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Abstract: In order to consider the effect of fabric anisotropy in the analysis of geotechnical
boundary value problems, this study proposes a modified model based on a fabric-based
modified Cam-clay model, which can account for the anisotropic response of soil. The
major modification of the original model aims to simplify the equations for numerical
implementation by replacing the SMP strength criterion with the Lade’s strength criterion.
This model comprehensively considers the inherent anisotropy, induced anisotropy, and
three-dimensional strength characteristics of soil. The model is first numerically imple-
mented using the elastic trial–plastic correction method, and then it is encapsulated into
the FLAC3D 6.0 software, and tested through conventional triaxial, embankment loading,
and tunnel excavation experiments. Numerical simulation results indicate that considering
anisotropy and three-dimensional strength in geotechnical engineering analysis is necessary.
By accounting for the interaction between microstructure and macroscopic anisotropy, the
model can more accurately represent soil behavior, providing significant advantages for
geotechnical analysis.

Keywords: fabric anisotropy; failure criterion; cam-clay; Flac3D; numerical implementation

1. Introduction
To analyze and calculate the mechanical response of geotechnical bodies under various

complex conditions, numerous successful constitutive models have been proposed [1–14].
However, the validation and application of most models are largely limited to element-level
problems or practical engineering cases with structural symmetry and simple boundary
conditions. To analyze the complex geotechnical problems frequently encountered in
practice, it is inevitable to integrate these constitutive models into numerical analysis
software [15–19]. Currently, the Mohr–Coulomb (M-C) model and the modified Cam-clay
(MCC) model in elastoplastic frameworks have been integrated into nearly all numerical
analysis software for geotechnical engineering and are widely accepted for analyzing prac-
tical engineering problems [20,21]. However, as pointed out by some researchers [22–25],
the selection of constitutive models is crucial in the analysis of geotechnical boundary
value problems. An inappropriate choice of constitutive model may result in unrealistic
predictions. It is well known that the circular yield surfaces of these two models cannot
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capture the dependence of strength on Lode’s angle. Consequently, they tend to signifi-
cantly overestimate the tensile strength of geotechnical materials. Given that underground
structures are commonly subjected to cyclic tensile and compressive loads during their
service life, such as seismic loads [26,27], the strength/yield criterion should be extended
to the three-dimensional stress space when analyzing their dynamic response [28–30].

It is also noteworthy that, due to gravitational effects during natural sedimentation,
soil particles form spatial arrangements of particles and associated voids with certain
statistical characteristics, displaying anisotropic features at the macroscopic level (known as
inherent anisotropy) [31,32]. Because of inherent anisotropy, the mechanical response of soil
is highly sensitive to the loading direction. Specifically, lower strength is observed when
the principal stress direction deviates from the deposition direction [33–35]. Additionally,
non-coaxial behavior has been observed, where a significant difference exists between the
directions of the principal stress and the principal strain increment [36–38]. On the other
hand, under external loading during service, soil particles undergo rearrangement (leading
to induced anisotropy), which further results in the accumulation of pore water pressure
or plastic deformation [39–42]. Extensive research has confirmed that neglecting inherent
or induced anisotropy in the analysis of underground structures can lead to designs that
deviate from actual conditions and pose safety risks [43–46].

To analyze the anisotropic behavior of soils, a large number of successful models
have been proposed, among which the S-CLAY model series and the SANISAND model
series are particularly widely accepted and applied [47–52]. Although these two types
of models have different applicable scopes, they are both based on the same concept of
rotational hardening. These models aim to represent the anisotropic response of soils
by using yield surfaces that rotate with plastic deformation. These models have been
successful on a macroscopic scale because they can clearly reflect the relationship between
soil strength (or deformation) and anisotropy. However, a large body of evidence from a
microscopic perspective has shown that this macroscopic anisotropic behavior is closely
related to the microstructure of soil [53–57]. Rotational hardening models, which are based
on phenomenological approaches, struggle to quantitatively explain this relationship. In
recent years, thanks to advancements in DEM technology, many multiscale models in-
corporating soil microstructural information have been developed [1,3,58–61]. Notably,
interesting attempts have been made by Yao and Kong [62], Yao et al. [63], as well as Tian
and Yao [64]. In their work, they proposed a modeling approach called the Anisotropic
Transformation Stress (ATS) Method. Under the framework of ATS, the fabric tensor repre-
senting microscopic anisotropy information can be easily integrated into the constitutive
model through a two-step stress transformation without introducing additional model
parameters. Furthermore, by combining a specific strength criterion, the generalization
of the yield surface can be achieved without introducing additional parameters. Using
this method and combining it with the MCC model, Tian [65] successfully proposed a
fabric-based MCC model. The validity of this model has been verified at both macroscopic
and microscopic scales.

In this study, building upon the model proposed by Tian [65], the fabric evolution law
and the strength criterion are further modified, and an improved version of the fabric-based
MCC model is introduced. The purpose of these modifications is to simplify the model
equations, thereby facilitating numerical implementation. Specifically, the SMP strength
criterion used in the original model is replaced with Lade’s strength criterion, which avoids
the need to compute the second invariant of the principal stresses. In this model, the
inherent anisotropy of the soil is characterized by a fabric tensor defined based on the initial
preferential orientation of particles [66–68], while the induced anisotropy is quantified
through a fabric evolution rule driven by the plastic strain rate [69–71]. Subsequently, the
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model is numerically implemented using an elastic trial–plastic correction approach and
integrated into the FLAC3D software. In this approach, the plastic multiplier of the model
can be easily and explicitly calculated using the quadratic equation root-finding formula.
Finally, a series of numerical experiments were conducted using the model in the FLAC3D

software. These experiments included conventional triaxial tests, embankment load tests,
and tunnel excavation tests. The results demonstrated the effectiveness and validity of the
model. The study found that the model could reasonably capture the three-dimensional
strength characteristics and anisotropic behavior of the soil, and these features are essential
and cannot be ignored in practical engineering applications.

2. Constitutive Relation of Fabric-Based MCC Model
2.1. MCC Model, a Brief Review

The development of the MCC model was a major breakthrough in the elastoplastic
modeling of geomaterials [72]. Although its application in practical engineering remains
somewhat debated, the underlying concept of the MCC model is remarkably straight-
forward and serves as a powerful tool [73]. It is particularly well suited for describing
the mechanical behavior of normally consolidated or lightly over-consolidated soft clays.
Additionally, many constitutive models in the literature have been built around the core
principles of MCC plasticity [17,28,62,74,75]. The basic equations for the MCC model can
be given as follows:

f = g = q2 + M2 p(p − pc), (1)

p = σii/3, sij = σij − pδij, q =
√

3sijsij/2, (2)

eN = e + λlnp, (3)

where f and g are the yield and plastic potential functions, respectively. σij is effective stress
tensor. sij is deviatoric stress tensor. p and q are the mean and deviatoric stress, respectively.
δij is Kronecker tensor. pc is consolidation pressure. M denotes the critical stress ratio. e is
void ratio. eN denotes the intersection of the normal consolidation line (NCL) with the e
axis in the e-lnp space. λ denotes the slope of compression line.

2.2. MCC Model Enhanced by Fabirc Anisotropy and Lade’s Criterion

To measure the anisotropic characteristics of soil, various definition methods for fabric
tensors have been proposed [76]. According to the work of Yao et al. [63], Tian and Yao [64],
and Tian et al. [65], if the preferred orientation of particle long axes is used to define the
fabric tensor Fij, it can be expressed as follows:

Fij =

∆ 0 0
0 (1 − ∆)/2 0
0 0 (1 − ∆)/2

, (4)

where ∆ represents the degree of the anisotropy of the preferred orientation of the parti-
cles [58,77]. Furthermore, the deviatoric part of Fij can be given as follows [68]:

Pij =
5
2
(
3Fij − δij

)
, A =

√
PijPij, (5)

where Pij denotes the deviatoric part of Fij. A is the norm of Pij, used to measure the degree
of anisotropy.

In order to quantitatively describe the variation in fabric tensor during the loading
process, a fabric evolution law should be defined. Tian and Yao [64] and Tian et al. [65] have
proposed a unified fabric evolution law driven by plastic volumetric deformation, which
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has been successfully applied to both sand and clay. In this paper, to facilitate numerical
implementation, the fabric evolution rule is modified as follows:

dFij = cF
(
δij/3 − βηij − Fij

)
dγ (6)

where cF is a model parameter used to control the evolution rate of fabric tensor under
plastic loading. β is a model constant used to control the final degree of anisotropy.
ηij = sij/p is stress ratio tensor. dγ is plastic multiplier.

To extend the yield surface to three-dimensional anisotropic space, Yao et al. [78], Yao
and Kong [62], and Yao et al. [63] have proposed the anisotropic transformed stress (ATS)
method. This method maps the stress into a virtual transformed stress space by combining
the fabric tensor and a specific strength criterion, allowing for the description of the effects
of fabric anisotropy and Lode’s angle on yield strength within this space. According to
the work of Tian [65], the stress is first modified using the fabric tensor to extend the yield
surface of the MCC model to account for anisotropy, as follows:

σij =
3
2

(
σikFkj + Fikσkj

)
− slmFmlδij, (7)

p = σii/3, sij = σij − pδij, q =
√

3sijsij/2, (8)

where σij is referred to as the modified stress tensor [64,65], which contains information
related to fabric. sij is the deviatoric part of σij. p and q are the mean and deviatoric stress
of σij.

Furthermore, to extend the yield surface to a three-dimensional stress space, the
modified stress should be combined with a specific strength criterion. In the work of
Tian [65], the SMP criterion was used to create a three-dimensional yield surface for the
MCC model. However, this method requires obtaining all three invariants of the modified
stress, which complicates numerical implementation. For simplicity, this paper employs
Lade’s criterion to three-dimensionalize the MCC yield surface. This criterion requires only
the first and third invariants of the modified stress and its validity has been confirmed as
follows [28,64]:

σ̃ij =

{
pδij + qcsij/q, (when q ̸= 0)
σij, (when q = 0)

, (9)

qc = I1

{
1 +

J
2

[
cos

(
1
3

cos−1 J
)]−1

}
, J =

√
27I3/I3

1, (10)

where σ̃ij is referred to as the transformed stress tensor. I1 and I3 represent the first and
third invariants of σij, respectively. J is a variable determined by current modified stress.
qc denotes the strength under triaxial compression condition.

By substituting the transformed stress into yield function defined in the real stress
space, the yield function f̃ and plastic potential function g̃ of the modified MCC model can
be given as follows [65]:

f̃ = g̃ = q̃2 + M̃2 p̃( p̃ − p̃c), (11)

p̃ = σ̃ii/3, s̃ij = σ̃ij − p̃δij, q̃ =
√

3s̃ij s̃ij/2, (12)

M̃ = M − βM(M + 3), (13)

where s̃ij is the deviatoric part of σ̃ij. p̃ and q̃ are the mean and deviatoric stress of σ̃ij. M̃
denotes the critical state ratio in modified/transformed stress space [63–65]. It is important
to note that Equation (11) implies that the flow rule of this model is associated. This is
because Hashiguchi [79] emphasized that if a constitutive model is developed within a
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rate-independent framework, the associated flow rule must hold. p̃c denotes the hardening
variable, and its evolution rule can be given as follows:

dp̃c =
1 + e
λ − κ

p̃cdε
p
v, (14)

where κ is the slope of swelling line. dε
p
v denotes the plastic volumetric increment.

Furthermore, based on the elastoplastic theory, the stress–strain relationship can be
expressed as follows:

dp = K
(

dεv − dε
p
v

)
= K

(
dεv − dγÑv

)
, (15)

dq = 3G
(

dεq − dε
p
q

)
= 3G

(
dεq − dγÑq

)
, (16)

K =
1 + e

κ
p, G =

3(1 − 2v)
2(1 + v)

K, (17)

Ñv =
∂g̃
∂ p̃

= M̃2(2p̃ − p̃c), Ñq =
∂g̃
∂q̃

= 2q̃, (18)

where dεv and dεq are the volumetric and deviatoric strain increments, respectively. dε
p
q is

the plastic deviatoric strain increment. K and G are the bulk and shear modulus, respec-
tively. v is Poisson’s ratio. Ñv and Ñq denotes the plastic volumetric and deviatoric flow
directions, respectively.

For convenience of comparison, Table 1 lists the model parameters of the MCC model
and the fabric-based MCC model defined in this study, where M, λ, κ, v, and eN (or ere f )
are referred to as the basic parameters in this study, as they are common to all models in
the MCC family. Compared to the MCC model, the model in this study also requires the
determination of parameters such as ∆, β, and cF. These parameters, first proposed by
Yao et al. [63], Tian and Yao [64], and Tian et al. [65], are related to the fabric anisotropy of
the material and are therefore referred to as fabric parameters in this study.

Table 1. Model parameters of MCC model and this model.

Model Basic Parameters [72] Fabric Parameters [63–65]

MCC model M, λ, κ, v, eN
(
or ere f ) /

Fabric-based MCC model M, λ, κ, v, eN
(
or ere f ) ∆, β, cF

Remarks: M is critical state ratio; λ is the slope of critical state line; κ is the slope of swelling line; v is the Poisson’s
ratio; eN is the intersection of consolidation line with the e axis in the e-lnp space. ere f denotes the reference void
ratio at a specific stress level. ∆ denotes the initial fabric anisotropy. β denotes the final fabric anisotropy. CF
controls the evolution rate of fabric anisotropy.

3. Integration of Fabric-Based MCC Model in FLAC3D

The numerical algorithm flowchart of this model is shown within the blue box in
Figure 1, where superscripts k and k + 1 represent the k th and k + 1 th loading steps,
respectively. The superscript 0 denotes the initial state, and the superscript tr denotes the
elastic trial state. Before starting the calculations, it is necessary to assign initial values to the
internal variables. The initial value of the plastic state variable p̃0

c in the transformed stress
space can be determined by substituting the initial values of the other internal variables
into Equation (11), as follows:

p̃0
c = OCR

[(
q̃0
)2

/
(

M̃2 p̃0
)
+ p̃0

]
. (19)
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Specifically, when q̃0 = 0 (isotropically consolidation), p̃0
c can be given as follows:

p̃0
c = OCRp̃0, (20)

where OCR is the over-consolidation ratio. Specifically, when ∆ = 1/3 and β = 0, the
proposed model reduces to the standard MCC model (isotropic state), and, in this case,
p̃0

c = p0
c .

The integration algorithm of the model primarily consists of two parts: elastic predic-
tion and plastic correction. First, assuming purely elastic deformation occurs between steps
k and k + 1, the elastic trial stress can be updated using Equations (15) and (16), while the
internal variables Fij and p̃c related to plastic deformation are held constant, as follows:

ptr = pk + Kkdεk+1
v , qtr = qk + 3Gkdεk+1

q , (21)

Ftr
ij = Fk

ij, p̃tr
c = p̃k

c . (22)

Then, use ptr, qtr and Ftr
ij to calculate p̃tr, q̃tr and σ̃tr

ij , and substitute these trial variables
into the yield function defined in Equation (11) for evaluation. If the trail yield function
f̃ tr is less than 0, it indicates that the elastic prediction is correct, and the values for state
variables at step k + 1 can be directly output as follows:

pk+1 = ptr, qk+1 = qtr, Fk+1
ij = Fk

ij, p̃k+1
c = p̃k

c . (23)

If f̃ tr ≥ 0, this indicates that plastic deformation has occurred, and plastic correction
is required. To solve for dγk+1, it can be substituted as the sole unknown into the yield
function. Various integration algorithms, including explicit and implicit methods [80–82],
have been proposed to solve for dγk+1. Here, noting that the yield function f̃ tr = 0 is
a univariate quadratic equation, dγk+1 can be explicitly obtained using the following
quadratic formula [83]:

a
(

dγk+1
)2

+ bdγk+1 + c = 0, (24)

a =
(

M̃Kk Ñtr
v

)2
+

(
3Gk Ñtr

q

)2
, b = −Kk

(
Ñtr

v

)2
− 3Gk

(
Ñtr

q

)2
, c = f̃ tr. (25)
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Once the plastic multiplier dγk+1 is obtained, it can be substituted into
Equations (6) and (14)–(16) to perform plastic correction of the internal variables as follows:

pk+1 = ptr − Kkdγk+1Ñtr
v , qk+1 = qtr − 3Gkdγk+1dÑtr

q , (26)

Fk+1
ij = Fk

ij + cF

(
δij/3 − βηk

ij − Fk
ij

)
dγk+1, (27)

p̃k+1
c = p̃k

c

(
1 + dγk+1Ñk 1 + e

λ − κ

)
. (28)

The numerical implementation and coding processes are carried out in a C++ pro-
gramming environment. After completion, the code generates a file with a .dll extension,
which is then imported into the “cmodel” directory of the FLAC3D software to enable
program encapsulation. When using the model, it can be invoked with the command
“model configure plugin”.

In practical applications, as depicted in the left half of Figure 1, the initial environ-
ment necessary for computation is first set up, including model parameters, geometric
information, initial boundary conditions, and initial conditions (e.g., stress field). FLAC3D
then calculates the strain increments for each element using the explicit finite difference
method (FDM). With these strain increments, the stress increments can be calculated using
the constitutive relations shown in the blue region. Finally, FLAC3D checks whether the
results satisfy the equilibrium equations. If the equilibrium is met, the results are output;
otherwise, iterative calculations are performed.

4. Application of Fabric-Based MCC Model in FLAC3D

To verify the applicability of the model in FLAC3D, a series of numerical simulations
are conducted in this study, including triaxial drained and undrained simulations, embank-
ment loading simulations, and tunnel excavation simulations. The model parameters used
for simulation are listed in Table 2.

Table 2. Model parameters used for simulation.

Case Basic Parameters Fabric Parameters

Triaxial tests M = 1; v = 0.3; λ = 0.1;
κ = 0.03; eN = 1.391

∆ = 0.25 ∼ 1/3; β = 0.01 ∼ 0.07
cF = 2000 ∼ 12, 000

Embankment loading M = 0.888; v = 0.3; λ = 0.161;
κ = 0.062; ere f = 1.858 (p = 1 kPa)

∆ = 1/3; β = 0.02 ∼ 0.08
cF = 500

Tunnel excavation M = 1.85; v = 0.28; λ = 0.072;
κ = 0.006; ere f = 1.094 (p = 1 kPa)

∆ = 0.2 ∼ 0.32; β = 0.09 ∼ 0.11
cF = 10 ∼ 5000

Remarks: the basic model parameters used in the triaxial tests are selected from the typical range of clay parameters
provided by Yu [74], while the range of fabric parameters is determined with reference to the work of Tian and
Yao [64] and Tian et al. [65].

4.1. Triaxial Tests

To verify the accuracy of this model, a series of conventional triaxial tests (element
tests) are first conducted in FLAC3D. The basic model parameters are shown in Table 2,
while the fabric parameters are set as ∆ = 1/3 and β = cF = 0. This configuration is chosen
to temporarily ignore the effects of anisotropy and focus solely on verifying whether Lade’s
strength criterion is successfully incorporated into the model. The sample is subjected to
isotropic consolidation with p = 300 kPa and subsequently undergoes triaxial compression
(TC) and triaxial extension (TE) loading under both drained and undrained conditions.
For comparison, the MCC model in FLAC3D is used with the same model parameters
for simulation. Figure 2 shows the calculation results of the MCC model and this model,
where the symbols represent the calculation results of the MCC model, and the lines
represent the simulation results of this model. Under TC conditions, the mechanical
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response predicted by this model aligns almost perfectly with that of the MCC model,
confirming the correctness of this model. However, under TE conditions, the MCC model
predicts identical ratios for the critical state stresses under compression and extension (i.e.,
Mc = Me, q/p = constant). This is because the strength envelope of the MCC model forms
a circle in the π-plane. Such predictions of the MCC model are evidently inaccurate, as
numerous experiments have demonstrated that the tensile strength of soils is lower than
their compressive strength [84,85]. In contrast, the proposed model successfully captures
the difference between extensile and compressive strengths, indicating that the yield surface
of the MCC model has been effectively extended to the three-dimensional stress space.
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Figure 2. Mechanical responses of standard MCC model and this model (∆ = 1/3, β = cF = 0) under
drained and undrained conditions: (a) effective stress paths under undrained conditions; (b) stress
ratio-strain curves under undrained conditions; (c) dilatancy behaviors under drained conditions;
(d) stress ratio–strain curve under drained conditions.

Furthermore, to simulate the anisotropic characteristics of the soil, fabric parameters
are set to ∆ = 0.3, β = 0.03, and cF = 2000, while keeping all other parameters unchanged.
As previously mentioned, due to its inherent anisotropy, the mechanical response of soil
is closely related to the direction of the applied load. To simulate this phenomenon,
different deposition directions are considered, as shown in Figure 3. When the deposition
plane is rotated, applying compressive loads along the z-axis effectively represents natural
sedimentary soils subjected to loads from different directions. Based on the work of
Tian [86], the relationship between the deposition direction δ and the fabric tensor can be
defined as follows:

Bij =

cosδ 0 −sinδ

0 1 0
sinδ 0 cosδ

 (29)
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F′
ij = BikBjl Fkl =

[(∆ + 1) + (3∆ − 1)cos2δ]/4 0 (3∆ − 1)sin2δ/4
0 (1 − ∆)/2 0

(3∆ − 1)sin2δ/4 0 [(∆ + 1)− (3∆ − 1)cos2δ]/4

, (30)

where Bij denotes the rotation tensor. F′
ij denotes the fabric tensor after rotation.
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Figure 4 shows the drained and undrained compression responses of the soil under
different deposition directions. It can be found that the soil shows a strong directional
dependence on its mechanical behavior such as failure strength, stress path, and volumetric
deformation. At lower strain levels, as the deposition direction deviates from the z-axis,
both the strength and volumetric deformation of the soil gradually decrease. This trend is
consistent with the behavior observed in experimental studies [33–35,40,56,87]. Interest-
ingly, as the strain level increases, the soil under each deposition direction tends to converge
to the same critical state. This phenomenon aligns with the anisotropic critical state theory
(ACST) proposed by Li and Dafalias [69], which suggests that anisotropic soils converge
to a unique critical state at sufficiently large strain levels. This observation confirms the
validity of the model.

The simulation results above demonstrate the validity of the model at the macro-
scopic level. Next, the accuracy of the model will be verified at the microscopic level
under drained compression conditions. Extensive observations have demonstrated that
fabric anisotropy evolves during the loading process, and the evolution patterns of soil
anisotropy vary depending on the initial conditions. However, upon reaching the criti-
cal state, fabric anisotropy converges to a unique value that is independent of the initial
conditions [42,68,88]. To verify whether the model implemented in FLAC3D can accurately
capture the characteristics of fabric evolution, a series of parameter sensitivity analyses
were conducted in this study. As shown in Figure 5, the relationships between the evolution
of fabric anisotropy A and various microscopic parameters are presented. Figure 5a (fabric
parameters are set to ∆ = 0.3, β = 0.03, and cF = 4000) shows that for deposition directions
of 10◦ and 30◦, the degree of anisotropy gradually decreases with increasing strain levels.
In contrast, for deposition directions of 60◦ and 80◦, anisotropy initially decreases and
then increases. This behavior is attributed to particle rearrangement at the initial stage,
which offsets the initial cross-anisotropy of the soil. As loading continues, the long axes
of particles gradually align perpendicular to the loading direction, leading to a renewed
increase in anisotropy. Li and Li [89] also observed a similar phenomenon. Despite the
differences in evolutionary patterns, all tests predict the same critical state fabric, consistent
with the assumptions of the ACST. Figure 5b shows the evolutions of A under different
initial values of ∆ (fabric parameters are set to β = 0.03 and cF = 4000). It can be observed
that, despite varying initial degrees of anisotropy, all tests reach the same critical state
fabric at large strain levels. Figure 5c shows the effect of parameter cF on the evolution of
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anisotropy (fabric parameters are set to ∆ = 0.3 and β = 0.01). It is evident that, according to
Equation (6), the rate of anisotropy evolution increases with the increase in parameter a
and eventually tends towards a unique stable state. Figure 5d shows the effect of parameter
β on the anisotropic behavior (fabric parameters are set to ∆ = 0.3 and cF = 4000). As β

increases, the final degree of anisotropy in the soil increases.
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Figure 4. Mechanical responses of this model under drained and undrained conditions (∆ = 0.3,
β = 0.03, cF = 2000): (a) stress ratio–strain curves under undrained conditions; (b) effective stress paths
under undrained conditions; (c) stress ratio–strain curves under drained conditions; (d) dilatancy
behaviors under drained conditions.

4.2. Embankment Loading Problem

To investigate the effects of anisotropy on typical geotechnical engineering problems,
the proposed model is used to simulate the embankment loading case provided by the
FLAC3D [90]. The dimensions and boundary conditions of the model are shown in Figure 6.
Consistent with the MCC model, the basic parameters of this model are set as M = 0.888,
v = 0.3, λ = 0.162, κ = 0.062, and the reference void ratio ere f = 1.858 when p = 1 kPa. The
density of the soil is set to 2 × 103 kg/m, while the permeability is set to 1 × 10−8 m/s. The
foundation is assumed to be lightly over-consolidated with p0

c = 160 kPa. The simulation
consists of two stages: in the first stage, an embankment load of 50 kPa is applied to the
4 m section on the left side of the top boundary of the model, with no fluid flow during this
stage, corresponding to undrained conditions; in the second stage, fluid flow is permitted to
simulate approximately three years of consolidation, corresponding to drained conditions.
Further details about the simulation can be referenced from the help documentation of
FLAC3D [90]. It should be noted that before starting the calculations, for the anisotropic
model, the initial value of the hardening parameter p̃c needs to be determined using
Equation (19).
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different cF; (d) model simulations with different β.
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Figure 6. Schematic diagram of the geometric dimensions and boundary conditions for embankment
loading analysis.

As the first calculation, the fabric parameters are set to ∆ = 1/3 and cF = 500, while
β is varied from 0.02 and 0.08. The purpose of this setup is to make the initial state of
this model equivalent to the initial isotropic state of the MCC model, thereby considering
only the effects of anisotropic evolution. Figure 7 shows the mechanical responses of the
saturated soil foundation predicted by the MCC model and this model. The predicted
settlements versus time at the ground surface along the centerline of the embankment
are presented in Figure 7a for approximately 3 years of consolidation time. It can be
observed that the settlement predicted by the MCC model is approximately 0.193 m, while
this model predicts a final settlement of 0.209 m (β = 0.02), and the predicted settlement
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increases with the parameter β. Interestingly, Karstunen et al. [50] and Yildiz et al. [51]
have conducted similar comparative validations and found that considering anisotropy
led to higher predicted final settlements compared to the MCC model. This highlights
the necessity of accounting for anisotropy in practical engineering problems to avoid
unrealistic predictions. Figure 7b,c present the surface settlement troughs during the
undrained and drained stages, respectively. It can be observed that in the undrained stage,
both the MCC model and the anisotropic model predict noticeable surface heave, with
the anisotropic model forecasting a more pronounced degree of both surface heave and
settlement. During the drained consolidation stage, the anisotropic model predicts higher
settlement values. These trends align well with the conclusions drawn from the study
by Karstunen et al. [50]. Figure 7d illustrates the variation in lateral displacement with
depth at x = 4.5 m during the drainage phase. It can be observed that the anisotropic model
predicts greater lateral displacement compared to the MCC model, a similar trend also
identified by Yildiz et al. [51].
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Figure 7. Embankment loading simulations of MCC model and this model: (a) relationship between
surface settlement and time; (b) settlement trough at undrained stage; (c) settlement trough at drained
stage; (d) horizontal displacement of x = 4.5 m at drained stage.

Figure 8 shows the total displacement contours predicted by the MCC model and this
model (∆ = 1/3, β = 0.08, cF = 500). It can be observed that during both the undrained and
drained stages, the anisotropic model predicts greater horizontal and lateral displacements
compared to the MCC model. Given that the elastic behavior of both models is identical,
these differences can be attributed to the anisotropic plastic behavior.
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Figure 8. Total displacement contours: (a) MCC model at undrained stage; (b) this model at undrained
stage (∆ = 1/3, β = 0.08, cF = 500); (c) MCC model at drained stage; (d) this model at drained stage
(∆ = 1/3, β = 0.08, cF = 500).

4.3. Tunnel Excavation Problem

The final case study focuses on a tunnel excavation simulation, using the Qinghuayuan
Tunnel shield tunneling project as the background to analyze the impact of construction on
ground disturbance [91]. A half model is established as shown in Figure 9, with a domain
width of 70 m and a depth of 82 m, and the tunnel axis is located at a depth of 23.32 m with
a radius of 6.32 m. Horizontal constraints are applied to the surrounding boundaries, while
both horizontal and vertical constraints are applied to the bottom boundary. The top of
the model is set as a free boundary. According to the work of Cui [91], the soil layers in
this region mainly consist of silty clay and sandy pebbles, with sandy pebbles being the
most representative. For simplicity, the region was simplified as a homogeneous pebble
layer. The soil parameters were recorded as effective friction angle φ′ = 45◦, Poisson’s ratio
v = 0.28, unit weight = 20.2 kN/m3, and plastic index Ip = 11.6. Based on these parameters
and the work of Nakase et al. [92], the basic parameters for the MCC model and this model
can be approximated as follows:

M = 6sinφ′/
(
3 − sinφ′) ≈ 1.85, (31)

λ = 0.02 + 0.0045Ip ≈ 0.072, κ = 0.00084
(

Ip − 4.6
)
≈ 0.006. (32)

The tunnel excavation process using the stress release method is carried out in two
steps. First, the elements in the tunnel excavation area (excavation radius = 6.32 m) are
assigned a null model, and the reverse forces are applied to the grid nodes of the tunnel
excavation surrounding walls to simulate the stress release during the excavation process.
In the second step, the elements in the lining area (the blue region in Figure 9) are assigned
an elastic constitutive model, the lining elements are activated, and the reverse forces are
removed to achieve equilibrium. The thickness of the lining area is 0.5 m. According to
the work of Cui [91], Young’s modulus of the lining elements is set to 35.5 GPa, Poisson’s
ratio is set to 0.25, and the unit weight is set to 25 kN/m3. It should be noted that during
the geostress equilibrium stage, the fabric evolution parameters cF and β are set to 0 to
ensure that the soil is undisturbed prior to excavation. Then, during the excavation phase,
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the parameters cF and β are assigned predetermined values to simulate the impact of the
excavation process on the microstructure of the soil.
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It is assumed that the reference void ratio ere f of the soil at p = 1 kPa is 1.094, and
the OCR = 2.5. Using the empirical formula K0 = (1 − sinφ′) × OCRsin φ ′

[93,94], the
static lateral earth pressure coefficient K0 is approximately 0.56. For comparison, the basic
material parameters (i.e., M, λ, κ, v and ere f ) of the MCC model and the model in this
study are kept consistent. To study the effect of anisotropy on soil disturbance, the fabric
parameters of the model in this study are set as ∆ = 0.3, cF = 150, and β varies between
0.09 and 0.11. Figure 10a shows the surface settlement trough observed in the experiment,
predicted by the MCC model, and predicted by the model in this study. It can be seen that
the MCC model underestimates the maximum settlement value, while the model in this
study provides a better representation of the actual settlement. However, although fabric
anisotropy has been introduced into the MCC model, it primarily affects the settlement
depth without significantly altering the shape of the settlement basin, which differs from
the shape observed in practice. Similar patterns were also noted by Karstunen et al. [50]
and Yildiz et al. [51]. According to the work of Xiao et al. [23], this may be because the
MCC model does not account for the difference in elastic modulus during loading and
unloading. Figure 10b shows the horizontal displacements predicted by both models.
It can be observed that the anisotropic model predicts larger horizontal displacements,
which is consistent with the observations reported by Cui [91]. However, it is worth
mentioning that in the anisotropic model proposed by Cui [91], a significant soil arching
was observed around the soil surface at x = 20 m, which does not align with the experimental
observations. This discrepancy may be due to the fact that the anisotropic model proposed
by Cui [91] is established on the M-C model, which uses the ideal plasticity theory. This
theory assumes that the soil does not exhibit subsequent hardening behavior, which may
lead to an overestimation of the soil arching. Figure 11 shows the total displacement
contour plots near the excavation area predicted by the MCC model and the model in this
study. It can be observed that the displacement distribution predicted by both models is
generally consistent. However, for the model in this study, as parameter β increases, the
displacements near the crown and shoulders of the excavation area significantly increase.
This indicates that the effect of anisotropy on the disturbance of the soil layers during
excavation should not be overlooked.
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Figure 10. Tunnel excavation simulations of MCC model and this model with OCR = 2.5 and K0 = 

0.56: (a) surface settlement troughs; (b) surface horizontal displacements. 

  

Figure 10. Tunnel excavation simulations of MCC model and this model with OCR = 2.5 and
K0 = 0.56: (a) surface settlement troughs; (b) surface horizontal displacements.
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Figure 12. Tunnel excavation simulations of this model with constant OCR = 2.5 but different K0: (a) 
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Figure 11. Total displacement contours near excavation area with constant OCR = 2.5 and K0 = 0.56:
(a) predicted by MCC model; (b) predicted by this model (∆ = 0.3, β = 0.09, cF = 150). (c) Predicted by
this model (∆ = 0.3, β = 0.1, cF = 150); (d) predicted by this model (∆ = 0.3, β = 0.11, cF = 150).

In order to investigate the effect of the static lateral pressure coefficient K0 on the soil
disturbance caused by tunnel excavation under anisotropic conditions, a series of K0 values
are selected for the simulations (K0 = 0.3, 0.5, 0.8, and 1.0). Figure 12 shows the simulation
results of this model with constant OCR = 2.5 but different K0, while the fabric parameters
are set as ∆ = 1/3, cF = 150, and β = 0.09. From Figure 12a, it can be seen that as K0 increases,
the vertical settlement at the soil surface decreases. Figure 12b shows the normalized
surface settlement under different K0 conditions. It can be observed that K0 not only affects
the depth of the settlement trough but also influences its width. Specifically, lower values of
K0 predict narrower settlement troughs. This could be due to the fact that as K0 decreases,
the mean effective stress p in the soil decreases, and, as can be seen from Equation (17), the
stiffness of the soil also decreases accordingly. This trend is consistent with the observations
made by Cui [91] and Dolezalova [95]. Figure 13 shows the total displacement contours
under different K0 conditions. It can be observed that as K0 increases, the soil displacement
near the excavation area significantly decreases. Therefore, it can be concluded that the
resistance of soil to disturbance during tunnel excavation is sensitive to K0, and the value
of K0 should be determined as accurately as possible during site investigation.

The effect of OCR on tunnel excavation has always been an interesting topic of geotech-
nical engineering [96–98]. To investigate the effect of OCR on tunnel excavation, this study
sets OCR of 1.6, 1.9, 2.2 and 2.5 while keeping K0 = 0.56, and the fabric parameters are set
as ∆ = 1/3, cF = 150, and β = 0.09. Figure 14 shows the surface settlement and horizontal
displacement under different OCR conditions. It can be observed that as OCR increases,
both the settlement and horizontal displacement at the surface decrease. This is consistent
with the findings observed by Shi et al. [96] in their centrifuge tests. This may be because,
as OCR increases, the size of the initial yield surface increases, making it more difficult for
the soil to reach the plastic stage, resulting in higher stiffness. The plastic zone contour
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map in Figure 15 (blue region) confirms this conclusion, showing that as OCR increases,
the predicted plastic zone area gradually decreases. Furthermore, it can also be found that
the plastic zones predicted by the model are concentrated at the crown and shoulders of
the excavation area, which is similar to the plastic zone distribution predicted by Cui [91].
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Figure 12. Tunnel excavation simulations of this model with constant OCR = 2.5 but different K0: (a) 
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Figure 12. Tunnel excavation simulations of this model with constant OCR = 2.5 but different K0:
(a) surface settlement troughs; (b) normalized surface settlement troughs.
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Figure 14. Tunnel excavation simulations of this model with constant K0 = 0.56 but different OCR: 
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Figure 13. Total displacement contours near excavation area with constant OCR = 2.5 but different
K0: (a) K0 = 0.3; (b) K0 = 0.5; (c) K0 = 0.8; (d) K0 = 1.0.
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Figure 14. Tunnel excavation simulations of this model with constant K0 = 0.56 but different OCR: 

(a) surface settlement troughs; (b) surface horizontal displacements. 
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Figure 14. Tunnel excavation simulations of this model with constant K0 = 0.56 but different OCR:
(a) surface settlement troughs; (b) surface horizontal displacements.

In order to investigate the effect of initial anisotropy on tunnel excavation, this study
set up two sets of numerical tests. Both sets of experiments have the same OCR = 2.5 and
K0 = 0.56, and the fabric parameters are set as cF = 150 and β = 0.09. In one set of tests,
the angle δ between the deposition plane and the z-axis is varied between 0◦ and 90◦

with ∆ = 0.3. In the other set, the value of initial anisotropy ∆ is varied between 0.2 and
0.32 while δ = 0◦. Figure 16a shows the relationship between settlement at various positions
and δ. It can be observed that as δ increases, the settlement at each position (surface,
shoulder, crown) first increases, reaching a maximum between approximately δ = 60 and
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75◦, and then decreases as δ continues to increase. Figure 16b shows the relationship
between horizontal displacement at the springline and δ. It can be observed that horizontal
displacement increases as δ increases. This may be because, as the deposition direction
gradually deviates from the z-axis, the stiffness of the soil decreases, which leads to an initial
increase in vertical settlement. As δ continues to increase, the horizontal displacement at
the springline continues to grow, and due to compression, the vertical settlement starts to
decrease. Figure 17 shows the distribution of horizontal displacement near the excavation
area under different δ conditions. It can be observed that for different scenarios, the
maximum horizontal displacement is concentrated at the springline, and as δ increases, the
maximum horizontal displacement increases.
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Figure 14. Tunnel excavation simulations of this model with constant K0 = 0.56 but different OCR: 

(a) surface settlement troughs; (b) surface horizontal displacements. 
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Figure 15. Plastic region (blue region) near excavation area predicted by this model with constant
K0 = 0.56, but different OCR: (a) OCR = 1.6; (b) OCR = 1.9; (c) OCR = 2.2; (d) OCR = 2.5.
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Figure 16. Vertical settlements and horizontal displacements at different positions predicted by this 

model with constant K0 = 0.56 and OCR = 2.5 but different δ: (a) settlements at surface, shoulder, and 
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Figure 16. Vertical settlements and horizontal displacements at different positions predicted by this
model with constant K0 = 0.56 and OCR = 2.5 but different δ: (a) settlements at surface, shoulder, and
crown with different δ; (b) horizontal displacement at springline with different δ.
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Figure 16. Vertical settlements and horizontal displacements at different positions predicted by this 

model with constant K0 = 0.56 and OCR = 2.5 but different δ: (a) settlements at surface, shoulder, and 

crown with different δ; (b) horizontal displacement at springline with different δ. 

    
(a) (b) (c) (d) 

Figure 17. Horizontal displacement near excavation area predicted by this model with constant K0 

= 0.56 and OCR = 2.5, but different δ: (a) δ = 0°; (b) δ = 30°; (c) δ = 60°; (d) δ = 90°. 
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Figure 17. Horizontal displacement near excavation area predicted by this model with constant
K0 = 0.56 and OCR = 2.5, but different δ: (a) δ = 0◦; (b) δ = 30◦; (c) δ = 60◦; (d) δ = 90◦.

Figure 18 illustrates the relationship between vertical settlement and horizontal dis-
placement at various locations with respect to the initial anisotropy parameter ∆. It is
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observed that as ∆ decreases, the vertical settlement at the surface, crown, and shoulder
positions decreases. However, when ∆ reduces from 0.22 to 0.2, the vertical settlement
slightly increases. On the other hand, the horizontal displacement at the haunch position
decreases monotonically with decreasing ∆. This behavior may be attributed to the fact that
as ∆ decreases, the inclination of the initial yield surface increases, resulting in different
distributions of plastic regions. Figure 19 corroborates this finding, showing that with a
reduction in ∆, the distribution of plastic regions in the excavation area shifts from the
shoulder position toward the crown position. A similar phenomenon was observed by Liu
et al. [99] in their DEM experiments when they found that the disturbed zone caused by
tunnel excavation rotates as the initial anisotropy changes.
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Figure 19. Plastic region (blue region) predicted by this model with constant K0 = 0.56 and OCR = 2.5:
(a) ∆ = 0.22; (b) ∆ = 0.24; (c) ∆ = 0.26; (d) ∆ = 0.28.

To investigate the influence of parameter cF on tunnel excavation, the fabric parameters
are set as ∆ = 0.25, β = 0.09, and cF values of 10, 100, 1000, and 5000, with OCR = 1.6 and
K0 = 0.56. Figure 20 presents the predicted maximum surface settlement and maximum
horizontal displacement for different cF values. It can be observed that as cF increases,
the predicted maximum settlement and maximum horizontal displacement also increase.
However, compared to factors such as OCR and K0, the influence of cF on the model
predictions is relatively limited. This may be attributed to the fact that the preferential
orientation of soil particles changes only minimally during excavation.
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5. Conclusions
In order to incorporate the effect of the fabric anisotropy and three-dimensional

strength characteristics of the soil into the analysis of a geotechnical engineering problem,
this study proposed a modified fabric-based MCC model based on the work of Tian [65].
Compared to the original model proposed by Tian [65], the improvements in the modified
model mainly lie in the fabric evolution criterion and strength criterion. These modifications
aim to simplify the equations for easier numerical implementation. Then, the elastic trial–
plastic correction method was used to numerically implement the model, and it was
subsequently integrated into the FLAC3D software. On this basis, the model was used to
simulate the mechanical response of soil under triaxial tests, embankment loading tests as
well as tunnel excavation tests, leading to the following conclusions:

(1) In the analysis of geotechnical engineering problems, incorporating the fabric
anisotropy and three-dimensional strength of the soil is essential, as these factors
significantly affect the mechanical response of the soil.

(2) The validity of the model presented in this paper has been validated at both the
macroscopic and microscopic levels. The model can reasonably reflect the anisotropic
characteristics of the soil. Furthermore, at higher strain levels, the anisotropic soil can
converge to a unique critical state, which is consistent with the ACST proposed by Li
and Dafalias [69].

(3) The preliminary simulation results of the model provide a reference for its practical
application. Although the cases used in the study are relatively simple, the model
effectively reflects the impact of factors such as anisotropy, over-consolidation, and the
coefficient of lateral earth pressure on soil disturbance. This can serve as a valuable
reference for the design and construction of real-world engineering projects.

However, it must be pointed out that accurately calibrating the microscale param-
eters related to fabric anisotropy remains a significant challenge when using the model.
Although some feasible methods for calibrating microscale parameters through labora-
tory experiments have been proposed [58,100], the samples used in these experiments are
generally remolded soils. Moreover, such methods often require advanced experimental
equipment, such as electron microscopes or CT scanners, which are not commonly available
in standard soil mechanics laboratories. Currently, the precise determination of in situ soil
fabric parameters using simple and practical methods remains a major challenge.
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