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Abstract: Rock masses comprise intact rock and discontinuities, such as fractures, which
significantly influence their mechanical and hydraulic properties. Uncertainty in construct-
ing the fracture network can notably affect the outcomes of sensitive analyses, including
tunnel stability simulations. Thus, accurately determining specific parameters of rock joints,
including orientation and trace length, is essential. A discrete fracture network (DFN) is
one technique used to simulate jointed rock. However, engineers often face challenges
due to the inherent uncertainty in building a fracture network using statistical distribu-
tion functions. This study analyzed the fracture network of the Emamzadeh Hashem
tunnel using MATLAB-developed code and 3DEC software. It focused on the impact of
statistical distribution functions on the uncertainty of fracture network construction. The
results reveal that using a negative exponential distribution can introduce significant errors
in constructing the fracture network, especially when generating the dip direction. The
parametric study shows that employing statistical distribution functions that account for
data variance in the Probability Distribution Function (PDF) can enhance the accuracy
of generating fracture parameters, such as dip, dip direction, and trace length, thereby
reducing uncertainty in fracture network construction.

Keywords: discrete fracture network; jointed rock; uncertainty; 3DEC; statistical distribution;
geohazard

1. Introduction
A rock mass comprises intact rock and discontinuities such as joints, bedding, faults,

and other weak planes. In many geological structures, the permeability of intact rock is
significantly lower than that of fractures, which serve as primary pathways for fluid flow,
including groundwater and other subsurface fluids. The presence of water within these
fractures can significantly alter the mechanical and hydraulic behavior of rock masses,
contributing to geohazards such as landslides, rockfalls, and tunnel instabilities. Fractures
play a crucial role in determining the mechanical and hydraulic properties of rock masses,
particularly in crystalline rocks with low permeability [1,2]. According to Feng [3], discon-
tinuities’ impact on a rock mass’s engineering characteristics is much more significant than
that of the intact rock. Discontinuities are critical factors in various engineering applications,
influencing the strength and fluid flow quality in rock structures and leading to anisotropic
and scale-dependent behavior of rock masses [4].
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Various methods have been developed over the past five decades to simulate fractures.
Early models represented fracture networks using three perpendicular groups of infinite
planes with fixed or random spacing [5]. Poisson distribution models were later proposed
to determine the distance of an infinite fracture plane from a central origin [6–12]. These
methods often randomly generate fracture orientations or are based on dominant joint
orientations, treating joints as infinite layers that do not accurately reflect the natural
conditions of rock masses. Consequently, a model using finite plates was proposed to
improve the Poisson plate model, making the simulations more realistic.

Hadjigeorgiou et al. [13] proposed a comprehensive engineering method to analyze
the stability of vertical drilling in hard rock masses by initially generating a discrete
fracture network and then combining it with the discrete element method for stress analysis.
Hosseini et al. [14] developed a code to build a fracture network and investigated how joint
parameters impact the construction of 3D fracture networks.

Advancements in science have led researchers to utilize new methods for simulating
jointed rock masses through discrete fracture networks (DFNs). Constructing a DFN
requires fracture density, orientation, length, and aperture data. The FracIUT computational
code was created to produce DFNs using probability distribution functions of geometric
parameters and the Monte Carlo algorithm. Noroozi et al. [15] simulated rock mass
discontinuities using data from the Rudbar dam in Lorestan, while Fereshtenejad et al. [16]
developed a method using three-dimensional geometry to model folded rock layers. Wang
and Vecchiarelli [17] employed a geostatistical approach to model DFNs, simulating fracture
density and orientation based on data from borehole walls and surface outcrops.

Constructing a fracture network based on real parameters is inherently complex.
Using linear scanline or window sampling, errors such as trace line length, orientation, and
density can arise when obtaining fracture data. These errors result from the limited size
of the scanning or sampling window, leading to unrecorded fractures and an incomplete
determination of their characteristics. Thus, it is essential to ensure that the characteristics
of the obtained fracture samples closely match those of the entire fracture system. Research
indicates that using statistical functions to construct a fracture network is always associated
with uncertainty, posing challenges in sensitive processes such as tunnel stability. Therefore,
validating the model is necessary to address these uncertainties.

This research focuses on studying the uncertainty in building a fracture network. A
fracture network was generated using a MATLAB-based code employing the Monte Carlo
technique. The results were then compared with those from 3DEC software (version 4.1)
and data from the Emamzadeh Hashem tunnel.

Various methods have been used during the last five decades to simulate fractures.
The fracture network was modeled in the early stages through three perpendicular groups
of infinite planes with fixed or random spacing. Previous studies proposed the distance of
an infinite fracture plane from a contracted origin via Poisson distribution models. In these
methods, the fracture orientation is obtained randomly or by using the dominant joint
orientation. Additionally, joints are often modeled as infinite layers, which do not accurately
reflect the natural conditions of rock masses. To address this, Long et al. [18] proposed a
fracture network composed of finite plates as an improvement to the Poisson plate model.
This approach introduced finite longitudinal fractures with arbitrary orientations, offering
a more realistic representation compared to Snow’s [5] analytical method, as discussed by
Cacas et al. [19]. A comprehensive engineering method to analyze the stability of vertical
drilling in hard rock masses was proposed by Hadjigeorgiou et al. [13]. The structural
complexities of the rock mass were initially recorded by generating a discrete fracture
network. The fracture system was subsequently combined with the discrete element
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method for stress analysis [13]. Hosseini et al. [14] created a code to build a fracture
network and studied how joint parameters impact 3D fracture network building.

As science has advanced, researchers have utilized new methods to simulate jointed
rock masses through discrete fracture networks. Building a discrete fracture network
requires information on the fracture density, orientation, length, and aperture. The compu-
tational code FracIUT was created to produce a discrete fracture network via probability
distribution functions of the geometric parameters of discontinuities and the Monte Carlo
algorithm [20]. Noroozi et al. [15] simulated the network of rock mass discontinuities in
this area via data from the Rudbar dam in Lorestan. Fereshtenejad et al. [16] proposed
a method that uses three-dimensional geometry to model folded rock layers. Wang and
Vecchiarelli [17] employed a geostatistical approach to model the discrete fracture network.
Their study involved simulating the density and orientation of fractures via geostatis-
tical methods, which rely on data gathered from borehole walls and surface outcrops.
Zhang’s study [21] further advanced the field by presenting a novel DFN flow model that
incorporates the actual connections of large-scale fractures.

Fang et al. [22] demonstrated how global sensitivity analysis (GSA) can be employed
to identify discrepancies in prior Bayesian methods. They combined this with approximate
Bayesian computation (ABC) and a tree-based surrogate model to align the model with pro-
duction history. These methods were applied to a complex fractured oil and gas reservoir,
where all uncertainties, including petrophysical properties, rock physics, fluid properties,
discrete fracture parameters, and dynamic factors like pressure and transmissibility, were
jointly considered. Building on these developments, DFN modeling continues to advance
through the integration of sophisticated computational techniques. The inclusion of the
Embedded Discrete Fracture Model (EDFM) framework, numerical reservoir simulation,
and geomechanics, as noted in recent studies [23,24], marks significant progress in the
field. Additionally, the application of GSA and ABC highlights the critical role of robust
uncertainty quantification in DFN modeling, particularly in complex reservoir environ-
ments. These innovative approaches are expected to play a crucial role in overcoming the
challenges associated with modeling fractured systems, ultimately leading to more accurate
predictions and effective management of subsurface resources.

However, constructing a fracture network based on real-world parameters is inher-
ently complex [25]. Errors frequently arise when fracture data, such as trace line length,
orientation, and density, are collected using linear scanline or window sampling [26]. These
errors are often due to the limited scope of the scanning or sampling window, which can
lead to some fractures being overlooked and hinder an accurate representation of fracture
characteristics. Ensuring that sampled fracture characteristics accurately reflect the broader
fracture system is essential. Research shows that statistical methods for constructing frac-
ture networks are inevitably accompanied by uncertainty, which presents challenges in
critical applications, such as ensuring tunnel stability [27]. Consequently, validating the
DFN model is crucial to address the inherent uncertainties in its construction.

This research aims to reduce uncertainties in DFN modeling by generating a fracture
network using a MATLAB-based code that applies the Monte Carlo technique. The accuracy
and reliability of the generated results are then assessed by comparing them with outputs
from 3DEC software and empirical data from the Emamzadeh Hashem tunnel. Estimating
directional parameters, such as dip and dip direction, is essential for accurately modeling
fracture networks. While traditional models, including 3DEC, are commonly used for this
purpose, they often encounter limitations when processing data with complex statistical
distributions or high variance, such as negative exponential and power distributions. These
challenges can introduce further uncertainty into modeling outcomes, particularly when
data variance is not explicitly incorporated into probability distribution functions.
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To address these limitations, this study introduces a novel, customized code that
enhances the accuracy of fracture network modeling. Our approach demonstrates im-
proved precision in estimating dip and dip direction across various statistical distributions,
particularly in cases where traditional models exhibit limitations. This method provides
greater adaptability and reliability for geological modeling applications, especially when
handling data with high variance or non-normal distributions.

2. Study Area
In this study, a 3D fracture network is built on the basis of data from the Emamzadeh

Hashem tunnel. The tunnel is located in the NE of Tehran Province and is surrounded
mainly by Cambrian sediments, carbonate sediments, and Jurassic sedimentary deposits.
(Figure 1) depicts the general tunnel location and geological map of the Emamzadeh
Hashem tunnel.
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3. Materials and Methods
3.1. Development of the Code for Building a Separate Fracture Network

The geometry of a rock mass’s fracture system is a crucial factor in applied rock
engineering projects. To represent the fracture system, we generated random fractures
based on the statistical distributions of their geometrical parameters. Each random model
represents a small part of the studied area where fractures are assumed to have the same
statistical behavior. This study used the Monte Carlo simulation method to generate
random samples from these statistical distributions, effectively modeling the inherent
variability and uncertainty. The essential parameters for fracture network construction
included orientation, length, and fracture density, typically determined through field data,
borehole data, or virtual survey equipment such as LiDAR [28]. Once these parameters
were established, the Monte Carlo technique created the fracture network. Previous studies
have demonstrated that the Monte Carlo method effectively builds fracture networks [29].
This method simulates each fracture as a disk or parallelogram with finite dimensions
in three-dimensional space. Figure 2 shows a 3D fracture network generated using our
developed MATLAB code.

First, the algorithm takes fracture system characteristics like fracture density, trace
length, aperture, and fracture strike as input parameters. These parameters depend on
each fracture set’s statistical distribution functions and geometric properties. The fracture
system’s variability and uncertainty are captured by generating random samples from
these distributions using Monte Carlo simulation. The algorithm generates fractures until
each set’s desired frequency is reached. Here, the algorithm determines whether each
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fracture is disc-shaped or polygonal. Radius and trace length are calculated for disc-shaped
fractures. The algorithm determines the number of sides, internal angles, and polygon
vertex coordinates for polygonal fractures. After defining the fracture geometry, the fracture
is generated in 3D. The algorithm creates internal and external boundaries to fit fractures
into the network.
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Figure 2. A 3D fracture network generated using the developed MATLAB code.

The algorithm outputs the 3D fracture network and characteristics, allowing complete
fracture system visualization and analysis. This algorithm realistically and robustly models
fracture networks for geomechanical and engineering applications using the Monte Carlo
method and statistical fracture parameter distributions.



Geosciences 2025, 15, 6 6 of 21

3.1.1. Fracture Center Generation

Four types of point process models can be used to generate the centroid of fractures in
3D space: the homogeneous (Poisson) model, nonhomogeneous process, cluster process
and Cox process [9]. Each of these models uses a specific recursive algorithm to determine
the location of the fracture center by generating random numbers as the fracture centroid.
This study utilized the Poisson method to generate the fracture centroid. In this method, the
coordinates of the fracture plane center in three-dimensional space are as follows [30,31]:

xi = xg1 + Ri
(
xg2 − xg1

)
(1)

yi = yg1 + Ri

(
yg2 − yg1

)
(2)

zi = zg1 + Ri
(
zg2 − zg1

)
(3)

where xg1 , yg1, zg1 and xg2 , yg2, zg2 represents the coordinates of the desired range, and
“Ri” is a random number. An example of the coordinates of the centroid of the generated
fractures is shown in Figure 3.
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3.1.2. Fracture Length Generation

The fracture length is determined via the following relationship.

l =
[
l−D
min + Ri

(
l−D
max − l−D

min

)]−1/D
(4)

lmin and lmax are the smallest and largest lengths of the fracture, D is the fractal
dimension, and “Ri” is a random number [32]. The dip and dip direction of the fractures
are also obtained via statistical distribution functions. The developed code can consider
normal, log-normal, power, exponential and uniform statistical functions. Figure 4 shows
an example of the length of the fractures generated via a power distribution function, with
minimum and maximum lengths ranging from 1.5 to 4.2 m.
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Figure 4. Generation of various trace lengths based on the distribution function via the developed
code. The axes labels refer to X, Y, and Z coordinates.

3.1.3. Fracture Orientation Generation

The fracture orientation includes two components: dip and dip directions. These two
parameters and other fracture geometrical characteristics are generated independently and
follow their statistical distributions. The developed code allows the consideration of Fisher,
normal, log-normal, exponential, and uniform statistical functions to generate dip and
dip directions.

3.1.4. Fracture Network Building

The developed code allows for visualizing fracture planes in three dimensions and
can output each fracture’s parameters as an Excel file. In this study, using the Monte Carlo
technique and based on the code developed in MATLAB R2022b, 10 random models for
the Emamzadeh Hashem tunnel’s fracture network were created, shown in Appendix A
Figure A1. An example of a fracture network constructed with the developed code for the
identified joint sets obtained via DIPS software (version 4.1) is shown in Figure 5.
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Figure 5. An example of a fracture network constructed with the developed code for the identified
joint sets obtained via DIPS software, explained in the Section 4.

4. Discussion and Results
The initial step involved collecting data from the Emamzadeh Hashem tunnel in

3-m sections and then inputting them into DIPS software to model the fracture data.
Four groups of dominant joints in the region were subsequently identified on the basis
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of the concentration and intensity of the fracture pole in various areas of the stereo net
(Figure 6). The statistical functions of each joint set were determined on the basis of the
fitting performed on the collected data, and these functions are presented in Table 1.
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Table 1. Statistical parameters of each joint set.

Joint Set Characteristic Distribution Parameters

1
Dip direction Normal Mean = 175, Variance = 35

Dip Power Min = 64, D 1 = 3.38

Length Negative
exponential Min = 1, Max = 10, λ 2 = 0.27

2
Dip direction Normal Mean = 110, Variance = 139

Dip Normal Mean = 72, Variance = 98

Length Power A = 23.5, D = 0.1406, Min = 0.8,
Max = 8.5

3
Dip direction Normal Mean = 58, Variance = 104

Dip Normal Mean = 66, Variance = 85

Length Negative
exponential λ = 0.31, Min = 1, Max = 7.9

4
Dip direction Negative

exponential λ = 0.9341

Dip Normal Mean = 81, Variance = 39

Length Negative
exponential λ = 0.2623, Min = 0.9, Max = 10

1 In power distribution (x) =ax − d, the graph of f depends on a and d. 2 λ: In negative exponential distribution
f (x) = λe − λx, the graph of f depends on λ.

For Joint Set 1, the dip direction is modeled using a normal distribution with a mean of
175 and a variance of 35, indicating that the dip directions are centered around 175 degrees
with moderate variability. The dip follows a power distribution with a minimum value
of 64 and a D value of 3.38, suggesting that higher dip values are less frequent, starting
at 64. The fracture length is characterized by a negative exponential distribution with a
minimum length of 1, a maximum of 10, and a rate parameter (λ) of 0.27, indicating that
shorter fractures are more common than longer ones.
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Joint Set 2’s dip direction is modeled with a normal distribution, having a mean of
110 and a high variance of 139, reflecting a broad spread around the mean direction. The
dip follows a normal distribution with a mean of 72 and a high variance of 98, indicating
significant variability in dip angles around the mean. The length is described by a power
distribution with parameters A = 23.5, D = 0.1406, and a range from 0.8 to 8.5, suggesting
varied fracture lengths, with shorter lengths more frequent and a gradual decrease in
frequency for longer lengths.

For joint set 3, the dip direction follows a normal distribution with a mean of 58 and a
variance of 104, showing considerable spread around the mean direction. The dip is also
normally distributed with a mean of 66 and a variance of 85, indicating a wide range of dip
values around the mean. The fracture length is characterized by a negative exponential
distribution with a rate parameter (λ) of 0.31, a minimum length of 1, and a maximum of
7.9, indicating a higher frequency of shorter fractures.

Joint set 4’s dip direction is modeled using a negative exponential distribution with a
rate parameter (λ) of 0.9341, suggesting that lower dip direction values are more common.
The dip follows a normal distribution with a mean of 81 and a variance of 39, indicating
a relatively tight clustering around the mean dip value. The length follows a negative
exponential distribution with a rate parameter (λ) of 0.2623, a minimum of 0.9, and a
maximum of 10, indicating a higher likelihood of shorter fractures.

4.1. Fracture Network Building with 3DEC Software

In 3DEC discrete element software, disk or parallelogram plates with limited dimen-
sions represent fractures in 3D mode. This software can generate a fracture network on
the basis of the statistical functions of fracture length, position, and orientation. Statistical
functions such as power, uniform, and Gauss functions are available in this software; other
functions can be developed via the FISH programming language (3DEC User’s Guide, [33]).
Additionally, the density of the joint can be modeled with different modes, such as P32
(fracture plane to the volume of the sampling area) and P21 (the length of all fractures per
unit area of the sampling area). Using FISH programming language in 3DEC software,
10 random fracture networks of the Emamzadeh Hashem tunnel were made, which are
shown in Figure A2.

4.2. Reliability Analysis of the Discrete Fracture Network

Various methods are available to validate the fracture network. One approach involves
using different sections to compare with the results of the sampling window, among other
methods. Importantly, the sampling window method has drawbacks, such as the inability
to remove fractures that are parallel to the window. Another approach is to compare the
constructed fracture network with the input data [34]. This method involves the complete
sampling of all fractures in the tunnel face. This study compared the fracture orientation,
trace length, and location to the input data.

4.2.1. Fractures Direction of the Emamzadeh Hashem Tunnel

To validate the directional parameters (dip and dip directions), the primary data were
compared with the results from the developed code and 3DEC software. As shown in
Figure 7, the developed code generally demonstrates lower error in estimating the dip
direction for the first and fourth joint sets, with only the third joint set estimated more
accurately by the 3DEC software. Thus, the developed code reduces uncertainty in dip
direction predictions, particularly when using a negative exponential distribution for dip
direction, which does not directly account for data variance. When the data follow a normal
distribution with a lower average, however, 3DEC shows greater accuracy. Both methods
display the lowest accuracy with the negative exponential distribution, where the larger
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differences from the actual data contribute to greater uncertainty. Figure 8 illustrates the
fracture dip results from the developed code and 3DEC software. For the first joint set with
power distribution, 3DEC estimates a greater dip compared to other joint sets. Overall,
the developed code performs better for exponential and power distributions, where direct
handling of data variance is less critical.
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Notably, the accuracy of the developed code in generating dip and dip direction
decreases for normal distributions when the data have a small mean and variance. Conse-
quently, data variance significantly influences uncertainty in fracture network construction,
as higher variance generally enhances alignment between model outputs and actual data
by accommodating greater variability across parameters.
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4.2.2. Trace Length of Fractures in the Emamzadeh Tunnel

The comparison results of the calculated trace length are shown in Figure 9. In this
figure, the difference between mean of the real data and calculated using the code(DAC)
and 3DEC(DAD), difference between variance of the real data and calculated using the
code(DVC) and 3DEC(DVD), the difference between minimum of the real data and cal-
culated using the code(DMIC) and 3DEC(DMID), difference between maximum of the
real data and calculated using the code(DMAC) and 3DEC(DMAD) are shown. In this
instance, both methods’ most significant estimation errors are associated with the negative
exponential statistical distribution function. Additionally, for the third joint set, where the
average length of fractures is lower, the estimation error for both the developed code and
the 3DEC software is more significant than in other cases
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Figure 9. Using the developed code and 3DEC software to calculate effect length versus field
survey data.

A comparison of Figures 7–9 reveals that the most significant error of the 3DEC code
and software is in calculating the fracture’s minor dip, dip direction and length values.
Notably, the 3DEC code and software consistently yield accurate calculations for the
maximum dip, dip direction, and length in most cases. However, the minimum values
present the most significant challenge, as their calculation errors impact the accuracy of
the built fracture network. Hence, their application is more suitable for creating smaller
fractures. Figure 10 compares the fracture production results between the developed code
and the 3DEC software for a specific section of the tunnel, with a focus on the joint set.
The first joint set demonstrates the closest alignment between the developed code and the
actual data, indicating a strong correlation. Conversely, the second joint set exhibits the
highest degree of agreement between the results obtained from the 3DEC software and the
real data. Notably, the second joint set is unique among the joint sets, as none of its joint
parameters adhere to a negative exponential distribution.
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4.3. Parametric Study

Using a developed code, this study evaluated the impact of statistical distribution
functions on uncertainty in fracture network building. Ten different scenario models for
each dip, dip direction, and trace length parameter were considered on the basis of Table 2.
This allowed us to investigate the influence of different parameters on the uncertainty in
fracture network construction.

Table 2. Various models considered for assessing uncertainty in fracture network generation.

Joint Set Model Distribution Minimum Maximum Mean Variance

Dip direction

1 Normal 150 175 164 35
2 Normal 180 205 195 35
3 Normal 100 125 114 35
4 Normal 100 135 114 43
5 Normal 105 125 114 25
6 Negative exponential 15 37 26 57
7 Negative exponential 45 6 56 57
8 Negative exponential 100 122 111 57
9 Negative exponential 100 122 113 30

10 Negative exponential 105 122 113 19

Dip

1 Power 65 90 81 54
2 Power 45 70 61 54
3 Power 15 40 31 54
4 Power 15 60 31 62
5 Power 10 65 31 88
6 Normal 70 90 78 72
7 Normal 50 70 58 72
8 Normal 10 32 19 72
9 Normal 10 39 24 37

10 Normal 15 35 25 23
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Table 2. Cont.

Joint Set Model Distribution Minimum Maximum Mean Variance

Fracture length

1 Negative exponential 5 11.9 7.2 4.7
2 Negative exponential 1 20 7.2 22
3 Negative exponential 1 41 7.2 87
4 Negative exponential 5 35 13 76
5 Negative exponential 1 31 9 76
6 Power 8.8 16.6 12.7 6
7 Power 1 26 18.6 25
8 Power 1 33 18.6 41
9 Power 1 33 18.6 53
10 Power 9 23 17 6

Using the data from Table 2, models 1 to 10 were constructed to compare the results of
the developed code with the initial data for generating the fracture direction. Importantly,
ten different fracture networks were created to eliminate random effects from each model,
and the best network was selected for comparison with the actual data.

The table provides data on joint set characteristics across three attributes: dip direction,
dip, and fracture length. Each attribute is analyzed through various models—normal,
negative exponential, and power—with specified statistical parameters such as minimum,
maximum, mean, and variance values.

4.3.1. Dip Direction

The dip direction of joint sets was evaluated using two statistical models: normal and
negative exponential. For the joint sets modeled with a normal distribution (sets 1 to 5), the
dip direction values range from a minimum of 100 to a maximum of 205. The mean values
for these sets fall between 114 and 195, with variances ranging from 25 to 43. Notably, sets
1, 2, and 5 exhibit higher maximum values (175, 205, and 125, respectively), indicating a
broader range of dip directions compared to sets 3 and 4, which share similar mean values
but differ in their maximum values (125 and 135, respectively). In contrast, the joint sets
modeled with a negative exponential distribution (sets 6 to 10) display a distinct range of
dip direction values, with minimums ranging from 15 to 105 and maximums from 37 to
122. The mean values in this category range from 26 to 113, with variances between 19
and 57. Joint sets 6 and 7 show lower minimum values (15 and 45), while sets 8, 9, and
10 maintain higher minimum values (100 and above). The greater variance in this group
suggests a more dispersed distribution of dip direction values compared to the normal
model, indicating a more variable dip direction within these sets.

4.3.2. Dip

The dip attribute of the joint sets is primarily modeled using the power and normal
distributions. For the power model (sets 1 to 5), the dip values range broadly, with
minimums from 10 to 65 and maximums from 40 to 90. The mean values hover around
31 to 81, with variances ranging from 54 to 88. This significant variance, particularly
in set 5 (88), indicates a high level of variability in the dip angles, suggesting complex
geological conditions affecting these joint sets. In contrast, joint sets modeled with the
normal distribution (sets 6 to 10) display dip values with a narrower range. The minimum
values are between 10 and 70, and the maximum values are between 32 and 90. The means
for these sets span from 19 to 78, and variances range from 23 to 72. Sets 6 and 7, with
higher minimum and maximum values, suggest a more stable and predictable dip angle
distribution compared to sets 8, 9, and 10, which exhibit lower minimum and maximum
values and lower variances, indicating less variability in these dips.
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4.3.3. Fracture Length

The fracture length of the joint sets is analyzed using the negative exponential and
power models. For the negative exponential model (sets 1 to 5), fracture lengths exhibit
a wide range, with minimums from 1 to 5 and maximums from 11.9 to 41. The mean
values for these sets are consistently around 7.2 to 13, with variances ranging from 4.7 to
87. Notably, set 3, with a maximum value of 41 and variance of 87, indicates significant
variability and longer fractures compared to the other sets in this model. Joint sets modeled
with the power distribution (sets 6 to 10) show minimum values ranging from 1 to 9 and
maximum values from 16.6 to 33. The means for these sets are between 12.7 and 18.6, with
variances ranging from 6 to 53. Set 9 stands out with higher variance (53), indicating more
variability in fracture lengths. In contrast, sets 6 and 10, with lower variances (6), suggest
more consistent and predictable fracture lengths.

The analysis of joint set characteristics reveals diverse dip direction, dip, and fracture
length patterns across different statistical models. The normal and negative exponential
distributions for dip direction and fracture length show significant variability, reflecting
complex geological processes. The power model applied to dip angles indicates consider-
able variability, especially in sets with higher variances. These findings provide valuable
insights into the studied joint sets’ geological heterogeneity and structural complexities,
informing further geological and engineering evaluations.

4.3.4. Distribution Types Influence the Uncertainty in Fracture Dip Direction Generation

Figure 11A compares the results for the initial five models with a normal dip direction.
In this diagram, the difference between the simulated values and the real values of the
data is clearly shown, and it can be seen that the biggest difference between the simulated
values and the real values is related to the upper or lower limit or the average of the data.
The most significant difference in the performance of the developed code is observed in the
dip direction calculations for the four models. These two models have the lowest average
data value and the highest data variance. However, for models 1 and 2, where the average
data are higher than those in the other models, the results of the developed code are very
close to the real data.
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The results of models 6 to 10, where the dip direction also follows the negative expo-
nential distribution function, are shown in Figure 11B. Generally, the difference between the
code results and the actual data is more significant for the exponential distribution function
than for the normal distribution. One reason for this is that in the negative exponential
distribution, the variance of the data is not directly considered in the PDF function. The
most significant difference between the code results and actual data in estimating the frac-
ture dip direction is related to models 9 and 10, which have a lower variance but a higher
average than the other models. This point is quite different from what was observed for the
normal distribution. For the minimum and maximum normal distribution, the simulated
values are different from the real values, while for the negative exponential distribution,
the difference is more related to the average of the data and a quarter of the second and a
third of the data.

4.3.5. Fracture Dip Generation Uncertainty and Statistical Functions

Similar to the approach for fracture dip direction, various models (outlined in Table 2)
have been developed to quantify the uncertainty associated with predicting fracture dip.
Figure 12A compares the results obtained using our code with accurate data for the first
five models, which follow a power distribution. The code accurately calculates fracture dip
for models 1 to 3. However, this accuracy decreases significantly for models 4 and 5. This
decline is attributable to a lower average and a higher variance in the data for these models,
which aligns with the influence of a normal distribution on the generation of fracture dip.
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In contrast, for the remaining five models (represented by the normal distribution in
Figure 12B), reducing data variance significantly improves the code’s accuracy in calculating
fracture dip. This behavior mirrors the impact of variance on dip direction prediction
accuracy. The code performs better at calculating fracture dip when the normal distribution,
rather than the power distribution, governs the dip.

4.3.6. Statistics’ Effect on Fracture Trace Length Uncertainty

The results of calculating the trace length of the fracture via the developed code for
models that follow the negative exponential distribution are depicted in Figure 13A. For
models 3 to 5, where the variance and average of the data are more significant, the accuracy
of the code in generating the fracture trace length decreases. Furthermore, for other models
that follow the power distribution, as the variance increases, the accuracy of the developed
code in generating the trace length of the fractures decreases (Figure 13B).
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5. Limitations of the Proposed DFN Algorithm
While the proposed DFN algorithm offers a robust framework for simulating and

analyzing complex fracture systems in rock masses, its applicability is subject to several
limitations based on varying fracturing characteristics. Firstly, the algorithm performs
optimally in scenarios with moderate to high fracture densities where stochastic modeling
is advantageous. In rock masses with very few fractures, explicit modeling of each fracture
may provide greater accuracy, making the stochastic approach less beneficial [35].

Additionally, the algorithm assumes simplified geometric shapes for fractures, such
as circles, ellipses, or polygons. This simplification may not adequately capture the intri-
cate and irregular geometries often observed in natural fractures, potentially reducing the
model’s accuracy in highly complex environments [36]. The reliance on assumed statistical
distributions for fracture orientations and sizes, like the Fisher distribution for orienta-
tions and log-normal distributions for sizes and apertures, further constrains the model.
Deviations from these distributions in real-world data can compromise the reliability and
predictive capabilities of the algorithm [37].

Graph-based connectivity methods, such as Depth-First Search (DFS), presume that all
fractures contributing to flow paths are sufficiently captured and interconnected within the
model. Critical flow paths might be overlooked or misrepresented in geological settings
where connectivity patterns are influenced by complex processes that are not represented
in the model [38]. Moreover, identifying and removing non-conductive fractures poses
challenges in heterogeneous rock masses where conductivity varies subtly, potentially
affecting the accuracy of flow simulations [39].

The algorithm also differentiates between rupture and shear fractures but may not
fully account for the distinct mechanical and hydraulic properties inherent to each fracture
type. This limitation can impact analyses where the behavior of different fracture types
significantly influences the overall system, such as in seismic response or fluid flow stud-
ies [11,40,41]. Furthermore, the algorithm is tailored for specific geological scales; applying
it to significantly larger or smaller scales without appropriate adjustments may lead to
scalability issues or loss of detail. The computational demands of simulating extensive and
intricate fracture networks can also limit the algorithm’s practicality in resource-constrained
environments [42].

Another consideration is the assumption of statistical homogeneity within defined
fracture categories. This assumption may not hold in heterogeneous rock masses with
varying geological features and localized variations in fracture properties, thereby reduc-
ing the model’s effectiveness in accurately capturing spatial variability [43,44]. Proper
management of boundary conditions is crucial to prevent unrealistic fracture extensions
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beyond the physical domain, as mismanagement can introduce artefacts into the fracture
network, adversely affecting subsequent analyses. Lastly, the static nature of the algorithm
may not fully encapsulate dynamic geological processes and varying external stresses that
influence fracture development over time, limiting its applicability in scenarios where
fractures evolve due to ongoing geological or environmental changes [45].

6. Conclusions
The uncertainty in constructing fracture networks is crucial in analyses such as tunnel

stability, significantly impacting simulation results. This study investigated the impact
of statistical distribution functions on the accuracy of building the Emamzadeh Hashem
tunnel fracture network via MATLAB and 3DEC software. The findings revealed that the
most significant errors in generating joint parameters occur when the negative exponential
distribution function is used. Conversely, decreasing the normal distribution’s mean and
variance reduces the developed code’s accuracy in generating the dip and dip directions
of fractures.

The results indicate that using the exponential distribution for the Emamzadeh tunnel
fracture network can lead to substantial errors. A parametric study further examined the
impact of various statistical functions on fracture parameters (dip, dip direction, and trace
length). The study found that

• The use of distribution functions such as the normal distribution, which incorporates
the variance of data, significantly enhances the accuracy of the developed code in
generating fracture parameters.

• Decreasing the variance of the data significantly affects the accuracy of the code when
the normal distribution is used.

• The most significant impact of various statistical functions is observed in generating the
minimum value of fracture parameters, with the developed code accurately calculating
the maximum value in most cases.

• Negative exponential and power distribution functions, where variance is not directly
included, result in the most errors in generating fracture parameters.

Ensuring low variance within each joint set is essential in building fracture networks.
If the variance is high, dividing the joint set into smaller sets and modeling them separately
is advisable. Similar studies should be conducted for different jointing modes and density
conditions to generalize these results.
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Y coordinates.
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Figure A2. Ten models of the fracture network along the tunnel created in 3DEC software. The axes
represent the X, Y, and Z coordinates.
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