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Abstract: Fluid–soil interaction plays a pivotal role in various geotechnical engineering ap-
plications, as it significantly influences processes such as erosion, sediment transport, and
soil stability. Modeling fluid–soil particle interactions in these contexts presents substantial
challenges due to the inherent complexity of the interactions occurring across multiple
characteristic scales. The primary challenge lies in the vast disparities in magnitude be-
tween these scales, which demand sophisticated modeling techniques to accurately capture
the intricate dynamics involved. Coupled fluid–soil particle models have emerged as es-
sential tools for understanding the mechanisms underlying fluid–soil interactions. Among
these, the CFD-DEM (computational fluid dynamics–discrete element method) approach
has gained significant attention. This method provides an effective compromise between
high-resolution sub-particle fluid modeling and coarser mesh-based techniques for fluids
and particles. By doing so, CFD-DEM facilitates large-scale simulations while maintaining
computational efficiency, making it a promising solution for studying fluid–soil interactions
in complex geotechnical scenarios. This review highlights the application of CFD-DEM
models in geotechnical engineering, with a specific focus on soil erosion processes and
the critical role of turbulent flow. It explores various fluid–soil particle interaction com-
putational mechanisms and their implications for erosion dynamics, emphasizing several
key aspects, including the following: laminar vs. turbulent flow models: understanding
the distinctions between flow regimes is critical for accurately predicting fluid-induced
soil particle movement. Shear stress effects: the influence of flow-induced shear stress on
the detachment of soil particles is analyzed, particularly in erosion-prone environments.
Sediment transport mechanisms: factors such as particle size, density, and water velocity
are examined for their roles in governing sediment transport. Knowledge gaps and future
directions: these involve identifying unresolved issues in current fluid–soil interaction
models, with an emphasis on improving the accuracy and scalability of CFD-DEM sim-
ulations. By delving into these aspects, the review aims to advance the understanding
of fluid–soil interactions and provide insights into optimizing modeling techniques for
geotechnical engineering applications. It also outlines future research directions to bridge
existing knowledge gaps, emphasizing the importance of integrating advanced turbulence
modeling and computational strategies to enhance the predictive capabilities of fluid–soil
interaction frameworks.

Keywords: soil erosion; computational fluid dynamics; discrete element method; CFD-
DEM coupling; geotechnical engineering
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1. Introduction
Soil erosion is a natural process where soil particles are removed and transported

by external agents such as wind, water, and gravity [1,2]. While erosion is an essential
component of the Earth’s geologic cycle, human activities like agriculture, deforestation,
and urbanization have accelerated its pace, leading to significant environmental, economic,
and societal impacts [3,4]. Soil erosion can result in the loss of fertile topsoil, reduced
agricultural productivity, sedimentation in water bodies, and the degradation of natural
ecosystems [5,6]. Among the various forms of erosion, water-induced soil erosion is
particularly critical, as it contributes to a substantial portion of land degradation globally [7].

Water-induced erosion is driven primarily by rainfall, surface runoff, and streamflow,
which trigger different erosion mechanisms [8]. These include splash erosion [9], where
raindrop impacts dislodge soil particles; sheet erosion [10], where a thin layer of soil is
removed by surface water flow; rill erosion [10], which forms small channels as water
concentrates and flows more forcefully; and gully erosion [11], which involves larger, more
destructive channels. Understanding the fluid dynamics behind these processes is vital for
predicting and mitigating soil erosion.

This review explores the fluid dynamics of soil erosion, with a specific focus on the
role of turbulent flow in the erosion process. The distinction between laminar and turbulent
flow is crucial in understanding how different flow regimes affect soil particle detachment
and transport. Laminar flow, characterized by smooth and orderly fluid motion, exerts
lower forces on soil particles, whereas turbulent flow, with its chaotic and fluctuating
motion, creates higher shear stress, significantly increasing the potential for erosion [12–14].

This review will examine the key concepts of fluid dynamics in soil erosion, emphasizing
the interplay between flow conditions, shear stress, and sediment transport. By understanding
these processes, we can develop better strategies for erosion control and landscape management.

2. Fluid–Soil Interaction
Fluid–soil interaction (FSI) plays a key role in understanding the mechanics of granular

soils [15]. FSI governs complex processes such as sediment transport [16,17], internal
erosion [18], sand liquefaction [19], and debris flow [20]. These processes are not only
critical to geological formations but also have significant implications in geotechnical
engineering, where the stability of soil structures, foundation systems, and embankments
depends on the interaction between fluid flow and soil particles. Understanding these
interactions at the micro and macro scales is essential for mitigating risks such as erosion,
landslides, and other geotechnical hazards.

One fundamental aspect of FSI is the interaction between fluid and soil particles,
especially in saturated soils. In such systems, fluid flow through the pore spaces between
particles affects the overall mechanical behavior of the soil. This interaction can disturb
pore water pressure, leading to phenomena such as seepage, consolidation, or liquefaction.
However, due to the complexity of these interactions, accurately monitoring and quantify-
ing them in laboratory settings remains challenging. Thus, advanced numerical methods,
such as the discrete element method (DEM) and computational fluid dynamics (CFD), have
been developed to simulate fluid–soil interactions at the particle scale, offering a more
detailed understanding of these mechanisms [21].

2.1. Numerical Methods in Fluid–Soil Interaction

Numerical simulation has become an invaluable tool for studying FSI, particularly
where laboratory experimentation has limits as to what level of details can be revealed.
Traditional methods for modeling fluid flow, such as the Naiver–Stokes equations, are
solved through various computational fluid dynamics (CFD) approaches.
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Turbulent computational fluid dynamics (CFD) methods are techniques used to model
and simulate the chaotic irregular behavior of turbulence in fluid flows. Since turbulence
involves a wide range of scales, from large eddies to very small fluctuations, these methods
aim to capture the key aspects of turbulent behavior while balancing computational cost
and accuracy. Below is a summary of the main turbulent CFD methods in Table 1.

Table 1. Turbulence computational models.

Turbulence Models Overview Pros Cons

Direct Numerical
Simulation
(DNS) [22–25]

DNS solves the full Navier–Stokes
equations without any turbulence
modeling, capturing all scales of
turbulence down to the smallest scales or
Kolmogorov scales.

Highly accurate and
detailed representation
of turbulence.

Extremely computationally
expensive, making it feasible
only for
low-Reynolds-number flows
and simple geometries.

Large Eddy Simulation
(LES) [26–29]

LES directly resolves the larger turbulent
eddies while modeling the smaller, more
universal scales. This is achieved using a
filter that separates large and small
eddies, with only the small scales
being modeled.

More computationally
efficient than DNS and
captures essential
turbulent structures.
Suitable for complex
flows and geometries.

Still computationally
demanding, especially near
walls where turbulence scales
are small, so LES is generally
used for
high-Reynolds-number flows
with coarse grid near-wall
models or in regions where
finer detail is needed.

Reynolds-Averaged
Navier–Stokes
(RANS) [30–34]

RANS methods solve for time-averaged
flow properties and use turbulence models
to account for the effects of turbulence.
RANS simplifies the Navier–Stokes
equations by decomposing flow quantities
into mean and fluctuating components.
Common RANS models include
the following:
k-ε model: widely used for
general-purpose turbulence modeling,
especially for free-shear flows (e.g.,
jet flows).
k-ω model: performs better in adverse
pressure gradients and boundary layers,
making it more suitable for
wall-bounded flows.
Reynolds stress model (RSM): accounts for
anisotropy in turbulence by directly
modeling the Reynolds stresses, leading to
greater accuracy but also higher
computational costs.

Much more
computationally efficient
than DNS and LES,
making it the most
common approach for
industrial applications.

Less accurate for complex
turbulent flows, since the
averaged models can
oversimplify
turbulence structures.

Hybrid RANS-LES
Models [35–38]

These models combine the RANS and
LES approaches, often using RANS in
near-wall regions and LES in the core
flow regions where large eddies
are dominant.
Detached eddy simulation (DES):
switches from RANS to LES based on
grid size and turbulence scale.
Scale-adaptive simulation (SAS): adjusts
the turbulence model dynamically based
on the local flow conditions, useful in
flows with large separation zones.
Delayed detached eddy simulation
(DDES): a modification of DES that
delays the transition to LES, minimizing
grid-size dependency issues.

Balances computational
cost and accuracy,
providing a feasible way
to capture large-scale
turbulence in regions
that require it while
maintaining efficiency
near walls.

Hybrid methods can be
complex to implement, as they
require a seamless transition
between RANS and
LES zones.
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Table 1. Cont.

Turbulence Models Overview Pros Cons

Wall-Modeled LES
(WMLES) [39–41]

This is a variant of LES that applies a
wall model near solid boundaries,
allowing for coarser grids near walls
while still resolving large eddies away
from the wall.

Reduces the
computational cost of
LES by simplifying the
near-wall region.

Wall models can introduce
inaccuracies, especially if the
model is not well-tuned to the
specific flow.

Partially Averaged
Navier–Stokes
(PANS) [42–45]

PANS is a variable-resolution method
that blends between DNS, LES, and
RANS depending on the level of filtering
applied. It allows users to set a level of
detail based on available computational
resources and desired accuracy.

Offers flexibility to
adjust turbulence
modeling fidelity,
making it adaptable for
various flow regimes.

Complexity in adjusting the
filtering level for consistent
and reliable results across
different flow regions.

These methods allow CFD analysts to choose the level of turbulence modeling needed
for a particular application, balancing the trade-off between computational cost and the
level of detail in turbulent flow structures.

These CFD methods are typically coupled with particle-scale models. Several
particle-based methods have been used for the modeling of the mechanical behavior
of granular soils and the soil–fluid interactions, such as smooth particle hydrodynamics
(SPH) [46–49], the discrete element method (DEM) [15,46,50–80], and the material point
method (MPM) [81–87], all demonstrate highly realistic responses in modeling large defor-
mation problems. Each of these numerical methods has been instrumental in advancing
simulations of complex materials and interactions under significant deformation, where
conventional methods often fall short. SPH is particularly effective for fluid simulations,
while DEM is well-suited for capturing the mechanics of granular soils and for describing
particle flows under Newton’s laws of motion, and MPM provides robust capabilities for
solid mechanics. SPH and MPM are continuum models and yield limited information
concerning the particle-scale soil behavior. Due to these limitations, we will focus on
the DEM, especially computational fluid dynamics–discrete element method (CFD-DEM)
coupling methods, in this review.

2.2. CFD-DEM Coupled Models

In DEM models, each real particle in granular soils is modeled individually and the
particle contact physics is resolved. Therefore, the DEM has advantages in modeling the
particle-scale movements and interactions in granular soils (Figure 1). When combined
with CFD, the CFD-DEM coupling models enable the simultaneous simulation of fluid flow
and particle collisions, capturing the fluid–solid interactions that are critical in geotechnical
applications. Based on mesh resolution in the fluid phase, the CFD-DEM model can be
categorized into the unresolved (Figure 2) and fully resolved models (Figure 3) [88,89]. A
compromise between resolved and unresolved CFD-DEM is called semi-resolved CFD-
DEM (Figure 4), which uses various kernel functions to improve the void fraction models
and reduce computational errors [83,89–93]. The semi-resolved CFD–DEM approach,
while exhibiting limitations in accuracy due to its combination of theoretical and empirical
models, is nonetheless well-suited to industrial applications. This balance between theory
and empirical adjustments allows for a practical level of accuracy that meets the needs
of many complex simulations. Additionally, the semi-resolved CFD–DEM model offers
valuable strengths across several areas, namely that it achieves a favorable balance of
accuracy and efficiency, making it computationally feasible for large-scale applications. Its
adaptability to various particulate flow scenarios, along with its ability to describe complex
fluid–particle interactions in granular materials, further enhances its utility in a wide range
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of engineering and industrial contexts. The ratio of grid to particle size for unresolved,
resolved, and semi-resolved models is shown in Figure 1 for Figures 2–4, respectively.
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surrounding meshes using kernel functions. This coupling approach utilizes a kernel function to
reconstruct the background information from all cells with centers within a specified smoothing
distance, as shown in the red dashed circle, effectively eliminating dependency on grid size. This
kernel-based approximation bridges the gap between CFD–DEM simulations using unresolved and
resolved meshes, making it highly applicable to particulate flows with finer mesh sizes comparable
to or slightly smaller than the particles themselves [92].

2.3. Applications of CFD-DEM in Geotechnical Engineering

Shear stress plays a crucial role in the detachment of soil particles from the surface [94].
When the shear stress exerted by flowing water exceeds the soil’s critical shear stress,
particles are dislodged and begin to move. The detachment and transport of soil particles
depend on several factors, including particle size and distribution, density, and water
velocity [95]. Larger and denser particles require more energy to be lifted and transported,
while fine particles are more easily carried by flowing water.

In addition to particle size and density, the velocity and turbulence intensity of the
water flow directly influence sediment transport mechanisms. High-velocity flows can
carry more soil particles, while turbulence enhances particle suspension and transport
over longer distances [96]. The interaction between fluid flow and soil properties ulti-
mately determines the extent and severity of erosion, making it essential to understand the
underlying dynamics for effective soil conservation practices.

Soil particle transport is often effectively achieved through flow. The underlying
mechanism for using flow to dislodge soil particles lies in the formation of a boundary
layer near the soil surface. Within this boundary layer, a velocity gradient induces shear
stress, which exerts a force on soil particles, rolling them away from their initial positions.
For the soil particle to be dislodged, the force generated by the flow must exceed the soil
adhesion forces holding it in place.

In laminar flow, the boundary layer is relatively thick, leading to a gradual velocity
increase until it reaches the free-stream value. In contrast, turbulent flow is characterized by
a thinner boundary layer, which generates substantially higher shear stress. The accurate
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prediction of shear stress necessitates a comprehensive understanding of the velocity
profiles in both laminar and turbulent flows above the soil surface, as well as the associated
boundary layer thickness [97].

Soil particle transport occurs through mechanisms of shearing or rolling under the
influence of fluid flow, as shown in Figure 5. The shear force acting on a particle increases
with the square of its radius, whereas the frictional force scales linearly with the radius.
As a result, there exists a critical particle radius below which the shear force is insufficient
to overcome the frictional force, effectively restricting the transport of particles at very
small sizes.
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In the scenario illustrated in Figure 5, the flow applies a net force component, denoted
as FS to a spherical particle on a surface. This force can drive the particle to slide in a
direction parallel to the plane of the surface. Simultaneously, the shear flow creates a torque
on the particle, which tends to induce a rolling motion along the surface. However, when
the surface is rough, this rolling motion encounters resistance due to adhesion and frictional
forces [98].

Studies indicate that the detachment of particles aligns more with the predictions of
the rolling mechanism than with those of the sliding mechanism, showing better agreement
with observed data [98]. Consequently, it has been concluded that the primary mechanism
by which shear flow detaches soil particles is rolling rather than sliding. This rolling-
induced detachment under shear flow depends on the critical shear stress needed to
overcome the combined effects of surface roughness and adhesion/friction forces acting on
the particle [98].

Over the past few years, the application of CFD-DEM has increased rapidly in geotech-
nical engineering, particularly in the study of multiphase flow systems involving soil
particles. In geotechnical engineering, the unresolved CFD-DEM method has been widely
used in industries.

Blais et al. [99] reviewed a variety of numerical models, emphasizing the unresolved
CFD-DEM approach, which combines CFD for fluid dynamics with the discrete element
method (DEM) for solid particles. This method excels in accurately simulating granular
dynamics and managing large particle volumes. In their work, Blais et al. extended the unre-
solved CFD-DEM method to accommodate viscous solid–liquid flows, examining different
solid–liquid momentum coupling strategies while comparing their accuracy and stability.
They also incorporate a sub-grid viscosity model to maintain accurate suspension rheology.

This refined model is applied to analyze solid–liquid mixing in a stirred tank with a
pitched blade turbine. Validation includes qualitative comparisons of particle distribution
with experimental data and quantitative measurements of suspended solid fractions using
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the pressure gauge technique. Ultimately, this model offers a robust framework for studying
and optimizing solid–liquid mixing in laminar and transitional regimes.

The semi-resolved CFD-DEM models have been widely used in geotechnical engi-
neering due to less demand on computational resources and better resolution of particle
behaviors. The vertical hydraulic transport of particles with broad size distributions is
essential for coal fluidized mining. Wen et al. [90] present a semi-resolved CFD-DEM
model to simulate these particle flows, assigning CFD cells as the dependent domain for
particle volume and the influential domain for momentum sources. Using a two-way
domain expansion for coarse particles and a one-way approach for fine particles, the model
introduces dependent and influential domain expansion coefficients to enhance accuracy
for coarse particle simulations. Validation through settling and fluidization experiments
confirms this model’s effectiveness, offering a reliable tool for simulating liquid–solid flows
with diverse particle sizes in hydraulic transport applications. Fois et al. [83] introduced a
two-dimensional semi-conservative depth-averaged material point method (DAMPM) to
simulate flow-like landslides. Governed by shallow-water equations derived from depth-
integrated Navier–Stokes equations, the model incorporates bed friction and material
rheology using the Voellmy friction model and a depth-integrated Bingham viscoplastic
stress model. After validation through benchmark tests, the method was applied to a realis-
tic landslide scenario, highlighting the importance of understanding microscale particle
migration in fluid flows for advancing unconventional geo-resources. Zhu et al. [89] en-
hanced the kernel-based semi-resolved CFD-DEM method with grain-scale reconstruction
to study particulate flows in porous materials. A 3D spherical-packed model, derived from
the CT images of real rock, captured the heterogeneity and wide grain size distribution of
the rock skeleton. Validations showed that the improved semi-resolved CFD-DEM more
accurately predicted particle motion, heat transfer, and pressure drop behaviors, closely
aligning with experimental and analytical results compared to the unresolved CFD-DEM.
Wang et al. [92] identified a simulation gap between resolved CFD-DEM and unresolved
CFD-DEM through a study on size effects. They examined the sources of error in conven-
tional unresolved CFD-DEM when simulating particulate flows with comparable mesh
sizes and particle diameters. In response, they developed a semi-resolved CFD-DEM model
that integrates the strengths of both resolved and unresolved CFD-DEM models. The semi-
resolved CFD-DEM employs a drag force model to capture particle–fluid interactions using
kernel-based approximations from neighboring fluid cells to correct relative velocity and
adjust the void fraction rather than relying solely on the local cell. A Hilbert curve-based
search strategy enhances computational efficiency by identifying fluid cells within the ker-
nel’s influence area. Numerical simulations comparing various CFD-DEM approaches with
experimental data show that the semi-resolved method balances efficiency and accuracy,
achieving results comparable to resolved CFD-DEM while maintaining the efficiency of
unresolved CFD-DEM. Cheng et al. [93] developed a semi-resolved CFD-DEM model to
simulate seepage-induced fine particle migration in gap-graded soils with both fine and
coarse particles. The model combines the resolved fictitious domain (FD) method for fluid
flow around coarse particles with an unresolved approach based on local averaging for fine
particle–fluid interactions. Validated through simple tests, the model was applied to study
fine particle migration and piping erosion in gap-graded soils.

The resolved CFD-DEM method, on the other hand, provides a more accurate repre-
sentation of fluid–particle interactions by fully resolving the flow field around individual
particles. Fluid–solid interaction is a crucial scientific issue that draws the attention of
researchers in the geological and geotechnical fields, as it is essential for understanding
the mechanisms underlying water-induced geohazards in granular soils, such as debris
flow, piping erosion, and soil liquefaction. Hu et al. [15] developed a resolved CFD-DEM
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coupling method to study fluid–solid interactions and meso-mechanics in granular soils.
Validation involved three scenarios, namely the free settling of a single particle, seepage
through densely packed particles, and one-dimensional consolidation of a particle column.
The effects of mesh size and timestep were analyzed for both dilute and dense systems.
Results closely matched experimental and analytical data, capturing nonlinear fluid–solid
behaviors such as wake flow, wall effects, and pore-scale dynamics. These findings enhance
the understanding of complex interactions in saturated granular soils.

Shen et al. [54] used a resolved coupling model to simulate the interaction between
two-phase fluids and irregularly shaped particles using CFD-DEM. The volume of fluid
(VoF) method was employed to capture fluid dynamics, while irregular particles were
represented as multi-sphere clumps within the DEM framework. This approach calculates
meso-scale fluid flow around the particles and proposes an integration scheme to directly
compute fluid forces on the multi-sphere particles, eliminating the need for empirical drag
force models.

To investigate the movement of soil bodies with arbitrary shapes within a fluid,
Mao et al. [53] developed a resolved CFD-DEM coupling algorithm, integrating CFD for
the fluid phase with DEM for rigid bodies. The fluid is modeled using Navier–Stokes
equations in a Eulerian framework, while rigid body motion follows Newton’s second
law in a Lagrangian framework. The immersed boundary method addresses the challenge
of representing moving solid boundaries, with interaction forces derived from velocity
boundary conditions at the immersed boundary points. Multiple iterations solve the
coupling system to capture strong fluid–solid interaction effects.

Kravets et al. [100] compared particle-unresolved CFD-DEM simulations of static
homogeneous particle ensembles with DNS using the Lattice Boltzmann method (LBM).
By removing particle motion, it focused on assessing CFD accuracy at the particle scale,
evaluating drag, lift, and Nusselt numbers. The impact of particle shape on CFD-DEM
accuracy was analyzed using spherical, cylindrical, and cubic shapes modeled via the
multi-sphere method (MSM). Results highlighted challenges in simulating non-spherical
particles and offered insights for improving CFD-DEM applications and closure models.

Estimating the permeability of granular materials like sands is crucial for engineering
applications. Permeability is largely influenced by microstructures, particularly in irregular
particle configurations. However, the link between the morphological complexity of natural
geo-materials and their hydraulic properties has been underexplored. Qi et al. [101] ad-
dressed this by developing a workflow combining image processing, the Lattice Boltzmann
method (LBM), and the non-spherical discrete element method (DEM). They extracted the
geometries of five natural sand particles from micro-CT images, creating monodisperse
assemblies with varying porosity using a sphero-polyhedra-based DEM. The LBM was
then used to analyze pore fluid flow. Results showed that particle shape significantly affects
fluid flow, velocity distribution, permeability, tortuosity, and hydraulic anisotropy.

3. Challenges and Knowledge Gaps in CFD-DEM Methods
Despite significant advancements in CFD-DEM methods, challenges persist in achiev-

ing a balance between computational efficiency and accuracy. Resolved CFD-DEM offers
high accuracy but is computationally intensive due to the requirements for fine mesh sizes
and small time steps. Additionally, modeling fluid–solid interactions in large and dense
particle systems complicates its application in real-world geotechnical scenarios due to
the demand on computational power. However, ongoing research into hybrid approaches,
which combine resolved and unresolved CFD-DEM, shows promise for addressing some
of these challenges.
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A key knowledge gap in both unresolved and resolved CFD-DEM methods is the
accurate representation of drag forces and other fluid–solid interaction forces. Unresolved
approaches typically rely on empirical drag models, which may not fully capture complex
particle-scale behaviors. Resolved CFD-DEM methods employ advanced techniques, such
as the fictitious domain (FD) method and the immersed boundary (IB) method, to more
precisely model the flow field around particles. However, these techniques also introduce
challenges, including the need for mesh reconstruction in systems with deforming particles.

Fluid dynamic mode decomposition models offer a potential new direction to capture
soil particle movements. Dynamic mode decomposition models refer to methods used
in fluid dynamics and CFD to analyze complex flow fields by breaking them down into
simpler modes or structures. These models are part of data-driven analysis techniques
that decompose fluid flows into spatial and temporal modes, allowing researchers to
study coherent flow structures, turbulence, instabilities, and other dynamic behaviors in a
simplified manner. The following are some key models and techniques used for dynamic
mode decomposition (DMD) in fluid dynamics:

(1) Proper Orthogonal Decomposition (POD) [102,103]
POD, also known as principal component analysis (PCA) in statistics, is a method for

decomposing flow fields into a set of orthogonal modes that capture the most energetic
structures in the flow. POD decomposes a set of flow snapshots (data collected over time)
into orthogonal spatial modes and corresponding temporal coefficients. The modes are
ordered by the amount of energy they contain, so the first few modes represent the most sig-
nificant flow structures. POD is widely used to analyze turbulence, reduce dimensionality
in simulations, and develop low-order models for control in various fluid applications.

(2) Dynamic Mode Decomposition (DMD) [104,105]
DMD is a method for identifying dominant flow structures based on their growth

rates and oscillation frequencies. It is particularly useful for analyzing unsteady or time-
dependent fluid flows. DMD approximates linear dynamics underlying fluid flows by
decomposing time-resolved data into modes that have specific growth/decay rates and
frequencies. It uses snapshots of data over time and provides a way to characterize the
temporal evolution of the flow. They are used in fluid flow instability studies, turbulence
analysis, and developing reduced-order models in complex fluid systems like wake flows
and oscillating jets.

(3) Fourier Decomposition [106]
Fourier decomposition breaks down a time-dependent flow into a sum of sinusoidal

functions, each with a specific frequency and amplitude, based on Fourier series. This
method analyzes the frequency content of the flow and provides insights into periodic and
quasi-periodic structures. It can also be used with other decomposition methods to analyze
specific frequencies or oscillations. The method is commonly used for flows with periodic
behavior, such as vortex shedding or oscillatory flows, where frequency content is crucial.

(4) Global Linear Stability Analysis (GLSA) [107–109]
GLSA studies the stability of fluid flows by decomposing them into modes that de-

scribe how small perturbations grow or decay. By linearizing the Navier–Stokes equations
around a steady or mean flow, GLSA provides insights into the growth of disturbances in
the flow and identifies unstable modes. It is often performed in spectral space. The method
is widely used to understand instabilities in boundary layer flows, wake flows, and other
flows where small perturbations can lead to significant flow structure changes.

(5) Spectral Proper Orthogonal Decomposition (SPOD) [102,110–112]
SPOD combines POD with Fourier transforms to capture spatial modes that vary

over specific frequencies, giving a frequency-resolved analysis of fluid flows. SPOD uses
the Fourier transform of the flow data to separate spatial modes by frequency, so each
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mode represents coherent structures with a dominant frequency. The method is useful
for analyzing coherent structures in turbulent flows, including jets, boundary layers, and
wakes, where both the spatial and temporal resolution of flow structures are required.

(6) Koopman Mode Decomposition (KMD) [113,114]
KMD, based on the Koopman operator theory, provides a framework for nonlinear

flow analysis by decomposing the flow into modes associated with a continuous spectrum
of frequencies. Unlike DMD, which approximates linear dynamics, KMD considers the full
nonlinear dynamics of the flow. It is especially useful in analyzing nonlinear systems, as
it provides modes with interpretable dynamics even for complex systems. The method
is used in complex nonlinear flow systems and dynamical systems to uncover recurrent
patterns and structures in turbulent flows.

(7) Balanced Proper Orthogonal Decomposition (BPOD) [115,116]
BPOD is a modification of POD that specifically focuses on decomposing flows with

an emphasis on input–output behavior, often used for flow control applications. BPOD
modifies the standard POD approach by balancing the modes based on their controllability
and observability, which makes it useful in control and systematic analysis. The BPOD
model is commonly applied in flow control, where understanding how inputs affect the
system response is important, such as in drag reduction or boundary layer control.

(8) Resolvent Analysis [117–120]
Resolvent analysis examines the response of a fluid system to external forcing and

decomposes the flow field into forcing and response modes. This method uses the re-
solvent operator, which is derived from the Navier–Stokes equations, to identify which
flow structures are most amplified by the system’s inherent dynamics. The method is
useful in turbulent flow analysis and in understanding which disturbances are likely to be
amplified, such as in jets or boundary layers. It also aids in predicting coherent structures
in turbulent flows.

(9) Wavelet Decomposition [121,122]
Wavelet decomposition analyzes the flow using localized functions that can capture

both frequency and spatial information, making it ideal for analyzing transient and non-
periodic flows. The wavelet transform breaks down flow data into wavelets with specific
frequencies and spatial locations. Unlike Fourier transforms, wavelets can capture short-
lived and localized events within the flow. The model is used for analyzing unsteady and
transient events, such as turbulence, flow separation, and vortex interactions, where local
flow dynamics are important.

(10) Empirical Mode Decomposition (EMD) [123,124]
EMD decomposes a flow field into intrinsic mode functions (IMFs) based on the flow’s

data structure, without assuming a specific basis function. EMD is a data-driven approach
that iteratively extracts IMFs, each representing a specific oscillatory mode. It is particularly
suited to nonlinear and nonstationary flows. The method is useful for analyzing complex
unsteady flows that exhibit nonlinear behavior, such as vortex-dominated flows or flows
with intermittent instabilities.

Benefits and Applications of Fluid Dynamic Mode Decomposition Models:
Turbulence analysis: DMD, POD, and SPOD help in breaking down turbulent

flows into dominant structures, aiding in understanding turbulence energy transfer and
coherent structures.

Flow control: models like BPOD are applied in developing control strategies by
focusing on dominant controllable modes in the flow.

Reduced-order modeling: DMD and POD allow for constructing reduced-order mod-
els, simplifying complex fluid systems for real-time applications like simulations, design,
and control.
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Instability studies: decomposition models reveal flow instabilities, providing insights
into phenomena such as vortex shedding, boundary layer separation, and transitions
to turbulence.

Machine learning integration: decomposition methods, such as POD and DMD, pro-
vide low-dimensional representations, which can be integrated with machine learning
algorithms for predictive modeling and anomaly detection in fluid systems.

Fluid dynamic mode decomposition models play a crucial role in simplifying, under-
standing, and controlling fluid flows, particularly in complex and turbulent systems. Each
method has unique strengths suited to specific applications, ranging from flow stability
analysis and turbulence to reduced-order modeling and flow control.

Since soil particles behave as dynamic systems governed by Newton’s second law,
integrating fluid dynamic mode models into particle dynamics systems is a natural and
promising approach. This integration allows for a more comprehensive simulation of
fluid–solid interactions, capturing both the forces on individual particles and the complex
fluid flow around them. Conducting a thorough review of the current state of dynamic
systems and their modeling techniques can help address knowledge gaps and provide
valuable insights into the behavior of these particle–fluid systems. Such an analysis can
also help identify areas where these systems may be further optimized, offering alternative
approaches to improve the computational solvability of complex dynamic modes in fluid–
particle simulations. This method not only enhances model accuracy but also supports the
development of computational strategies that make large-scale simulations of particulate
flows more feasible and effective.

Another promising approach in fluid–particle simulations is the integration of LBM-
DEM models [101,125,126]. Fluid Lattice Boltzmann models (LBMs) are computational
fluid dynamics (CFD) techniques, based on the Lattice Boltzmann method, which simulate
fluid flow by modeling it as particles distributed across a lattice grid. Unlike traditional
CFD approaches that directly solve the Navier–Stokes equations, the LBM captures fluid
dynamics by evolving particle distribution functions through collision and propagation
rules on the lattice. This approach enables the LBM to capture fluid behaviors on both
macroscopic and microscopic scales, making it particularly useful for simulating complex
and dynamic fluid systems.

The following are some key features and advantages of fluid LBM models:
Discrete attice structure: Fluid is represented on a discrete lattice, with particles

moving between grid points. The lattice structure and spacing can vary based on the
application, often chosen to balance accuracy and computational efficiency.

Microscopic-based approach: The LBM is based on kinetic theory and simulates
fluid flow by updating the probability distribution of fluid particles on the lattice. This
mesoscopic approach bridges the gap between macroscopic and microscopic perspectives.

Collision and streaming process: At each time step, particles collide and redistribute
their velocities (collision), then move or “stream” to neighboring lattice points. The collision
model, such as the BGK (Bhatnagar–Gross–Krook) model, is a simplified approach to handle
particle interactions and drive the system toward equilibrium.

Boundary conditions: LBM models are flexible in handling complex boundary con-
ditions, including solid boundaries, moving interfaces, and even multiphase boundaries,
which makes them well-suited for simulating porous media, fluid–particle flows, and flows
with complex geometries.

Advantages in complex geometries and multiphase flow: The LBM is often preferred
in applications like porous media flow, multiphase flows, fluid–particle interactions, and
turbulent flows because it can handle these situations more naturally than traditional CFD
methods. It also works well for flows with complex boundary interactions and interface
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dynamics, like those encountered in biological or geological systems, such as lubricating
between porous cartilage tissues [127].

Parallelization: The LBM is highly parallelizable due to its local interactions, which
makes it efficient on modern high-performance computing platforms, enabling simulations
of large complex systems.

Types of LBM Models for Fluid Dynamics:
Single-phase models: standard LBM models that simulate single-phase fluid flows,

used widely for incompressible or weakly compressible flows.
Multiphase and multicomponent models: The LBM has specialized models for simu-

lating multiphase (e.g., liquid–gas) and multicomponent (e.g., fluid–fluid) systems. These
include models like the Shan Chen model for attractive–repulsive interactions.

Thermal LBM models: these include energy equations to model thermal flows, ac-
counting for temperature variations and heat transfer, useful in thermal fluid dynamics.

In summary, fluid LBM models are powerful tools in CFD, offering a unique ap-
proach for simulating complex flows with advantages in flexibility, scalability, and
computational efficiency.

4. Future Directions and Conclusions
The future of CFD-DEM modeling in geotechnical engineering lies in improving com-

putational efficiency while maintaining accuracy, particularly for large-scale real-world
applications. Advances in hybrid modeling techniques, such as coupling resolved and un-
resolved CFD-DEM, LBM-CFD, and dynamic mode decomposition models offer promising
solutions for balancing these demands. Additionally, further research into the effects of
particle shape, pore-scale interactions, and drag force models will help refine the accuracy
of these simulations.

Artificial intelligence (AI) has transformed soil erosion analysis by introducing ad-
vanced machine learning data-driven methods [11,26,33,105,128]. It is projected that ma-
chine learning (ML) and deep learning (DL) algorithms and their roles in accurately assess-
ing soil erosion are increasingly more important [128]. We need to explore how AI leverages
historical data, remote sensing imagery, and various geospatial datasets to improve erosion
quantification. The AL-based models emphasize the impact of AI-driven methodologies on
addressing complex erosion issues, including large-scale fluid–soil interactions, enhanc-
ing predictive models, and supporting informed decision-making. Integrating AI in soil
erosion analysis offers substantial benefits for sustainable land management by providing
decision-makers with actionable insights to optimize agricultural practices, reduce erosion
risks, and promote ecologically responsible land use.

As computational power continues to grow, the CFD-DEM and AI method is expected
to play an increasingly important role in understanding fluid–solid interactions in granular
soils. By providing detailed insights into processes such as seepage, liquefaction, and
sediment transport, CFD-DEM and AI methods will be essential in developing better
strategies for managing geotechnical hazards and soil erosion in the following areas:

Soil conservation: insights into erosion processes aid in developing effective conserva-
tion strategies like terraces, contour plowing, and vegetative cover.

Water quality: managing erosion reduces sedimentation in water bodies, improving
water quality and aquatic habitats.

Agricultural productivity: erosion control measures are essential for maintaining soil
fertility and agricultural productivity.

Infrastructure protection: hydrodynamic studies assist in designing structures to
protect infrastructure from erosion damage.
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This review highlights the current state of CFD-DEM methods in fluid–solid interac-
tion and their applications in geotechnical engineering, emphasizing the importance of
continued research to improve the accuracy and efficiency of these numerical simulations
for practical applications.
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