to train and test the maximum entropy models developed for each sediment
class; Figure S1: Time series of sediment observations identified during the desktop data review and
the year they were originally collected. Sediment records were primarily collected between 1930 and
2020 but date back as early as 1842; Figure S2: Sediment class presence predictions for Gravel Mixes
using terrain variables from bathymetric data products with resolutions of 4 m (left) and 8 m (right).
The systematic workflow presented herein was applied to a small case study in the northwestern
Atlantic Ocean, specifically in the coastal waters of Massachusetts (MA) in the western Gulf of Maine.
The comparison is meant to demonstrate the negligible difference in sediment presence patterning
when high-resolution data are down-sampled to resolutions that are more equitable for intense
computational processing.
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