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Abstract: This review synthesizes existing research to elucidate the factors driving the distinct tectonic
behaviors in the western and eastern Makran subduction zone, focusing on seismic activity, uplift
rate, convergence rate, coupling, and subduction angle. The literature identifies the asymmetry in
pressure and the variation in subduction angles between the western and eastern parts of the Makran
as key factors in defining the region’s tectonic patterns. The western region has a steeper subduction
angle, resulting in lower pressure, reduced coupling, and decreased seismic activity. This disparity
arises from different interactions between the subducted and overriding plates. This article offers an
overview of the Makran subduction zone, identifies some knowledge gaps, and suggests directions
for future research to improve our understanding of this complex geological region. The review
highlights the need for more comprehensive GPS stations and targeted studies on subduction dip
angles to better understand the region’s tectonic dynamics.

Keywords: Makran; Lut block; tectonic history; asymmetric pressure; subduction angle; structural
boundary

1. Introduction

Makran is one of the largest accretionary prisms on Earth, formed by the subduction
of the oceanic portion of the Arabian plate beneath the Eurasian plate [1–6]. The overriding
plate consists of two blocks: the Lut block in Iran and the Helmand block, which extends
from Afghanistan to Pakistan. These blocks are separated by the Sistan Suture Zone (SSZ)
(Figure 1) [7]. The SSZ plays a crucial role in dividing the overriding plate into a non-
deforming Helmand block and a less-deforming Lut block [8]. Subduction was initiated
in the Paleocene, with accretionary growth occurring in the Eocene [9,10]. The ongoing
process of orogeny continues to contribute to the geologic dynamics of the region.

The geological maps and associated reports by McCall and Kidd [11] and McCall [12–14]
have provided a foundational geological framework for understanding the structure and
stratigraphy of the onshore Makran in Iran. The eastern and western parts of Makran dis-
play distinct tectonic patterns, suggesting a complex subduction process due to variations
in seismic activity, coastal uplift, convergence rate, coupling, and subduction angle. While
extensive research has been conducted on the Makran region from various perspectives,
there remains a need for a comprehensive review that synthesizes these findings to serve
as an encyclopedia for further research. By focusing on the specific characteristics of each
sub-region based on previous extensive research, we aim to highlight the unique features
and processes that define them. In this section, we provide a brief overview of the discrep-
ancies in the Makran region, which will be further discussed in subsequent sections. The
eastern part experiences greater earthquake intensity than the western part, which may
imply that there is aseismic or locked subduction occurring in the western part [10,15–19].
Thermal modeling has shown that the western Makran has the potential to generate an
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earthquake with a moment magnitude (Mw) of 8.65 ± 0.26 [20]. Further research indi-
cates that the western Makran interface is accumulating elastic strain, which may lead to
megathrust earthquakes [21–24]. Lin et al. [25] analyzed satellite Interferometric Synthetic
Aperture Radar (InSAR) data to study the distribution of interseismic coupling on the
eastern Makran megathrust. They found that elastic strain has accumulated since the 1945
earthquake, indicating the potential for future magnitude 7+ earthquakes. Ghods et al. [26]
noted that the difference in the number of earthquakes between the eastern and western
Makran may result from distinct overriding plate dynamics. Contradictorily, different
interpretations indicate that the eastern Makran is locked as a result of high pore fluid
pressures, a phenomenon typical of accretionary prisms in subduction zones with abundant
sediment input [27]. Penney et al. [21] utilized teleseismic body-waveform modeling in
conjunction with data from previous studies, such as P-wave first motions and global earth-
quake catalogs, to establish a thorough seismic record of earthquakes with well-defined
depths and mechanisms in the Makran. They observed shallow earthquakes in Makran,
which showed clear spatial variations in the style of strain. Shallow thrust earthquakes
typically occur offshore or near the coastline, while most earthquakes onshore are of the
strike-slip type. Akbarzadeh Aghdam et al. [28] examined a temporary seismic network of
39 stations around the eastern and western Makran borders from June 2016 to November
2019. The observed seismicity showed an NNW–SSE trend of shallow, small-magnitude
earthquakes (ML < 3.3 and depth < 10 km) within the northern part of the accretionary
prism along approximately 60◦ E longitude.

Coastal uplift studies unequivocally demonstrate that the uplift rate on the east coast
is significantly higher than on the west coast [29–37]. The considerable difference in uplift
rates between the western and eastern parts of the Makran raises questions that have not
yet been clarified [35,37]. Uplift rate calculations indicate that in the western part of the
Makran, along the Iranian coast, the rates range from 0.05 to 1.5 mm per year [29–32,34].
An exceptionally high uplift rate of up to 5 mm per year was calculated in the Pasabander
area, near the border with Pakistan in the eastern part of the Makran [35–37]. The uplift
rate in Makran is closely related to tectonic movements [38] and various types of uplift that
occur across fault-bounded coastal blocks [39].

GPS measurements (e.g., [21–23,28,40–46]) and plate motion models [47–57] consis-
tently indicate a gradual increase in convergence rates of the Arabian plate toward the
Eurasian plate from west to east. The convergence rate between the western and eastern
parts of the subducting margin exhibits a notable difference of 21% [45]. The overall conver-
gence rates are 20.4 mm/year in the west and 32.6 mm/year in the east of 59.5◦ E, estimated
based on surface velocity from a coupling model with a locking depth of 30 km [21].

Frohling and Szeliga [45] reported that the Makran subduction zone appears to be
locked at a depth of at least 38 km, accumulating strain. Khorammi et al. [22] suggested
that the Pakistani segment of the Makran region might be more strongly coupled than the
Iranian segment. Abbasi et al. [58] documented that the coupling in western Makran is
over four times smaller than in eastern Makran.

Previous studies have indicated variations in the dip angle of subduction between
the eastern and western parts of Makran [8,16,26,59–61]. This difference may contribute to
variations in the abundance of volcanoes. It has been demonstrated that the western part
of the volcanic arc has a significantly higher abundance of volcanoes compared with the
eastern part (Bazman Group (BG), Taftan Group (TG), and Sultan Group (SG)) (Figure 1).
The volcanic arc is offset between the two segments (Lut and Helmand blocks); a greater
distance exists between the deformation front and the volcanic arc in eastern Makran [10].

The eastern part of the Makran subducts at an 8◦ angle, increasing to about 20◦ as it
reaches the asthenosphere. The western part enters the asthenosphere at an approximate
30◦ angle [59]. The subducted plate is sinking more steeply in the west than in the east,
supported by evidence that includes variations in the depth of the Moho, the slip rates of
inland faults, and the shortening of the crust [8]. Motaghi et al. [60] found that the western
Makran has dips of about 18◦, whereas the eastern Makran has dips of about 9◦. The recent
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study by Priestley et al. [61] examined the geometry and dip of the subducting plate in the
onshore Iranian Makran. The findings show a very low-angle subducting plate with a dip
of approximately 3◦ between the northern coastline of the Oman Sea and the southern edge
of the Jazmurian Depression. Further north of the Jazmurian Depression, the slab dips
more steeply at approximately 12.5◦. Ghods et al. [26] recognized that the Wadati–Benioff
zone in eastern Makran indicates a subduction angle of about 15◦ at depths of roughly
45–80 km, which increases to approximately 45◦ beyond 80 km depth.

The Makran has previously been divided into western and eastern parts based on
differences in seismicity. The seismic activity suggests that the SSZ can be considered
the boundary between western and eastern Makran [10]. Kukowski et al. [2] identified
a sinistral strike-slip fault named the Sonne fault, which separates the western part of
the Makran subduction zone, where plate boundary events are absent, from the eastern
part, which does show plate boundary seismicity. The Sonne fault accommodates the
differential movement between the Ormara microplate (driven northward by the Murray
Ridge) and the Gulf of Oman (Figure 1) [18]. Rajendran et al. [18] suggested that geometric
considerations indicate the Sonne fault likely divides the Makran subduction front into
western and eastern segments. In a recent view, Nemati [8] suggests that the segmentation
line, or fracture zone of Makran, aligns approximately with the Sonne fault, which extends
to the SSZ, separating the Lut and Helmand blocks. Mousavi et al. [62] have proposed a dual
subduction scenario, suggesting that the slabs of Bazman, Taftan, and Kuh-Sultan, oriented
west-to-east, correspond to different stages of the subduction process: before, during, and
after the slab break-off. Akbarzadeh Aghdam et al. [28] suggested that shallow, right-lateral
strike-slip earthquakes near 60◦ longitude in the northern accretionary prism may indicate
a broad transitional boundary between the western and eastern Makran. Cheng et al. [24]
stated that the Makran megathrust is segmented into three parts—western, central, and
eastern—with varying degrees of plate coupling along their length. This suggests that
the megathrust has the potential to produce earthquakes of up to Mw 8.7 in the case of a
single-segment rupture and up to Mw 9.2 in the case of a multi-segment rupture.
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Figure 1. The study area and its structural features are shown, highlighting the Sistan Suture Zone,
the Jazmurian Depression (Jazmurian D), the Mashkel Depression (Mashkel D), the Sonne Fault, the
Ormara Microplate, and the Murray Ridge. Brown triangles indicate the locations of volcanoes in the
Bazman Group (BG), the Taftan Group (TG), and the Sultan Group (SG) [63–65].
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This study provides an overview of the Makran subduction zone, focusing on con-
trasting its western and eastern segments. The primary aim is to elucidate the factors
contributing to the distinct tectonic patterns and deformations observed in these regions,
as revealed by prior research. By synthesizing findings from previous studies, we aim to
understand the drivers of these differences. Specifically, this investigation examines seismic
activity, uplift rate, convergence rate, coupling, and subduction angle within the Makran.
This paper contributes to understanding the existing gaps and highlights potential areas
for future research that can be explored by other researchers.

2. Tectonic Setting

The oceanic lithosphere of the Oman Sea is tilted to the northeast and is subducted
under the Eurasian plate at a low angle [66–68]. The convergence between the Arabian and
Eurasian plates is the result of rifting in the Red Sea and the Murray Ridge, leading to the
formation of the Makran accretionary prism [2]. This convergence has played a crucial role
in shaping the intracontinental deformation of Iran [41].

The overriding plate consists of two different blocks: the Lut block, which is located in
Iran, and the Helmand block, which extends across Afghanistan and Pakistan. The Lut and
Helmand blocks, originally integral parts of the Neo-Tethys, were formed by the influence
of eastward subduction beneath the Helmand block, leading to the formation of the SSZ [7].
The Jazmurian and the Mashkel Depressions are identified as forearc basins in western
and eastern Makran, respectively [13,66]. The subduction zone is located 200 km onshore,
and the geometry beneath the Jazmurian Depression indicates characteristics of oceanic
crust [69]. In a recent study, Enayat and Ghods [70] stated that the Jazmurian Depression
has a continental crust down to a depth of approximately 40 km, covered by a sedimentary
layer approximately 20 km thick.

Northern Makran features a chain of volcanoes extending over 400–500 km from
west–southwest to northeast. For simplicity, these volcanoes are categorized into three
main groups (BG, TG, and SG), as shown in Figure 2 [65,71,72]. The western boundary is
delineated by the dextral strike-slip fault system of Minab–Zendan–Palami (MZP). The
MZP plays a pivotal role in adjusting the velocity gradient between the eastern Zagros
and western Makran areas (Figure 2) and delineates a transition zone [41]. It has a motion
rate of approximately 11 ± 2 mm/year based on GPS measurements [41,43,44]. In contrast,
the eastern boundary is defined by the sinistral strike-slip fault systems of Ornach Nal
(OF) and Chaman (CF), which serve as a transition zone connecting the Makran to the
Indo–Eurasian collision zone [73], as shown in Figure 2. The lateral movement rate along
the CF is estimated at 33.3 ± 3 mm/year based on geomorphological measurements [73].
The Moho discontinuity beneath the Makran region deepens from approximately 25 km
near the coast to about 50 km beneath the volcanic arc [74–76].
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Figure 2. Simplified tectonic map of the Makran region, showing the study area, and the main
geological features. The map highlights the distinct boundaries of the Lut block, identified as the
western (marked as No. 1) and eastern (marked as No. 2) boundaries, both marked by prominent
dextral strike-slip fault systems. The Chaman fault (CF) (marked as No. 3), a sinistral strike-slip
fault, is shown along with its rate of movement based on geomorphological measurements [73]. The
Ornach Nal sinistral strike-slip fault (OF) (marked as No. 4) is also shown. The MZP fault system
(marked as No. 5) is displayed along with its corresponding rates of motion [41]. The Main Zagros
Thrust (MZT) is shown. The Jazmurian Depression (Jazmurian D), Mashkel Depression (Mashkel D),
and Sistan Suture Zone are also indicated. Quaternary volcanoes, including the Bazman Group (BG),
Taftan Group (TG), and Sultan Group (SG), are represented by brown triangles [63–65]. In the Lut
block, an orange symbol denotes a counterclockwise rotation, supported by GPS measurements and
paleomagnetic interpretations [77,78]. Red circles represent GPS stations that visualize the velocities
of movement associated with the convergence between the Arabian and Eurasian plates [41]. The
white arrows show the rate of motion of the Arabian plate relative to the Eurasian plate according to
the GEODVEL-2010 model [56]. The white rectangle indicates the study area analyzed for the focal
mechanisms of earthquakes in Makran (Figure 3) by Penney et al. [22].
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Figure 3. (a) shows earthquakes with a magnitude (Mb) greater than 4 from 1945 to 2013. Semi-
transparent events indicate poorly constrained depths and/or mechanisms. (b) displays earthquakes
with a magnitude (Mb) greater than 4 from 1945 to 2013 with well-constrained depths. The white
triangles indicate the locations of seismometers CHBR and TURB. The figure presents structural
boundaries, faults, and the locations of significant earthquakes that ruptured the plate boundary in
the eastern part in 1756, 1851, and 1945, as well as a probable historical earthquake of magnitude Mw

7.7 in 1483 in western Makran. The brown triangles represent the symbols for the Bazman Group (BG),
Taftan Group (TG), and Sultan Group (SG) volcanoes. The green rectangles indicate the structural
boundaries of the Makran: the MZP (marked as No. 1), the boundary between western and eastern
Makran (marked as No. 2), and the OF and CF (marked as No. 3) (modified after Penney et al. [21]).

3. Seismicity

The earthquake on 27 November 1945, with a magnitude of Mw 8.1, was the strongest
seismic event in eastern Makran. The event was coupled with a devastating tsunami, which
caused significant loss of life and property in Iran, Oman, Pakistan, and northwestern
India [18]. The Makran displays distinct seismic behavior in its western and eastern parts,
with negligible seismic activity in the western part [10,15–19].

The plate boundary in the eastern part experienced large earthquakes in 1756, 1851, and
1945 [10] (Figure 3). However, in the Iranian segment, there has not been any documented
significant thrust fault earthquake [10,15–19], except for a probable historical earthquake
of magnitude Mw 7.7 in 1483 [10,79] (Figure 3). Currently, there is no detectable seismic
activity between the tectonic plates in the region [21,28]. Recent studies [20,21,24,80]
indicate that large earthquakes are possible in western Makran.

There are different perspectives on the reasons for the variation in seismic activity in
the Makran region. One view attributes the seismic gap to saturated sediments and a low
friction coefficient [10,43,81]. Another view suggests that the low seismic activity can be at-
tributed to three factors: locking, aseismic slip, and cessation of subduction [10,14,17,31,43].
Some authors argue that the risk of earthquakes in the western part is lower than in the
eastern part due to less strain accumulation within the megathrust zone. This is due to
the northward movement of the Lut block and the lower seismic coupling between the
subducting and overriding plates [58]. Ghods et al. [26] analyzed 157 relocated earthquakes
between 1968 and 2023, finding that differences in the number of earthquakes between
eastern and western Makran may result from distinct overriding plate dynamics. Seismic
anisotropy has been observed at the base of the accretionary wedge before it bends down
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beneath the Jazmurian Depression. This indicates the presence of an interplate boundary
that could affect the location and width of the locked zone along the boundary [80].

To better understand earthquake mechanisms, we examine the results of Penney
et al. [21], which present the most comprehensive analysis of focal mechanisms for earth-
quakes in Makran (Figure 3). Penney et al. [21] employed teleseismic body-waveform
modeling alongside data from diverse sources to construct an exhaustive inventory of
earthquakes characterized by well-defined depths and mechanisms. Their criteria for delin-
eating a well-constrained earthquake drew from multiple sources, including the Global
Centroid Moment Tensor (GCMT) catalog [82,83], hypocentral locations from the EHB
catalog [84], and the International Seismological Centre (ISC). Additionally, the sources
encompassed the works of various studies such as Laane and Chen [85], Byrne et al. [10],
Baker [86], Berberian et al. [5,6], Maggi et al. [87], Walker [88], Engdahl et al. [89], Jack-
son et al. [90–92], Nissen et al. [91,92], Talebian et al. [93], Walker et al. [94], Barnhart
et al. [95], Jolivet et al. [96], and Penney et al. [97]. For older seismic events, they utilized
focal mechanisms derived from P-wave first motions by Jackson and McKenzie [98], Ja-
cob and Quittmeyer [15], and Byrne et al. [10]. The outcomes are shown in Figure 3a,b,
demonstrating earthquakes with magnitudes greater than Mb 4 from 1945 to 2013, clearly
differentiating those with well-defined parameters from those with less certainty. They
observed the spatial separation of earthquake mechanisms (with constrained depths) in
Makran: shallow thrusts cluster at the coastline, normal mechanisms are found in the
north, and strike-slip events are concentrated on the eastern and western edges of the
accretionary prism.

In 1992, Byrne et al. [10] identified the initial boundary between western and eastern
Makran based on variations in seismic activity patterns (Figure 3b; green rectangle (No.
2)). This boundary is consistent with strike-slip earthquakes in central Makran, particu-
larly within the longitude range of 61◦ to 62◦. Figure 3 displays three distinct structural
boundaries in Makran, determined from focal mechanism interpretations. Boundary 1 is
identified as the MZP. Boundary 2 marks the division between western and eastern Makran,
influenced by strike-slip earthquake focal mechanisms, particularly near the eastern Lut
block [10]. Boundary 3 corresponds to the OF and CF, forming the eastern boundary of
Makran. Kukowski [2] recognized another potential dividing boundary, the Sonne fault
zone (Figure 3b).

Nemati [8] conducted a study that combined the spatial distribution and mechanism of
seismicity, seismicity parameters, geomorphology in satellite imagery, and tectonic features
in the Makran inland to demonstrate that the Makran low-angle thrust fault is divided
into two separate segments (Figure 4). Variations in historical and instrumental seismicity,
the bending of the coastline, and the strike-slip focal mechanisms on the fracture zone
between the Sonne fault and subduction zone support the hypothesis that Makran is reliably
segmented. The fractures and geometry of subduction show that the eastern Makran has
a seismotectonically wider area for the potential coupling of a larger earthquake than
the western Makran. It seems that the location of the subduction front (SF) may strongly
depend on the resistance of the continental plate against subduction. Nemati [8] suggested
that large events at shallow depths are evidence of weak and strong coupling between the
oceanic and continental crusts on low-angle and very low-angle reverse faults, respectively.
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Figure 4. Background seismicity includes earthquakes from the ISC catalog from 1916 to 2015. These
are categorized into deep (≥33 km; dark circles) and shallow (<33 km; light brown circles) events,
with ISC’s depth errors considered. Light green vectors represent velocity vectors based on the
NUVEL-1 model [98]. Subduction fronts SF1 (western part) and SF2 (eastern part) are marked with
yellow ellipses. A zone of shallow and intermediate-depth earthquakes, approximately 250 km long
with an ENE orientation, is present north of SF2 in eastern Makran, highlighted by a gray ellipse
(lineament of earthquakes). SF1 and SF2 areas may have ESE and ENE orientations, respectively, with
SF2 parallel to the gray ellipse. Mud volcanoes along the coast are marked by yellow stars. White
ellipses represent the SW and NE elongations of volcanic distributions in the western and eastern
regions, respectively. The brown triangles represent the symbols for the Bazman Group (BG), Taftan
Group (TG), and Sultan Group (SG) volcanoes. Brown face-to-face polygons (possible coupling areas)
and yellow ellipses (subduction fronts) divided by a solid red line indicate a NNW–SSE continental
left-lateral fracture zone (FZ) connecting the Sistan Suture Zone (SSZ) and the Sonne Fault (SOF)
(modified after Nemati [8]).

In a recent study, Akbarzadeh Aghdam et al. [28] examined a temporary seismic
network of 39 stations around the eastern and western Makran borders from June 2016 to
November 2019. The seismic activity revealed a pattern of small, shallow earthquakes in
the northern part of the accretionary prism, following an NNW–SSE trending alignment
at approximately 60◦ longitude (Figure 5). The earthquakes occur more frequently to the
east of this trend, indicating that it may represent the approximate boundary between the
western and eastern Makran regions. Their finding depicts that the Jazmurian Depression
is a relatively aseismic block, as evidenced by the scarcity of shallow crustal earthquakes
within the Depression and the concentration of shallow earthquakes around its periphery.
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strike-slip events (modified after Akbarzadeh Aghdam et al. [28]).

4. Coastal Uplift

The Makran coast underwent substantial tectonic activity during the Holocene and
Pleistocene, leading to the formation of coastal terraces [30,31,34].

Studies indicated that coastal uplift is significantly higher on the east coast than on
the west coast (e.g., [29,30,32–34,99]). Uplift rate calculations indicated low to moderate
rates along the Iranian Makran coast, ranging from 0.05 to 1.5 mm/yr. However, an
exceptionally high uplift rate of up to 5 mm/yr has been recorded in the Pasabander area
near the Pakistan border (eastern part) [35–37]. In the western part of Makran, Iran, Jask has
elevations ranging from 1 to 9 m. Further into the middle of Makran, also in Iran, Konarak
has an elevation of approximately 100 m. Further east in Makran, Pakistan, Ormara reaches
elevations of about 500 m [30]. The examination of twenty-five terraces along the Makran
coast, from east to west [34], revealed that the eastern part of Makran has higher elevations
than the western part (Figure 6). Based on the investigation of these terraces, the highest
elevation of marine terraces in the Makran region reaches 240 m in Iran and approximately
600 m in Pakistan. Some researchers have argued that coastal uplift is a consequence
of large-magnitude earthquakes, suggesting that the uplift observed in Ormara, eastern
Makran, was increased as a result of the 1945 event [30,100,101]. However, assuming
that coastal uplift is responsible for high-magnitude earthquakes, the entire Makran zone
would experience intense seismic activity, and remarkably, no significant earthquakes have
occurred in the western part of Makran except the 1483 earthquake, the cause of which
remains unclear [10,17,79,102]. According to Rajendran et al. [18], the Makran coast may
not have been impacted by large earthquakes nearby in the recent past, as supported by the
analysis of historical data. However, the elevated marine terraces on the western Makran
and their uplift rates indicate a comparable degree of long-term tectonic activity, especially
around Ormara. Offshore data suggest the occurrence of recently active submarine slumps
in the eastern part of the Makran, reflecting shaking events due to the 1945 great earthquake.
Cheng et al. [24] provided an analysis of plate-coupling dynamics, indicating potential
segmentation within the megathrust, characterized by variable coupling intensities from
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west to east. Nonetheless, their findings do not exclude the possibility that the entire length
of the megathrust could fail cohesively during a single seismic event.
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Ellouz-Zimmermann et al. [103] discuss the geodynamic evolution of the Makran
accretionary prism in the Pakistani region, noting that the sediment input in the Makran
originated from various sources during Cenozoic times: (1) direct influx from the Indus
River, which conveys eroded sediments from the Indian shield or Himalayas; (2) strong
erosion of the growing inner prism. The literature survey indicated that the evolution of the
Pakistani part of the Makran fold-and-thrust belt shares significant similarities with that
of the Iranian Makran, from the Late Cretaceous to the present [104]. Normand et al. [37]
indicated the uplift of terraces due to rapid surface uplift in a subduction zone context
and the heterogeneous accumulation of deformation in the overriding plate. Haghipour
et al. [105] attribute the regional geomorphic differences to Quaternary variations in tectonic
regimes, which caused varying uplift rates of the wedge surface.

The research by Normand et al. [35] reveals that the Makran coast’s morphology is
influenced by three primary factors: (1) tectonic forces, causing regional relative sea-level
fall and juxtaposition of different erodibility units through faulting; (2) surface processes,
such as differential erodibility, which lead to isolated headlands and significant sediment
deposition along the coast; and (3) coastal processes, which enable wave erosion of marine
terraces and the creation of extensive beaches.

Studies emphasize significant variations in coastal uplift rates between the eastern
and western parts of the Makran, with notably higher rates observed in the eastern region.
The considerable difference in uplift rates between these regions raises questions that
remain unresolved.
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5. GPS, Velocity Vectors, and Coupling

The GPS measurements in the Makran show an increasing convergence rate, particu-
larly in the eastern part, which has been the subject of many studies (e.g., [22,40,41,43–45]).
The convergence rate between the western and eastern parts of the subducting margin
demonstrates a significant difference of 21% [45]. The presence of a nearby spreading center
(the Ormara microplate driven northward by the Murray Ridge (Figure 1)) in the eastern
segment likely generates a much larger convergence in this area [17].

The recent study by Khorrami et al. [22] provided a comprehensive and updated GPS
velocity field for Iran. This study processed data collected over 10 years (2006–2015) from
the Iranian Permanent GNSS Network (IPGN) and combined it with previously published
velocity solutions from GPS surveys conducted from 1997 to 2013. The results of their study
are consistent with previous geodetic studies (e.g., Vernant et al. [41]).

Khorammi et al. [22] proposed that the Pakistani section of the Makran might exhibit
a higher degree of coupling compared with the Iranian segment. They noted that large
earthquakes could still strike the Iranian Makran, but with longer recurrence times. This
finding contrasts with Frohling and Szeglia [45] and Penney et al. [21], who suggested a
more highly coupled subduction interface for the entire Makran.

The study by Ghadimi et al. [23] presented the velocity vectors at GPS stations in
the stable Eurasia reference frame [106], along with 95% confidence ellipses based on the
authoritative works of [22,45,46,107] (Figure 7). They defined a locked subduction zone
versus a steady creeping subduction zone for the western Makran.
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including 95% confidence ellipses [22,45,46,107] (modified after Ghadimi et al. [23]).

Lin et al. [25] analyzed InSAR images from 2003 to 2010 to study the distribution of
interseismic coupling on the eastern Makran megathrust. Their research found that the
central section of the eastern Makran, where the 1945 earthquake occurred, exhibits high
interseismic coupling, and elastic strain has accumulated [25]. In contrast, lower coupling
was observed in the subduction zone of the Sonne fault zone. The study suggests that
there has been an accumulation of elastic strain since the 1945 earthquake, indicating the
potential for future magnitude 7+ earthquakes [25].
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Abbasi et al. [58] surveyed to improve the density of GPS vectors. This initiative
included the establishment of six new GPS stations by the Department of Earth Sciences
at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran. These
newly established GPS stations primarily cover the coastal region of Makran in Iran and
extend along north–south profiles from Chabahar to the onshore megathrust zone and
further north to Bazman volcano in the Lut block. The velocities of these new vectors
were determined for two sets of GPS stations. The first set consists of 11 stations, which
benefited from a nationwide network developed by the Iranian National Cartographic
Center (NCC) in the mid-2000s, originally intended for Gravity, Leveling, GPS, Astronomy,
and Magnetic (GALM) measurements. The second set comprises six stations forming
nearly north–south trending profiles, surveyed in January 2017 by IASBS. The existing GPS
vectors were complemented by new GPS vectors (Figure 8).
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The results of Abbasi et al. [58] revealed significant disparities between the western
and eastern segments of Makran. The ratio of coupling between the Arabian subducting
plate and the overriding plate is more than four times smaller in western Makran compared
with its eastern counterpart (Figure 9). Furthermore, the maximum rate of interseismic
strain accumulation in the onshore megathrust zone of western Makran is nearly seven
times smaller than in the eastern region. Consequently, the risk of earthquakes in the
western Makran megathrust zone is considerably less than in the eastern region, whereas
the earthquake hazard is notably higher in the areas surrounding the Zagros–Makran
transition zone (Figure 2).

In a recent study, Cheng et al. [24] found that the eastern and western segments have
coupling rates of around 50% and 60%, respectively. In contrast, the central segment shows
a lower coupling rate of approximately 30%.

In order to accurately determine the convergence rate in the expansive Makran region,
it is crucial to maintain a well-organized GPS network. This highlights the necessity of
conducting further research and collecting data in the area to gain a better understanding
of the underlying tectonic processes. To thoroughly investigate plate motion, we reviewed
various models, considering their strengths and limitations. Specifically, we evaluated the
convergence rate within the longitude range of 57◦ to 67◦ and the latitude of 25◦, from
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west to east. These assessments incorporate the research findings of various studies [47–57]
(Figure 10). Consistently, these models indicate a higher convergence rate in the eastern
regions compared with the western ones. It is important to emphasize that our objective is to
observe and analyze trends in convergence rates rather than engage in detailed discussions
of these models.
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6. Makran and Lut Block

The large difference between the shortening accommodated by the Zagros and the
Makran indicates a significant N–S shear between central Iran and Afghanistan [5,41,98,102,108].
The Lut block exhibits distinctive features characterized by large-scale faulting along its
western and eastern boundaries [7,109,110] (Figure 2). These faults extend over a consid-
erable length of 700 km and play a crucial role in shaping the overall structural setting of
the Lut block [78]. The differential motion of the Helmand and Lut blocks induces a right-
lateral slip of 5.6 ± 0.6 mm/year along the east Lut, with a mean strike of approximately
N12◦ E. Additionally, an extensional component perpendicular to the fault is observed at a
rate of 1.4 ± 0.6 mm/year [78]. The right-lateral slip rate remains relatively constant along
the fault, ranging from 5.6 ± 0.6 mm/year in the southern part to 5.8 ± 0.7 mm/year in
the north [78]. Mattei et al. [77] and Walpersdorf et al. [78] recognized the counterclockwise
rotation of the Lut block and N–S trending faults, likely attributed to their prior N–NE
orientation (Figure 2). The analysis of strain tensors has revealed that the Makran and
the Lut blocks are subjected to common stresses, while the Helmand block is under the
influence of the Indian and Eurasian plates, as Zarifi [16] explained in Figure 11. The stress
field in the central part of Makran reflects the interaction between Makran and SSZ [111].
When moving from the western to the middle part, the maximum horizontal stress direction
shifts significantly from NE–SW to almost E–W [112].
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Figure 11. Shows the maximum horizontal compressional stress, which was determined through
focal mechanism stress inversion. The stress state varies from the western to the eastern Makran
regions. In the western Makran, the stress field is impacted by the collision between Arabia and
Eurasia, while in the eastern Makran, it is influenced by the Indian–Eurasian stress field. The brown
triangles represent symbols for the Bazman Group (BG), Taftan Group (TG), and Sultan Group (SG)
volcanoes [16].

Pourbeyranvand et al. [113] confirmed that the stress tensor analysis revealed the
maximum horizontal stress orientation in the western part of Makran to be 17.6◦ ± 4,
running parallel to the Zagros. This orientation indicates the impact of the continent–
continent collision between the Arabian and Eurasian plates. In the central part of Makran,
the direction shows a rotation of 38.2◦ ± 3. The maximum horizontal stress orientation in the
eastern part is 157◦ ± 4, influenced by the collision between the Indian and Eurasian plates.

The significantly lower rate of strain accommodation in the western Makran megath-
rust zone is linked to the northward motion of the overriding Lut block along the dextral
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N–S fault of the SSZ, which transfers this northward motion beyond the northern boundary
of the Lut block [41,114]. Rashidi et al. [115] indicated an oblique shortening of the SSZ,
which could be attributed to the homogeneous direction of strains coinciding with the
convergence of the Arabia–Eurasia plates. This supports the effective stress transfer from
the active Zagros collision and Makran subduction zones. Ghods et al. [26] revealed that
the difference in the number of earthquakes between eastern and western Makran may
result from distinct overriding plate dynamics. Specifically, the study indicates that the
eastern Makran’s Helmand block and the SSZ show nearly negligible movement relative to
Eurasia, while the western Makran overriding plate comprises the Juzmurian Depression
and Lut block. The differences in stress conditions at the structural boundaries, particularly
at the MZP, OF, and CF, may be responsible for the expansion of the eastern boundary of
the Lut block to the Sonne fault (Figure 3, as supported by Nemati [8]). The stress field in
central Makran, which reflects the interaction between Makran and the SSZ, contributes
to the expansion of the eastern boundary of the Lut block towards Makran. Makran has
been proposed to be divided into western and eastern parts based on several perspectives
(e.g., [2,8,10,28]). This boundary likely originated in the subducted plate, suggesting an
interaction between variations in subduction dip angle and asymmetric pressure.

7. Subduction Angle

Engdahl and Villasenor [59] established a comprehensive digital database of earth-
quake hypocenters and phase arrival times for the majority of globally detected earthquakes
in the 20th century. They indicated that the eastern part of the Makran subducts at a dip
angle of about 8◦, increasing to approximately 20◦ as it reaches the asthenosphere. The dip
angle of the subducted slab in the western part, where it descends beneath the overlying
lithosphere, remains uncertain; however, it enters the asthenosphere at an approximate
dip angle of 30◦. Zarifi [16] revealed that the positioning of the volcanic arc and forearc
setting (Jazmurian and Mashkel Depressions), along with analyzing the gravity anomaly
perpendicular to the trench, which is more negative in the west than in the east, suggests
that the slab dips more shallowly toward the east. Nemati [8] stated that the spatial and tem-
poral distribution of earthquakes reveals the separation, geometry, and non-characteristic
behavior of the subduction zone, which likely indicates an Aleutian type of subduction
zone for the eastern part [8].

Motaghi et al. [60] investigated the geometry of subsurface velocity interfaces across
the western coastal Makran using teleseismic data. Their findings suggest that the oceanic
crust in the western and eastern parts has average dips of approximately 2◦ and 3◦, respec-
tively, before subducting under the overridingplate. The western part is expected to have
dips of about 18◦, whereas the eastern part should have around 9◦. Entezar-Saadat [116]
conducted a study on the density and temperature distribution in the lithosphere across
Iran, using gravity, geoid, topography, and surface heat flow data for modeling. The study
suggested that the lithospheric–asthenospheric boundary (LAB) depth gradually increases
until the Jazmurian Depression, then curves at a ~45◦ angle northward, reaching a depth of
approximately 260 km. This significant thickening of the LAB is believed to be the result of
the subduction of the oceanic lithosphere beneath the Iranian block. The recent study by
Priestley et al. [61] examined the geometry and dip of the subducting plate in the onshore
Iranian Makran using a combination of receiver functions and Rayleigh-wave group disper-
sion curves along an N–S seismic profile. The findings show a very low-angle subducting
plate with a dip of approximately 3◦ between the northern coastline of the Oman Sea and
the southern edge of the Jazmurian Depression. Further north of the Jazmurian, the slab
dips more steeply at approximately 12.5◦. Ghods et al. [26] stated that the Wadati–Benioff
zone in eastern Makran indicates a subduction angle of about 15◦ at depths of roughly
45–80 km, which increases to approximately 45◦ beyond 80 km depth.

The occurrence of earthquakes in the northern part of Makran with a normal mecha-
nism (Figure 3) may suggest that the asthenosphere, which is in contact with the subducted
plate [95,117]. The study of the Khash earthquake (16 April 2013) [95] in southeastern Iran,
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with a magnitude of Mw 7.8, suggested that the probable driving mechanism was a combi-
nation of frictional instability due to dehydration embrittlement in the subducted crust and
mantle. This occurred on a normal fault formed before subduction, under extension result-
ing from slab bending, indicating that the earthquake was likely due to the slab-detachment
process [95]. Penney et al. [97] suggested that the dip of the seismogenic zone inferred
from the earthquake distribution appears to steepen to the north of the normal-faulting
earthquakes and proposed that the normal-faulting events probably represent extension at
a hinge in the subducting Arabian plate.

The investigation of earthquake depth distribution reveals that earthquakes in the
longitude range of 64–65◦ tend to occur at greater depths than those in other parts (Figure 3).
One possible explanation for this observation is the lower dip angle of subduction in
the eastern part. This causes the subducted plate to move a greater distance into the
asthenosphere than the western part.

The dip angle of the Makran subduction zone varies significantly between its eastern
and western segments, with the western part exhibiting a steeper dip than the eastern part.
However, there is a notable lack of specific studies measuring the subduction dip angle
across Makran, representing a significant gap in our understanding of the region’s tectonics.

Two distinct dip angles in subduction can occur only when slab tearing or distortion
occurs. It can be observed that the western part of the volcanic arc has a higher abundance
of volcanoes compared with the eastern part, as shown in Figure 2. A proposed schematic
model, illustrated in Figure 12 explains the presence of two distinct dip angles and sug-
gests that the boundary between these two blocks divides Makran into separate regions.
Additionally, we propose that this boundary, already observed on the surface (e.g., [2,8,10]),
may be due to a detached subducted slab. However, the possibility exists for the formation
of more than two distinct regions, exceeding initial expectations.
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8. Conclusions and Suggestions

The study investigated the distinct tectonic patterns and deformation processes in
the eastern and western segments of the Makran subduction zone, elucidating the key
drivers behind these variations. The findings highlight higher seismic activity and stronger
plate coupling in the eastern segment, particularly in Pakistan, compared with the west-
ern segment in Iran. These differences are likely attributed to variations in subduction
dynamics, including asymmetric pressure (with a higher convergence rate in the eastern
part compared with the western part), dip angle, and stress field. The stress field in central
Makran, potentially influenced by tectonic interactions between the Makran and the SSZ,
may contribute to the extension of the Lut block’s eastern boundary toward Makran. The
eastern region, characterized by a lower dip angle, may exhibit enhanced coupling between
tectonic plates, leading to increased seismic activity and distinct uplift patterns. In contrast,
the western region, with a steeper dip angle, might experience lower pressure, reduced cou-
pling, and decreased seismic activity. This disparity could be attributed to varying degrees
of interaction between the subducted and overriding plates. Despite the insights gained,
several gaps persist in our understanding of the Makran subduction zone. Future research
should prioritize measurements of the subduction dip angle and stress fields, particularly
in the central Makran region. Additionally, more comprehensive GPS networks and In-
SAR techniques are essential for accurately monitoring tectonic movements across the
entire subduction zone, including both vertical and horizontal displacements. Geophysical
modeling, integrating gravity, geoid, topography, and surface heat flow data, along with
seismic tomography (which requires more local seismic stations), could provide a deeper
understanding of the subduction dip angle. These studies are crucial for improving seismic
hazard assessments and understanding the interaction between the Makran subduction
zone and surrounding tectonic structures.
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