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Abstract: In the last decades, the scientific community has been focused on searching
earthquake signatures in the Earth’s atmosphere, ionosphere, and magnetosphere. This
work investigates an offshore Mw 5.5 earthquake that struck off the Marche region’s coast
(Italy) on 9 November 2022, with a focus on the potential coupling between the Earth’s
lithosphere, atmosphere, and magnetosphere triggered by the seismic event. Analysis
of atmospheric temperature data from ERA5 reveals a significant increase in potential
energy (Ep) at the earthquake’s epicenter, consistent with the generation of Atmospheric
Gravity Waves (AGWs). This finding is further corroborated by the MILC analytical model,
which accurately simulates the observed Ep trends (within 5%), supporting the theory of
Lithosphere–Atmosphere–Ionosphere–Magnetosphere coupling. The study also examines
the vertical Total Electron Content (vTEC) and finds notable fluctuations at the epicen-
ter, exhibiting periodicities (7–12 min) characteristic of AGWs and traveling ionospheric
disturbances. The correlation between ERA5 observations and MILC model predictions,
particularly in temperature deviations and Ep distributions, strengthens the hypothesis that
earthquake-generated AGWs impact atmospheric conditions at high altitudes, leading to
observable ionospheric perturbations. This research contributes to a deeper understanding
of Lithosphere–Atmosphere–Ionosphere–Magnetosphere coupling mechanisms and the
potential for developing reliable earthquake prediction tools.

Keywords: earthquake; atmospheric gravity waves; ionospheric irregularities; lithosphere–
atmosphere–ionosphere coupling; analytical model; Coulomb software; static displacement;
trust fault; co-seismic observations

1. Introduction
In the recent years, the scientific community’s interest in predicting earthquakes

(EQs) over the short term has surged. This surge is linked to the identification of certain
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atmospheric and ionospheric anomalies that show a statistical relationship with seismic
events as a counterpart to anomalies within the Earth’s crust. Notably, changes in the
density of ionospheric plasma, noted at both the lower and upper levels, hold significant
potential [1,2]. As a result, numerous theories have been put forward to elucidate the
interactions among the Earth’s crust, the atmosphere, and the ionosphere [3–6]. The initial
theory posited that radon emissions near the earthquake’s epicenter (EE) could disrupt
atmospheric conductivity. This disruption might lead to alterations in the atmospheric
electric field, which would, in turn, modify the ionospheric plasma density profile [7–9].
The second theory suggested that oscillations near EE could produce atmospheric Acoustic
Gravity Waves (AGWs). The latter have the potential to ascend and create disturbances
in the ionosphere [10–14]. The last theory proposed that electrostatic effects originating in
the Earth’s crust could permeate the lower atmosphere, influencing the ionization state of
the ionosphere [15,16].

Due to the absence of comprehensive experimental evidence to test these theories,
the intricacies of how the Earth’s crust, atmosphere, and ionosphere interact are still not
fully understood [5,17,18]. However, models that focus on the emission of AGWs seem
to hold the most promise for shedding light on this interaction, particularly in relation to
seismic activities. The validity of the AGW model is bolstered by various studies that have
examined changes in atmospheric pressure, magnetic field, and terrestrial movements be-
fore and during earthquakes (e.g., [1,4,6,10,12,19]). For example, the research by Korepanov
et al. [20] indicated that AGWs could be a plausible mechanism for the interaction between
seismic activity and the ionosphere as suggested by studies of surface atmospheric pressure
and magnetic field fluctuations during weather events. In a similar vein, an analysis of the
2004 Niigata-Chuetsu earthquake using wavelet methods revealed increased fluctuations
in the 10–100 min range in both surface atmospheric pressure and magnetic field data.
These fluctuations fall within the AGW spectrum and were found to have disturbed the
lower ionosphere [21].

Moreover, research on earthquakes such as the 2007 Niigata-Chuetsu Oki and
2008 Iwate-Miyagi events has demonstrated that when the lower ionosphere experi-
ences disturbances, there is a noticeable increase in ground movements within the fre-
quency ranges associated with AGWs [22]. Furthermore, detailed examinations of the
Earth’s crust movements during the 2011 Tohoku earthquake, which utilized Global
Positioning System (GPS) data, revealed clear synchronicity with shifts in the very-
low-frequency/extreme-low-frequency bands of sub-ionospheric signals and ultra-low-
frequency magnetic fields [23–26].

Building upon these prior investigations, Piersanti et al. [6] recently introduced a one-
dimensional analytical model of Lithosphere–Atmosphere–Ionosphere–Magnetosphere
coupling. This model aims to accurately interpret ground and satellite observations both
preceding and following seismic events. Central to the model is the generation of an
AGW, which, as it propagates from EE through the atmosphere [14], mechanically interacts
with the ionosphere, inducing a localized instability in plasma distribution via a pressure
gradient [27]. Such results were confirmed also by numerical simulation using nonlinear
shallow water applied to atmospheric disturbances generated by strong seismic events
in [28], which found that EQ can transmit waves toward the upper atmosphere in the form
of a non-vanishing AGW able to reach the ionosphere, generating changes in the local
plasma density.

The present paper aims to provide a new piece of evidence regarding the generation of
AGW linked to moderate-to-strong earthquakes. The interest is focused on the 9 November
2022 (hereinafter, EQ2022) earthquake that occurred offshore in the Adriatic Sea (Italy).
The seismic characterization will provide the geometric and kinematic parameters of the
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fault, sourcing the whole seismic sequence. The simulation of the static displacement
field induced by the empirical trust fault, together with its comparison with experimental
ground deformation measurements via GNSS, will be used as an initial constraint for
the application of the recently developed MILC model [14]. The latter will provide an
altitude map of the simulated temperature profiles to be compared with the evidenced
ones. To assess the generation of AGW, the potential energy (EP) will be retrieved.

The manuscript is organized as follows: Section 2 is devoted to the characterization
of the seismic event along with the simulation of the static displacement field; all the
results relative to the recognized anomalies both in the atmosphere and ionosphere are
contained in Section 3. A detailed discussion of the achieved results and their potential in
the comprehension of the LAIC characteristics is included in Section 4.

2. The 9 November 2022 Italian Earthquake
On 9 November 2022, at 06:07 UT, an earthquake with a local magnitude (ML) of 5.7

and a moment magnitude (Mw) of 5.5 struck approximately 30 km off the coast of the
Marche region in the Adriatic Sea (Figure 1a), followed by another ML 5.2 event approxi-
mately one minute later. Both events occurred along the Apennine compressional front,
at a depth of approximately 5–8 km. The seismic sequence included over 400 aftershocks in
the first week, 13 of which had ML ≥ 3.5 [29]. The area affected by the seismic sequence is
characterized by a complex geological structure, influenced by the convergence between the
Adriatic and European plates ([30] and references therein). The Apennine Mountain range
represents the main tectonic structure, with buried reverse faults extending beneath the
Adriatic Sea. Seismic activity in the area has long been debated due to the buried and blind
nature of these faults, which makes their identification and the assessment of their activity
difficult [30]. However, historical and instrumental seismicity, including the 2012 Miran-
dola earthquakes (Mw 5.9 and Mw 6.1) and the sequence under study, highlighted the
seismogenic character of this buried fault system ([30] and references therein).

Figure 1. (a) Geographic map of Italy: the red circle indicates the epicenter of EQ2022; (b) Accelero-
grams acquired at FANO station (43.8434◦ N and 13.0183◦ E) along the three directions of motion:
east–west (EW), north–south (NS) and vertical (Z) [31]; (c) focal mechanism indicating the nodal
planes: strike = 142◦, dip = 35◦, rake = 110◦ [32]; (d) static displacement field estimated for the
earthquake by using Coulomb software, over a 100 km × 100 km grid at the sea level. The horizontal
displacements measured at the GNSS stations (blue circles) and the modeled ones are represented by
blue and black arrows, respectively. The GNSS stations are numbered according to Pezzo et al. [33].

Several studies used a variety of data and methodologies to analyze the seismic se-
quence, including the location of hypocenters, GNSS investigations [33], and seismological
data elaboration [29,30,33]. GNSS measurements have allowed us to identify and model the
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fault responsible for the seismic sequence. The results indicate the rupture of a reverse fault
approximately 15 km long, dipping about 24◦ towards south-southwest [33]. Seismic data
(see an example in Figure 1b) allowed the estimate of the source mechanism (Figure 1c) for
this earthquake based upon the classical approach of [34]. The corresponding empirical
fault geometry [31] was retrieved from the focal location leading to about 10 × 7 km2

area, dipping 35◦ towards south–southwest (Figure 1c), which is compatible with that
individuated by GNSS measurements.

Pezzo et al. [33] performed the analysis of the magnitude distribution (Gutenberg–
Richter law), revealing a relatively high b value (0.94). They interpreted that result as
being due to a possible higher proportion of larger-magnitude events in that sequence.
However, Spassiani et al. [35] highlighted the need for caution when interpreting this
parameter as a precursor because of the high uncertainty in estimating the real-time b value.

Static Displacement Evaluation

The approach of Okada [36] can be adopted when static displacement and strain
fields have to be estimated. The main assumptions regard the homogeneity and isotropy
of the medium, in which both shear and tensile (both point or finite) faults produce
their effects. In the context of a Poissonian half-space, the internal displacement field,
caused by a dislocation across a surface, is the linear superposition of displacements
due to the strain. Internal deformation field formulas are then derived for shear, tensile,
and inflation/deflation sources as a function of the fault length (L), width (W), strike, dip,
friction, Young’s modulus (E), and Poisson’s ratio (σ).

The briefly described Okada’s approach [36] has been implemented in the Coulomb
software developed in the Matlab environment [37]. The software is used to estimate
the static displacement generated by earthquakes as well as strains and stresses induced
by fault slip, magmatic intrusion, or dike expansion/contraction. These calculations are
performed at a certain depth within an isotropic elastic half-space, including the free surface.
In that case, a direct comparison with ground deformation measures by GPS, GNSS, or even
tiltmeters [38,39] is possible.

The geometrical dimensions of the empirical fault used to estimate the static dis-
placement vectors are listed in Table 1. Moreover, the input conditions to the Coulomb
software are reported in the same table along with the seismic moment and net slip. Given
the seismic moment M0 = 3.75 · 1017 N·m (https://esm-db.eu/, accessed on 12 Decem-
ber 2024), considering the fault’s area (A), the Young modulus (E = 80 GPa), the rigidity
(µ = E/[2(1 + σ)]), and the Poisson’s ratio (σ = 0.25), the net slip u = M0

µA is estimated to
be about 0.17 m.

The simulated displacement field is reported in Figure 1d (black arrows). To validate
the modeled field, we compared the values with the GNSS measures, carried out in the
area (blue arrows) and reported in the supplementary information of Pezzo et al. [33].

The static displacement calculated in correspondence with the GNSS stations
(Figure 1d—red arrows) fits well, in both the direction and order of magnitude, with the
observed ones.

Specifically, we performed a χ2 test, which yields good agreement within alpha = 0.05
with a null hypothesis of Gaussian distribution for the residuals (mean value around 0 mm
and standard deviation of 2 mm). Moreover, the direction of the estimated displacement
for all the onshore GNSS stations agrees with the observed data within 45◦ (see Cusano
et al. [38]). For the offshore stations, the discrepancy between the modeled and observed
directions is significant at about half of the stations. In other words, the onshore locations
better constrain the deformation pattern than the offshore ones. Since the offshore GNSS
stations are located on industrial platforms, this discrepancy is likely due to the already

https://esm-db.eu/
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observed effects such as operations on the platforms, subsidence acting near the coastlines
of the Adriatic Sea, together with some nonlinear local effects, etc. [40,41]. Additionally,
we attribute the small observed discrepancies to local effects or lateral heterogeneity in the
medium not taken into account in the model. In fact, the Okada analytic model considers a
homogeneous and isotropic medium without taking into account the discontinuities due to
the contact between two surficial geological units, faults, fractures, etc. [38,42]. Anyway,
the obtained displacement pattern is in agreement with the compressional regional regime.

Table 1. Coulomb grid parameters used to estimate static ground displacement.

Fault Vertexes

Corners Latitude (◦) Longitude (◦)

LL 44.0356 13.2672
UR 44.0013 13.3983
LR 43.9686 13.3428
UL 44.0683 13.3228
SL 44.1091 13.3897
SR 44.0420 13.4653

Coulomb Grid Parameters

Grid Parameters Value (km)
Start—x 43.6
Start—y 12.7

Finish—x 44.5
Finish—y 13.9

x—increment 2.0
y—increment 2.0

Size Parameter Value

Plot size 2.0
Shade/Color increment 1.0

Exaggeration for disp. and
dist. 5,000,000.00

Cross-section default Value (km)

Start—x 43.6
Start—y 12.7

Finish—x 44.5
Finish—y 13.9

Distant—increment 1.0
Z—depth 20.0

Z—increment 1.0

Map info (◦) Value

min. lon 12.6826
max. lon 13.9550
zero. lon 13.3235
min. lat 43.5523
max. lat 44.4705
zero. lat 44.0130

3. Co-Seismic Analysis
In the following sections, we perform the coseismic analysis of the atmospheric tem-

perature and ionospheric vTEC to check whether EQ2022 was able to produce perturbations
propagating from the lower atmosphere up to the ionosphere.
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3.1. Atmospheric Temperature and Acoustic Gravity Waves Evaluation

The atmospheric temperature profiles are obtained from ERA5, which is the fifth
generation atmospheric dataset generated by the European Center for Medium-Range
Weather Forecasts [43]. This model provides high-resolution global temperature profiles
every hour, spanning from near the surface to an altitude of ∼80 km (0.01 hPa) with
137 different pressure levels. These profiles are derived from various observational sources,
including satellites, radiosondes, dropsondes, aircraft, and radars [43]. The dataset features
a horizontal resolution of 0.25◦ in both longitude and latitude.

In this investigation, we use potential energy (EP) as a crucial measure to assess the ac-
tivity of AGW. This parameter is directly influenced by the vertical temperature profiles of
the atmosphere [44,45], which are extracted from ERA5 for the particular event under con-
sideration. We assess the EP values using the methodology outlined by Piersanti et al. [6]
and Yang et al. [46,47].

EP [45] is defined as

EP =
1
2

(
g
N

)2(T′

T

)2

(1)

where g = 9.8 m/s2 is the gravitational acceleration (constant with altitude), N is the Brunt-
Väisälä frequency, and T′ is the fluctuation with respect to the background temperature T.
These three variables are functions of altitude z and are derived from the ERA5 profiles.
To retrieve T, we make a 2 km moving average; T′ is obtained by subtracting T from the
original temperature profile T.

The term
( T′

T

)2, (a variance), is evaluated within a 2 km thick layer, using the
following equation: (

T′

T

)2

=
1

hmax − hmin

∫ hmax

hmin

(
T′

T

)2

dh (2)

where hmax and hmin represent the top and bottom altitudes of the layer, respectively.
Figure 2 shows the ERA-5 observations for 9 November 2022 at 06:00 UT in a geograph-

ical zone close to EE. In particular, Box A in Figure 2 presents the atmospheric temperature
T (left panel), T′ (middle panel) and EP (right panel) as a function of the altitude over the
earthquake epicenter. It can be easily seen that an AGW develops close to the EQ occur-
rence. It is confirmed by several fluctuations between 10 km and 40 km. Four wave crests
are distinctly observed in T′ (central panel) at ∼15.0 km, ∼20 km, ∼29 km, and ∼35.0 km.
This pattern indicates the presence of two sinusoidal periods, with vertical wavelengths of
approximately 5 km and 9 km, respectively. EP (right panel) displays several enhancements
coinciding with fluctuations in the temperature deviation. However, only two peaks in the
EP correspond to the smaller wavelength (∼22 km and ∼27 km), suggesting the presence of
a single AGW with a wavelength of approximately 5 km. The greatest EP peak at ∼12 km
is representative of the tropopause location [6,47]. Figure 2B illustrates the horizontal
distribution of EP on 8, 9 and 10 November at 06:00 UT, at a constant altitude of 27 km,
corresponding to the peak in the potential energy values recorded between the tropopause
(∼12 km) and the stratopause (∼43 km). On 8 November, the area around the epicenter
(left panel) is relatively calm. However, on 9 November, there is a noticeable increase in EP

(central panel) over the epicenter (black circle) compared to the previous day, indicating
wave activity around the epicenter coinciding with the earthquake. As can be easily seen,
the day after the EQ occurrence (right panel), the EP behavior comes back to a relatively
calm situation.

To determine a causal relationship between the earthquake and the observed distur-
bances in the atmospheric temperature, we compared T’ observations with predictions
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from the MILC model [6,14]. Using the methodology of Carbone et al. [14], we specifically
analyzed the dispersion relation for wave vectors and frequencies of atmospheric pressure
perturbations triggered by EQ2022, based on the parameters listed in Table 2. These param-
eters included Peak Ground Acceleration (PGA), fault length, strong motion duration (∆t),
dominant seismogram frequency (ωs), and phase speed of surface waves (vs).

Figure 2. Co-seismic ERA-5 observations. (A) Vertical profiles of temperature (left panel), temperature
deviation (middle panel), and potential energy (right panel) on 9 November 2022 at 06:00 UT.
(B) Energy potential maps from 8 (left) to 10 (right) November 2022. The date and altitude are
indicated in each panel. The earthquake epicenter is marked by a black dot.

Table 2. The EQ2022 characteristics as provided by the USGS website https://earthquake.usgs.
gov/earthquakes/eventpage/us7000infp/executive (accessed on 12 December 2024). Here, PGA is
estimated at the FANO station.

EQ Characteristics Value

Length of Fault (km) 10
ωs (Hz) 0.0422
vs (m/s) 1614.4

∆t (s) 42.5
PGA 0.35 g

The results are reported in Figure 3. The left panel illustrates that the dispersion rela-
tion indicates excitation for wave vectors between 0.8 and 3.5 km, significantly exceeding
ks = ωs/vs, and for frequencies ranging from 0.3 to 2.1 Hz, well above ωs. The red dashed
line marks the threshold (ωt = c0/h, where h is the temperature scale height and c0 is
the sound speed), determining whether the pressure fluctuations are evanescent or can
propagate through the atmosphere up to the ionosphere as a purely vertical AGW (refer
to Carbone et al. [14] for more details). The frequency ωt = 0.034 Hz is calculated using
the temperature profile from ERA5, shown in Figure 2 (left upper panel). Since all excited

https://earthquake.usgs.gov/earthquakes/eventpage/us7000infp/executive
https://earthquake.usgs.gov/earthquakes/eventpage/us7000infp/executive
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modes are above (ωt), the MILC model predicts that a purely vertical AGW will propagate
to the ionosphere following the earthquake.

The right panel in Figure 3 presents a direct comparison between the modeled (red
line) and observed (blue line) T′ profiles. The modeled profile is derived from the estimated
pressure fluctuations using the atmospheric gas equation and the three pairs corresponding
to the maximum values of η/η0 in the dispersion relation (left panel), with T′(0) = 0 as
the boundary condition (refer to Carbone et al. [14] for more details). It is evident that the
MILC model accurately reproduces the observed temperature fluctuations, with a root
mean square error (RMSE) of 0.75K and a correlation coefficient of 0.79. The statistical
significance of the differences between the model and observations is evaluated using
the χ2 test, yielding χ2 = 49.6. These results suggest that our model can reproduce
the observations with over 88% probability, supporting the seismic origin of the AGW
measured over the earthquake epicenter.

Figure 3. Comparison between the MILC model previsions and the co-seismic ERA5 observations on
9 November 2022. (Left panel): dispersion relation of the AGW frequency and wavelength predicted
by the MILC model, in which the red dashed line represents the parameter c0/h. (Right panel): com-
parison between MILC model prevision (red line) and observations (blue line) of the temperature
deviation vertical profile. Here, c0 is the sound speed and h is the temperature scale height

Using the results obtained in Figure 1d and the MILC model, we try to model an EP

map over the EE. To accomplish this task, we run the MILC model for each grid point
in Figure 1d (100 km × 100 km), normalizing the PGA and vs amplitude with the static
displacement field estimated by using Coulomb software. Figure 4 reports the results:
the left panel shows the observed EP (which is a part of Figure 2B, central panel), while
the middle panel represents our modeled EP. It can be easily seen that the MILC model
results are strongly consistent with the observations. In fact, as is visible from the right
panel in Figure 4, the maximum error made is of the order of 5%. Such a difference may
be due to the discrepancies between the observed and modeled deformation pattern as
seen in Figure 1d, which can be ascribed to the local effects or to lateral heterogeneity in
the medium [38,40,42].
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Figure 4. Comparison between the MILC model previsions and the co-seismic ERA5 observations
relative to 9 November 2022. (Left panel): observed energy potential map. (Middle panel): modeled
energy potential map. (Right panel): difference between observed and modeled energy potential map.
The date and altitude are indicated in each panel. The black dot represents the earthquake epicenter.

3.2. The Vertical Total Electron Content

Following the approach proposed by D’Angelo et al. [27], in order to check for possible
ionospheric disturbances related to the earthquake occurrence, we process the GPS data
from the RING (Rete Integrata Nazionale GPS, http://ring.gm.ingv.it/, accessed on 12
December 2024) network to obtain calibrated vertical Total Electron Content (vTEC) maps
over the area struck by the earthquake. Specifically, we process standard daily RINEX files
provided by 56 receivers located around the epicenter, whose geographic coordinates are
reported in Table 3. By using the technique by Ciraolo et al. [48] and Cesaroni et al. [49],
we obtain data that depend neither on the geometry of the GPS constellation nor on the
receivers’ network. Furthermore, we use the Fast Iterative Filtering (FIF) technique, recently
proposed by Cicone and Zhou [50], to derive the vTEC fluctuations.

Table 3. Geographic location of the GNSS service station receivers used for the vTEC evaluation.

Site Name Latitude (◦) Longitude (◦)

ANCN 43.61 13.53

ARQT 42.75 13.2

ATBU 43.48 12.55

ATCC 43.18 12.64

ATFO 43.37 12.57

ATLO 43.32 12.41

ATMI 43.33 12.27

ATTE 43.2 12.35

BARO 42.25 12.05

BARS 42.34 13.58

BGDR 43.89 11.89

BLGN 44.51 11.35

BRAS 44.12 11.11

BRIS 44.22 11.77

CAFI 43.33 11.97

CAOC 42.29 13.48

CASP 42.79 10.87

http://ring.gm.ingv.it/
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Table 3. Cont.

Site Name Latitude (◦) Longitude (◦)

CESI 43 12.9

CONI 42.41 13.39

CRMI 43.8 10.98

CSSB 43.21 12.25

CTEL 42.86 13.19

GNAL 42.58 13.52

GRZM 44.26 11.15

GUMA 43.06 13.34

INGP 42.38 13.32

LNSS 42.6 13.04

LPEL 42.05 14.18

MAON 42.43 11.13

MGAB 42.91 12.11

MLAG 43.43 12.78

MODE 44.63 10.95

MOMA 42.8 12.57

MONA 42.9 13.34

MTER 42.51 13.21

MTRZ 44.31 11.42

MTTO 42.46 12.99

MUR1 43.26 12.52

MVAL 43.38 12.41

OSSC 43.52 11.25

PARM 44.76 10.31

PIET 43.45 12.4

PIOB 43.61 12.53

PREC 42.85 13.04

RNSP 43.68 12.27

ROPI 42.33 13.34

RSMN 43.93 12.45

RSTO 42.66 14

SACS 42.85 11.91

SGIP 44.64 11.18

SGRE 42.34 13.5

SIGI 43.34 12.78

USSI 42.97 13.13

VALC 43.28 12.28

VALC 43.28 12.28

VCAH 42.8 11.95
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The vTEC behavior in Figure 5 shows vTEC maps every 5 min between 05:56 UT
and 06:36 UT on 9 November 2022. Plasma wave activity is distinctly observable here,
as evidenced by the regular alternation between negative (blue) and positive (red) vTEC
fluctuations over the epicenter (black dot). These fluctuations seem to occur every
5 min starting from the time of the earthquake and persist for approximately 30 min.
The characteristic mean period of these fluctuations aligns with the typical proper-
ties of Acoustic Gravity Waves/Traveling Ionospheric Disturbances (TIDs) ([51], and
reference therein).

Figure 5. vTEC fluctuations characterized by a period between 5 and 9 min for all the satellites in the
field of view of all available GNSS receivers near the EQ epicenter (black dot) recorded every 5 min
between 05:56 UT and 06:36 UT on 9 November 2022.

4. Discussion and Conclusions
This work investigates an offshore Mw 5.5 earthquake that occurred off the Marche

region’s coast on 9 November 2022, focusing on identifying potential co-seismic signals in
the atmosphere and ionosphere.

The observations outlined earlier indicate that an AGW was introduced into the
atmosphere coinciding with EQ2022. As illustrated in the upper panels of Figure 2, an AGW
with a wavelength of approximately 5 km propagated through the atmosphere. Additional
evidence of wave activity concurrent with the earthquake is provided in the lower panels of
Figure 2. These panels show a notable increase in EP over the EE (central panel), in contrast
to the relatively calm conditions observed on 8 November and 10 November (left and right
panels) in the same region and at the same altitude.

Being that the establishing of a causal link between an AGW and an earthquake is very
complex, we applied the MILC analytical model to the atmospheric temperature profile
observations. The model results were able to reproduce the atmospheric temperature
variation profile with an accuracy of 88% (as concluded by the χ2 test). In addition, running
the MILC model on an estimated displacement field grid induced by the specific seismic
fault (Figure 1), we made a direct comparison between the geographical distribution of
the map observed and modeled on 9 November 2022 EP. The results (see Figure 4, right
panel) show that the MILC model was able to reproduce the EP observations with an
error of about 5%, reinforcing the hypothesis that the AGWs generated by the earthquake
influenced atmospheric conditions at high altitudes. It is well known that many other
factors, such as meteorological activity in the troposphere, auroral activity, the passage
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across the solar terminator, solar eclipses, and eruptions (refer to Šindelářová et al. [52] and
related references), can also generate AGWs. So, we checked both the atmospheric weather
and interplanetary space conditions. Figure 6 shows the SW parameters (Boxes A and B)
and the Sym-H index (Box C). The red dashed lines represent the time of the EQ occurrence.
Interplanetary magnetic field (IMF) observations are obtained from the DSCOVR satellite
(Box A), while solar wind (SW) parameters are obtained from the WIND satellite (Box B).
Both spacecraft are located at the first Lagrangian point (∼200 Earth Radii). We use
two different satellites because DSCOVR plasma observations are not available for the
period under analysis. Unfortunately, almost the same situation happens for the WIND
data. Data are freely available on the NASA website (accessed on 12 December 2024).
(https://cdaweb.gsfc.nasa.gov/, accessed on 12 December 2024). It can be easily seen that
no SW particular structure (like interplanetary shock, coronal mass ejection, corotating
interaction region, high speed stream, etc.) is present ∼45 min before the EQ occurrence.
This time is the typical delay time for a SW structure when traveling from the satellite
position down to the Earth’s magnetopause. In addition, the Sym-H value is stable around
−40 nT representing almost quiet conditions.

Figure 6. Solar wind parameters and the Sym-H index (https://cdaweb.gsfc.nasa.gov/ (accessed
on 17 December 2024)) for 9 November 2022. Box (A) shows the Interplanetary magnetic field
components. Box (B) shows the solar wind parameters, namely (from the top) the three components
of the solar wind speed, solar wind plasma density, and solar wind dynamic pressure. Box (C) shows
the Sym-H index. Red dashed lines represent the time of the EQ occurrence.

Concerning atmospheric weather conditions, the observations are reported in Figure 7.
It can be easily seen the total absence of any weather system affecting the Marche

region at the time of the EQ occurrence. Hence, we are confident that the AGW observed at
06:00 UT is likely linked to the seismic event.

Additionally, the analysis of the vTEC reveals significant fluctuations at the EE with a
peculiar period consistent with TIDs driven by AGW [51], suggesting the coupling between
the lithosphere and ionosphere, as well.

In conclusion, the findings confirm the presence of a coupling among the lithosphere,
atmosphere, and ionosphere at the time of the earthquake. Specifically, the co-seismic analysis

https://cdaweb.gsfc.nasa.gov/
https://cdaweb.gsfc.nasa.gov/
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reveals that disturbances initiated by the earthquake propagated from the lower atmosphere
into the ionosphere, giving strong support to the AGW driving mechanism theory.

Further research could consolidate these results and develop a short-term earthquake
prediction system based on the Lithosphere–Atmosphere–Ionosphere coupling. It is im-
portant to analyze a greater number of seismic events to verify the robustness of the
MILC model, identify any recurring pattern, and integrate different data sources, such as
satellite magnetic field and temperature data, to obtain a more complete view of the phe-
nomenon. This study opens new perspectives for understanding the coupling mechanisms
between the different layers of the Earth and for developing more reliable earthquake
prediction tools.

Figure 7. Weather report maps over Italy (https://meteologix.com/it/satellite/italy/satellite-nature-
15min-en/20221109-0500z.html (accessed on 1 January 2024)) for the 9 November 2022 at 06:00 UT.
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The Global GNSS Network (GGN) data can be retrieved from https://www.unavco.org/, accessed
on 12 December 2024. Weather report maps can be found at (https://meteologix.com/it/satellite/
italy/satellite-nature-15min-en/20221109-0500z.html (accessed on 17 December 2024)). Solar wind
data, interplanetary field data and Sym-H index data can be freely downloaded at NASA cdaweb site
(https://cdaweb.gsfc.nasa.gov/ (accessed on 17 December 2024)).
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